首页 > 最新文献

BioTech最新文献

英文 中文
Influence of Critical Parameters on the Extraction of Concentrated C-PE from Thermotolerant Cyanobacteria. 关键参数对从耐热蓝藻中提取浓缩 C-PE 的影响
IF 2.7 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-06-24 DOI: 10.3390/biotech13030021
Ariadna H Vergel-Suarez, Janet B García-Martínez, German L López-Barrera, Néstor A Urbina-Suarez, Andrés F Barajas-Solano

This work aimed to identify the influence of pH, molarity, w/v fraction, extraction time, agitation, and either a sodium (Na2HPO4·7H2O-NaH2PO4·H2O) or potassium buffer (K2HPO4-KH2PO4) used in the extraction of C-phycoerythrin (C-PE) from a thermotolerant strain of Potamosiphon sp. An experimental design (Minimum Run Resolution V Factorial Design) and a Central Composite Design (CCD) were used. According to the statistical results of the first design, the K-PO4 buffer, pH, molarity, and w/v fraction are vital factors that enhance the extractability of C-PE. The construction of a CCD design of the experiments suggests that the potassium phosphate buffer at pH 5.8, longer extraction times (50 min), and minimal extraction speed (1000 rpm) are ideal for maximizing C-PE concentration, while purity is unaffected by the design conditions. This optimization improves extraction yields and maintains the desired bright purple color of the phycobiliprotein.

本研究旨在确定pH值、摩尔浓度、w/v分数、萃取时间、搅拌以及钠缓冲液(Na2HPO4-7H2O-NaH2PO4-H2O)或钾缓冲液(K2HPO4-KH2PO4)对从耐热菌株Potamosiphon sp.中萃取C-PE的影响。 本研究采用了实验设计(最小运行分辨率V因子设计)和中央综合设计(CCD)。根据第一种设计的统计结果,K-PO4 缓冲液、pH 值、摩尔浓度和 w/v 分数是提高 C-PE 萃取率的关键因素。实验的 CCD 设计表明,pH 值为 5.8 的磷酸二氢钾缓冲液、较长的萃取时间(50 分钟)和最低的萃取速度(1000 转/分钟)是最大化 C-PE 浓度的理想条件,而纯度则不受设计条件的影响。这种优化方法提高了提取率,并保持了所需的亮紫色藻胆蛋白。
{"title":"Influence of Critical Parameters on the Extraction of Concentrated C-PE from Thermotolerant Cyanobacteria.","authors":"Ariadna H Vergel-Suarez, Janet B García-Martínez, German L López-Barrera, Néstor A Urbina-Suarez, Andrés F Barajas-Solano","doi":"10.3390/biotech13030021","DOIUrl":"10.3390/biotech13030021","url":null,"abstract":"<p><p>This work aimed to identify the influence of pH, molarity, <i>w</i>/<i>v</i> fraction, extraction time, agitation, and either a sodium (Na<sub>2</sub>HPO<sub>4</sub>·7H<sub>2</sub>O-NaH<sub>2</sub>PO<sub>4</sub>·H<sub>2</sub>O) or potassium buffer (K<sub>2</sub>HPO<sub>4</sub>-KH<sub>2</sub>PO<sub>4</sub>) used in the extraction of C-phycoerythrin (C-PE) from a thermotolerant strain of <i>Potamosiphon</i> sp. An experimental design (Minimum Run Resolution V Factorial Design) and a Central Composite Design (CCD) were used. According to the statistical results of the first design, the K-PO<sub>4</sub> buffer, pH, molarity, and <i>w</i>/<i>v</i> fraction are vital factors that enhance the extractability of C-PE. The construction of a CCD design of the experiments suggests that the potassium phosphate buffer at pH 5.8, longer extraction times (50 min), and minimal extraction speed (1000 rpm) are ideal for maximizing C-PE concentration, while purity is unaffected by the design conditions. This optimization improves extraction yields and maintains the desired bright purple color of the phycobiliprotein.</p>","PeriodicalId":34490,"journal":{"name":"BioTech","volume":"13 3","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270330/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141761417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Silico and In Vitro Evaluation of the Antifungal Activity of a New Chromone Derivative against Candida spp. 新型铬酮衍生物对白色念珠菌抗真菌活性的硅学和体外评估
IF 2.7 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-05-25 DOI: 10.3390/biotech13020016
Gleycyelly Rodrigues Araújo, Palloma Christine Queiroga Gomes da Costa, Paula Lima Nogueira, Danielle da Nóbrega Alves, Alana Rodrigues Ferreira, Pablo R da Silva, Jéssica Cabral de Andrade, Natália F de Sousa, Paulo Bruno Araujo Loureiro, Marianna Vieira Sobral, Damião P Sousa, Marcus Tullius Scotti, Ricardo Dias de Castro, Luciana Scotti

Candida species are frequently implicated in the development of both superficial and invasive fungal infections, which can impact vital organs. In the quest for novel strategies to combat fungal infections, there has been growing interest in exploring synthetic and semi-synthetic products, particularly chromone derivatives, renowned for their antimicrobial properties. In the analysis of the antifungal activity of the compound (E)-benzylidene-chroman-4-one against Candida, in silico and laboratory tests were performed to predict possible mechanisms of action pathways, and in vitro tests were performed to determine antifungal activity (MIC and MFC), to verify potential modes of action on the fungal cell membrane and wall, and to assess cytotoxicity in human keratinocytes. The tested compound exhibited predicted affinity for all fungal targets, with the highest predicted affinity observed for thymidylate synthase (-102.589 kJ/mol). MIC and CFM values ranged from 264.52 μM (62.5 μg/mL) to 4232.44 μM (1000 μg/mL). The antifungal effect likely occurs due to the action of the compound on the plasma membrane. Therefore, (E)-benzylidene-chroman-4-one showed fungicidal-like activity against Candida spp., possibly targeting the plasma membrane.

念珠菌经常会引起表皮和侵袭性真菌感染,从而影响重要器官。在寻求抗真菌感染新策略的过程中,人们对合成和半合成产品,尤其是以抗菌性能著称的铬酮衍生物的兴趣与日俱增。在分析化合物 (E)-benzylidene-chroman-4-one 对白色念珠菌的抗真菌活性时,进行了硅学和实验室测试以预测可能的作用机制途径,并进行了体外测试以确定抗真菌活性(MIC 和 MFC),验证对真菌细胞膜和细胞壁的潜在作用模式,以及评估对人类角质细胞的细胞毒性。受试化合物对所有真菌靶标都表现出预测亲和力,其中对胸腺嘧啶酸合成酶的预测亲和力最高(-102.589 kJ/mol)。MIC 和 CFM 值从 264.52 μM(62.5 μg/mL)到 4232.44 μM(1000 μg/mL)不等。抗真菌作用可能是由于化合物对质膜的作用。因此,(E)-亚苄基-色满-4-酮对念珠菌属具有类似杀真菌的活性,可能是以质膜为靶点。
{"title":"In Silico and In Vitro Evaluation of the Antifungal Activity of a New Chromone Derivative against <i>Candida</i> spp.","authors":"Gleycyelly Rodrigues Araújo, Palloma Christine Queiroga Gomes da Costa, Paula Lima Nogueira, Danielle da Nóbrega Alves, Alana Rodrigues Ferreira, Pablo R da Silva, Jéssica Cabral de Andrade, Natália F de Sousa, Paulo Bruno Araujo Loureiro, Marianna Vieira Sobral, Damião P Sousa, Marcus Tullius Scotti, Ricardo Dias de Castro, Luciana Scotti","doi":"10.3390/biotech13020016","DOIUrl":"10.3390/biotech13020016","url":null,"abstract":"<p><p><i>Candida</i> species are frequently implicated in the development of both superficial and invasive fungal infections, which can impact vital organs. In the quest for novel strategies to combat fungal infections, there has been growing interest in exploring synthetic and semi-synthetic products, particularly chromone derivatives, renowned for their antimicrobial properties. In the analysis of the antifungal activity of the compound (<i>E</i>)-benzylidene-chroman-4-one against <i>Candida</i>, in silico and laboratory tests were performed to predict possible mechanisms of action pathways, and in vitro tests were performed to determine antifungal activity (MIC and MFC), to verify potential modes of action on the fungal cell membrane and wall, and to assess cytotoxicity in human keratinocytes. The tested compound exhibited predicted affinity for all fungal targets, with the highest predicted affinity observed for thymidylate synthase (-102.589 kJ/mol). MIC and CFM values ranged from 264.52 μM (62.5 μg/mL) to 4232.44 μM (1000 μg/mL). The antifungal effect likely occurs due to the action of the compound on the plasma membrane. Therefore, (E)-benzylidene-chroman-4-one showed fungicidal-like activity against <i>Candida</i> spp., possibly targeting the plasma membrane.</p>","PeriodicalId":34490,"journal":{"name":"BioTech","volume":"13 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11201913/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proteases: Importance, Immobilization Protocols, Potential of Activated Carbon as Support, and the Importance of Modifying Supports for Immobilization. 蛋白酶:蛋白酶:重要性、固定化方案、活性炭作为支持物的潜力以及修改支持物对固定化的重要性。
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-04-30 DOI: 10.3390/biotech13020013
Mateus Pereira Flores Santos, Evaldo Cardozo de Souza Junior, Carolina Villadóniga, Diego Vallés, Susana Castro-Sowinski, Renata Cristina Ferreira Bonomo, Cristiane Martins Veloso

Although enzymes have been used for thousands of years, their application in industrial processes has gained importance since the 20th century due to technological and scientific advances in several areas, including biochemistry [...].

虽然酶的使用已有数千年历史,但自 20 世纪以来,由于生物化学等多个领域的技术和科学进步,酶在工业流程中的应用变得越来越重要 [...] 。
{"title":"Proteases: Importance, Immobilization Protocols, Potential of Activated Carbon as Support, and the Importance of Modifying Supports for Immobilization.","authors":"Mateus Pereira Flores Santos, Evaldo Cardozo de Souza Junior, Carolina Villadóniga, Diego Vallés, Susana Castro-Sowinski, Renata Cristina Ferreira Bonomo, Cristiane Martins Veloso","doi":"10.3390/biotech13020013","DOIUrl":"10.3390/biotech13020013","url":null,"abstract":"<p><p>Although enzymes have been used for thousands of years, their application in industrial processes has gained importance since the 20th century due to technological and scientific advances in several areas, including biochemistry [...].</p>","PeriodicalId":34490,"journal":{"name":"BioTech","volume":"13 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11130871/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141158507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eco-Friendly Sanitization of Indoor Environments: Effectiveness of Thyme Essential Oil in Controlling Bioaerosol Levels and Disinfecting Surfaces. 生态友好型室内环境消毒:百里香精油在控制生物气溶胶水平和表面消毒方面的功效。
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-04-26 DOI: 10.3390/biotech13020012
Daniela Sateriale, Giuseppina Forgione, Giuseppa Anna De Cristofaro, Leonardo Continisio, Chiara Pagliuca, Roberta Colicchio, Paola Salvatore, Marina Paolucci, Caterina Pagliarulo

Bioaerosols and pathogens in indoor workplaces and residential environments are the primary culprits of several infections. Techniques for sanitizing air and surfaces typically involve the use of UV rays or chemical sanitizers, which may release chemical residues harmful to human health. Essential oils, natural substances derived from plants, which exhibit broad antimicrobial properties, could be a viable alternative for air and surface sanitation. The objective of this study has been to investigate the efficacy of thyme essential oil (TEO) in environmental sanitation processes. In Vitro assays through agar well diffusion, disk volatilization and tube dilution methods revealed significant antimicrobial activity of TEO 100% against foodborne and environmental isolates, with both bacteriostatic/fungistatic and bactericidal/fungicidal effects. Therefore, aqueous solutions of TEO 2.5% and 5% were formulated for air sanitation through nebulization and surface disinfection via direct contact. Bioaerosol samples and surface swabs were analyzed before and after sanitation, demonstrating the efficacy of aqueous solutions of TEO in reducing mesophilic and psychrophilic bacteria and environmental fungi levels in both air and on surfaces. The obtained results prove the antimicrobial potential of aqueous solutions of TEO in improving indoor air quality and surface cleanliness, suggesting thyme essential oil as an effective and safe natural sanitizer with minimal environmental impact compared to dangerous chemical disinfectants.

室内工作场所和居住环境中的生物气溶胶和病原体是导致多种感染的罪魁祸首。对空气和物体表面进行消毒的技术通常需要使用紫外线或化学消毒剂,而这些消毒剂可能会释放出对人体健康有害的化学残留物。精油是从植物中提取的天然物质,具有广泛的抗菌特性,可以作为空气和物体表面消毒的可行替代品。本研究旨在调查百里香精油(TEO)在环境卫生过程中的功效。通过琼脂井扩散法、盘式挥发法和试管稀释法进行的体外检测显示,百里香精油对食源性和环境分离菌具有显著的抗菌活性,既有抑菌/杀菌作用,也有杀菌/杀真菌作用。因此,我们配制了 2.5% 和 5% 的 TEO 水溶液,用于通过雾化进行空气消毒和通过直接接触进行表面消毒。对消毒前后的生物气溶胶样本和表面拭子进行了分析,结果表明 TEO 水溶液能有效降低空气和表面中的嗜中性和嗜心理细菌以及环境真菌的含量。研究结果证明了百里香精油水溶液在改善室内空气质量和表面清洁度方面的抗菌潜力,表明百里香精油是一种有效、安全的天然消毒剂,与危险的化学消毒剂相比,对环境的影响最小。
{"title":"Eco-Friendly Sanitization of Indoor Environments: Effectiveness of Thyme Essential Oil in Controlling Bioaerosol Levels and Disinfecting Surfaces.","authors":"Daniela Sateriale, Giuseppina Forgione, Giuseppa Anna De Cristofaro, Leonardo Continisio, Chiara Pagliuca, Roberta Colicchio, Paola Salvatore, Marina Paolucci, Caterina Pagliarulo","doi":"10.3390/biotech13020012","DOIUrl":"10.3390/biotech13020012","url":null,"abstract":"<p><p>Bioaerosols and pathogens in indoor workplaces and residential environments are the primary culprits of several infections. Techniques for sanitizing air and surfaces typically involve the use of UV rays or chemical sanitizers, which may release chemical residues harmful to human health. Essential oils, natural substances derived from plants, which exhibit broad antimicrobial properties, could be a viable alternative for air and surface sanitation. The objective of this study has been to investigate the efficacy of thyme essential oil (TEO) in environmental sanitation processes. In Vitro assays through agar well diffusion, disk volatilization and tube dilution methods revealed significant antimicrobial activity of TEO 100% against foodborne and environmental isolates, with both bacteriostatic/fungistatic and bactericidal/fungicidal effects. Therefore, aqueous solutions of TEO 2.5% and 5% were formulated for air sanitation through nebulization and surface disinfection via direct contact. Bioaerosol samples and surface swabs were analyzed before and after sanitation, demonstrating the efficacy of aqueous solutions of TEO in reducing mesophilic and psychrophilic bacteria and environmental fungi levels in both air and on surfaces. The obtained results prove the antimicrobial potential of aqueous solutions of TEO in improving indoor air quality and surface cleanliness, suggesting thyme essential oil as an effective and safe natural sanitizer with minimal environmental impact compared to dangerous chemical disinfectants.</p>","PeriodicalId":34490,"journal":{"name":"BioTech","volume":"13 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11130963/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141158493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of the 12-Base Short Dimeric Myogenetic Oligodeoxynucleotide That Induces Myogenic Differentiation. 开发可诱导肌分化的 12 碱基短二聚体肌遗传寡核苷酸
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-04-25 DOI: 10.3390/biotech13020011
Koji Umezawa, Rena Ikeda, Taiichi Sakamoto, Yuya Enomoto, Yuma Nihashi, Sayaka Shinji, Takeshi Shimosato, Hiroshi Kagami, Tomohide Takaya

A myogenetic oligodeoxynucleotide (myoDN), iSN04 (5'-AGA TTA GGG TGA GGG TGA-3'), is a single-stranded 18-base telomeric DNA that serves as an anti-nucleolin aptamer and induces myogenic differentiation, which is expected to be a nucleic acid drug for the prevention of disease-associated muscle wasting. To improve the drug efficacy and synthesis cost of myoDN, shortening the sequence while maintaining its structure-based function is a major challenge. Here, we report the novel 12-base non-telomeric myoDN, iMyo01 (5'-TTG GGT GGG GAA-3'), which has comparable myogenic activity to iSN04. iMyo01 as well as iSN04 promoted myotube formation of primary-cultured human myoblasts with upregulation of myogenic gene expression. Both iMyo01 and iSN04 interacted with nucleolin, but iMyo01 did not bind to berberine, the isoquinoline alkaloid that stabilizes iSN04. Nuclear magnetic resonance revealed that iMyo01 forms a G-quadruplex structure despite its short sequence. Native polyacrylamide gel electrophoresis and a computational molecular dynamics simulation indicated that iMyo01 forms a homodimer to generate a G-quadruplex. These results provide new insights into the aptamer truncation technology that preserves aptamer conformation and bioactivity for the development of efficient nucleic acid drugs.

肌原性寡脱氧核苷酸(myoDN)iSN04(5'-AGA TTA GGG TGA GGG TGA-3')是一种单链18碱基端粒DNA,可作为抗核蛋白适配体并诱导肌原性分化,有望成为预防疾病相关肌肉萎缩的核酸药物。为了提高药效并降低 myoDN 的合成成本,在保持其结构功能的同时缩短序列是一大挑战。iMyo01 和 iSN04 都能促进原代培养人肌母细胞肌管的形成,并上调肌生成基因的表达。iMyo01和iSN04都能与核仁蛋白相互作用,但iMyo01不能与稳定iSN04的异喹啉生物碱小檗碱结合。核磁共振显示,尽管 iMyo01 的序列很短,但它能形成 G 型四联结构。原生聚丙烯酰胺凝胶电泳和计算分子动力学模拟表明,iMyo01 形成同源二聚体,生成 G 型四联体。这些结果为保留灵媒构象和生物活性以开发高效核酸药物的灵媒截短技术提供了新的见解。
{"title":"Development of the 12-Base Short Dimeric Myogenetic Oligodeoxynucleotide That Induces Myogenic Differentiation.","authors":"Koji Umezawa, Rena Ikeda, Taiichi Sakamoto, Yuya Enomoto, Yuma Nihashi, Sayaka Shinji, Takeshi Shimosato, Hiroshi Kagami, Tomohide Takaya","doi":"10.3390/biotech13020011","DOIUrl":"10.3390/biotech13020011","url":null,"abstract":"<p><p>A myogenetic oligodeoxynucleotide (myoDN), iSN04 (5'-AGA TTA GGG TGA GGG TGA-3'), is a single-stranded 18-base telomeric DNA that serves as an anti-nucleolin aptamer and induces myogenic differentiation, which is expected to be a nucleic acid drug for the prevention of disease-associated muscle wasting. To improve the drug efficacy and synthesis cost of myoDN, shortening the sequence while maintaining its structure-based function is a major challenge. Here, we report the novel 12-base non-telomeric myoDN, iMyo01 (5'-TTG GGT GGG GAA-3'), which has comparable myogenic activity to iSN04. iMyo01 as well as iSN04 promoted myotube formation of primary-cultured human myoblasts with upregulation of myogenic gene expression. Both iMyo01 and iSN04 interacted with nucleolin, but iMyo01 did not bind to berberine, the isoquinoline alkaloid that stabilizes iSN04. Nuclear magnetic resonance revealed that iMyo01 forms a G-quadruplex structure despite its short sequence. Native polyacrylamide gel electrophoresis and a computational molecular dynamics simulation indicated that iMyo01 forms a homodimer to generate a G-quadruplex. These results provide new insights into the aptamer truncation technology that preserves aptamer conformation and bioactivity for the development of efficient nucleic acid drugs.</p>","PeriodicalId":34490,"journal":{"name":"BioTech","volume":"13 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11130974/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141158485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Susceptibility of Tetranychus urticae to the Alkaloidal Extract of Zanthoxylum schreberi Bark: Phenotypic and Biochemical Insights for Biotechnological Exploitation. Tetranychus urticae 对 Zanthoxylum schreberi 树皮生物碱提取物的敏感性:生物技术利用的表型和生化启示。
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-02-20 DOI: 10.3390/biotech13010005
Ricardo A Rincón, Daniel Rodríguez, Ericsson Coy-Barrera

Tetranychus urticae Koch, a phytophagous mite, is one of the most significant crop pests globally. The primary method employed for controlling T. urticae involves chemical means, utilizing synthesized products, posing the risk of developing resistance. The urgency for novel strategies integrated into pest management programs to combat this mite is becoming increasingly imperative. Botanical pesticides emerge as a promising tool to forestall arthropod resistance. Among these, extracts from Rutaceae plants, abundant in bioactive specialized metabolites, have demonstrated potential as insecticides and miticides. In this study, various concentrations of alkaloidal extracts sourced from the bark of Zanthoxylum schreberi J.F.Gmel. (Rutaceae) were evaluated against T. urticae adult females. Furthermore, the extract's combination with three distinct commercial acaricides (i.e., chlorfenapyr, cyflumetofen, and abamectin) was also assessed for this mite. Chemical characterization of the extract via LC-MS allowed for the annotation of various compounds related to ten benzylisoquinoline-derived alkaloids. The extract, both alone and in combination with commercial insecticides, yielded varying responses, inducing over 40% mortality at 2% w/w, demonstrating a 90% repellency rate at the same concentration, and exerting a moderate impact on fecundity. These treatments extended beyond phenotypic responses, delving into the biochemical effects on treated T. urticae females through an exploration of the impact on four enzymes, i.e., acetylcholinesterase (AChE), glutathione S-transferase (GST), esterases (GE), and P450-like monooxygenases (PMO). Employing consensus docking studies and in vitro enzymatic evaluations, it was discovered that the Z. schreberi-derived extract and its constituents significantly affected two key enzymes, AChE and GST (IC50 < 6 µM), which were associated with the phenotypic observations of T. urticae females. The evaluation of alkaloid-rich botanicals showcases promising potential as a relevant biotechnological strategy in addressing mite-related concerns, offering a pathway toward innovative and sustainable pest management solutions.

Tetranychus urticae Koch 是一种植食性螨虫,是全球最重要的农作物害虫之一。防治 Tetranychus urticae 的主要方法是使用化学方法和合成产品,这就带来了产生抗药性的风险。将新策略纳入害虫管理计划以防治这种螨虫变得越来越迫切。植物杀虫剂是防止节肢动物产生抗药性的有效工具。其中,芸香科植物的提取物富含生物活性的特殊代谢物,已被证明具有杀虫和杀螨剂的潜力。本研究从芸香科植物 Zanthoxylum schreberi J.F.Gmel. 的树皮中提取了不同浓度的生物碱萃取物。(芸香科)树皮中提取的不同浓度的生物碱提取物对荨麻成虫雌虫的作用进行了评估。此外,还评估了该提取物与三种不同的商业杀螨剂(即氯虫苯甲酰胺、氟虫腈和阿维菌素)对该螨虫的组合效果。通过 LC-MS 对提取物进行化学特征描述,可以注释出与十种苄基异喹啉生物碱有关的各种化合物。萃取物单独使用或与商用杀虫剂结合使用都会产生不同的反应,在 2% w/w 浓度下会导致 40% 以上的死亡率,在相同浓度下会显示出 90% 的驱避率,并对繁殖力产生适度影响。这些处理超出了表型反应的范围,通过探索对四种酶(即乙酰胆碱酯酶(AChE)、谷胱甘肽 S-转移酶(GST)、酯酶(GE)和类 P450 单氧化酶(PMO))的影响,深入研究了对处理过的荨麻蝇雌虫的生化影响。通过共识对接研究和体外酶学评价,发现Z. schreberi提取物及其成分对AChE和GST这两种关键酶有显著影响(IC50 < 6 µM),而这两种酶与T. urticae雌虫的表型观察有关。对富含生物碱的植物药的评估表明,作为一种相关的生物技术策略,它在解决与螨虫有关的问题方面具有广阔的潜力,为创新和可持续的害虫管理解决方案提供了一条途径。
{"title":"Susceptibility of <i>Tetranychus urticae</i> to the Alkaloidal Extract of <i>Zanthoxylum schreberi</i> Bark: Phenotypic and Biochemical Insights for Biotechnological Exploitation.","authors":"Ricardo A Rincón, Daniel Rodríguez, Ericsson Coy-Barrera","doi":"10.3390/biotech13010005","DOIUrl":"10.3390/biotech13010005","url":null,"abstract":"<p><p><i>Tetranychus urticae</i> Koch, a phytophagous mite, is one of the most significant crop pests globally. The primary method employed for controlling <i>T. urticae</i> involves chemical means, utilizing synthesized products, posing the risk of developing resistance. The urgency for novel strategies integrated into pest management programs to combat this mite is becoming increasingly imperative. Botanical pesticides emerge as a promising tool to forestall arthropod resistance. Among these, extracts from Rutaceae plants, abundant in bioactive specialized metabolites, have demonstrated potential as insecticides and miticides. In this study, various concentrations of alkaloidal extracts sourced from the bark of <i>Zanthoxylum schreberi</i> J.F.Gmel. (Rutaceae) were evaluated against <i>T. urticae</i> adult females. Furthermore, the extract's combination with three distinct commercial acaricides (i.e., chlorfenapyr, cyflumetofen, and abamectin) was also assessed for this mite. Chemical characterization of the extract via LC-MS allowed for the annotation of various compounds related to ten benzylisoquinoline-derived alkaloids. The extract, both alone and in combination with commercial insecticides, yielded varying responses, inducing over 40% mortality at 2% <i>w</i>/<i>w</i>, demonstrating a 90% repellency rate at the same concentration, and exerting a moderate impact on fecundity. These treatments extended beyond phenotypic responses, delving into the biochemical effects on treated <i>T. urticae</i> females through an exploration of the impact on four enzymes, i.e., acetylcholinesterase (AChE), glutathione <i>S</i>-transferase (GST), esterases (GE), and P450-like monooxygenases (PMO). Employing consensus docking studies and in vitro enzymatic evaluations, it was discovered that the <i>Z. schreberi</i>-derived extract and its constituents significantly affected two key enzymes, AChE and GST (IC<sub>50</sub> < 6 µM), which were associated with the phenotypic observations of <i>T. urticae</i> females. The evaluation of alkaloid-rich botanicals showcases promising potential as a relevant biotechnological strategy in addressing mite-related concerns, offering a pathway toward innovative and sustainable pest management solutions.</p>","PeriodicalId":34490,"journal":{"name":"BioTech","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10885115/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139933216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring DNA Damage and Repair Mechanisms: A Review with Computational Insights. 探索 DNA 损伤和修复机制:通过计算洞察的综述。
IF 2.7 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-01-16 DOI: 10.3390/biotech13010003
Jiawei Chen, Ravi Potlapalli, Heng Quan, Lingtao Chen, Ying Xie, Seyedamin Pouriyeh, Nazmus Sakib, Lichao Liu, Yixin Xie

DNA damage is a critical factor contributing to genetic alterations, directly affecting human health, including developing diseases such as cancer and age-related disorders. DNA repair mechanisms play a pivotal role in safeguarding genetic integrity and preventing the onset of these ailments. Over the past decade, substantial progress and pivotal discoveries have been achieved in DNA damage and repair. This comprehensive review paper consolidates research efforts, focusing on DNA repair mechanisms, computational research methods, and associated databases. Our work is a valuable resource for scientists and researchers engaged in computational DNA research, offering the latest insights into DNA-related proteins, diseases, and cutting-edge methodologies. The review addresses key questions, including the major types of DNA damage, common DNA repair mechanisms, the availability of reliable databases for DNA damage and associated diseases, and the predominant computational research methods for enzymes involved in DNA damage and repair.

DNA 损伤是导致基因改变的一个关键因素,直接影响人类健康,包括癌症和老年性疾病等疾病的发生。DNA 修复机制在保护基因完整性和预防这些疾病的发生方面发挥着关键作用。过去十年来,DNA 损伤和修复领域取得了重大进展和关键发现。这篇综合综述论文整合了相关研究工作,重点关注 DNA 修复机制、计算研究方法和相关数据库。我们的工作是从事 DNA 计算研究的科学家和研究人员的宝贵资源,提供了对 DNA 相关蛋白质、疾病和前沿方法的最新见解。这篇综述探讨了一些关键问题,包括 DNA 损伤的主要类型、常见的 DNA 修复机制、DNA 损伤和相关疾病的可靠数据库的可用性,以及参与 DNA 损伤和修复的酶的主要计算研究方法。
{"title":"Exploring DNA Damage and Repair Mechanisms: A Review with Computational Insights.","authors":"Jiawei Chen, Ravi Potlapalli, Heng Quan, Lingtao Chen, Ying Xie, Seyedamin Pouriyeh, Nazmus Sakib, Lichao Liu, Yixin Xie","doi":"10.3390/biotech13010003","DOIUrl":"10.3390/biotech13010003","url":null,"abstract":"<p><p>DNA damage is a critical factor contributing to genetic alterations, directly affecting human health, including developing diseases such as cancer and age-related disorders. DNA repair mechanisms play a pivotal role in safeguarding genetic integrity and preventing the onset of these ailments. Over the past decade, substantial progress and pivotal discoveries have been achieved in DNA damage and repair. This comprehensive review paper consolidates research efforts, focusing on DNA repair mechanisms, computational research methods, and associated databases. Our work is a valuable resource for scientists and researchers engaged in computational DNA research, offering the latest insights into DNA-related proteins, diseases, and cutting-edge methodologies. The review addresses key questions, including the major types of DNA damage, common DNA repair mechanisms, the availability of reliable databases for DNA damage and associated diseases, and the predominant computational research methods for enzymes involved in DNA damage and repair.</p>","PeriodicalId":34490,"journal":{"name":"BioTech","volume":"13 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10801582/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139513707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Styrene Production in Genetically Engineered Escherichia coli in a Two-Phase Culture. 基因工程大肠杆菌在两相培养中生产苯乙烯。
IF 2.7 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-01-14 DOI: 10.3390/biotech13010002
Shuhei Noda, Ryosuke Fujiwara, Yutaro Mori, Mayumi Dainin, Tomokazu Shirai, Akihiko Kondo

Styrene is an important industrial chemical. Although several studies have reported microbial styrene production, the amount of styrene produced in batch cultures can be increased. In this study, styrene was produced using genetically engineered Escherichia coli. First, we evaluated five types of phenylalanine ammonia lyases (PALs) from Arabidopsis thaliana (AtPAL) and Brachypodium distachyon (BdPAL) for their ability to produce trans-cinnamic acid (Cin), a styrene precursor. AtPAL2-expressing E. coli produced approximately 700 mg/L of Cin and we found that BdPALs could convert Cin into styrene. To assess styrene production, we constructed an E. coli strain that co-expressed AtPAL2 and ferulic acid decarboxylase from Saccharomyces cerevisiae. After a biphasic culture with oleyl alcohol, styrene production and yield from glucose were 3.1 g/L and 26.7% (mol/mol), respectively, which, to the best of our knowledge, are the highest values obtained in batch cultivation. Thus, this strain can be applied to the large-scale industrial production of styrene.

苯乙烯是一种重要的工业化学品。虽然已有多项研究报道了微生物苯乙烯的生产,但批量培养产生的苯乙烯量还可以增加。本研究利用基因工程大肠杆菌生产苯乙烯。首先,我们评估了拟南芥(AtPAL)和蕨类植物(BdPAL)中的五种苯丙氨酸氨裂解酶(PALs)生产苯乙烯前体反式肉桂酸(Cin)的能力。表达 AtPAL2 的大肠杆菌能产生约 700 毫克/升的 Cin,而我们发现 BdPALs 能将 Cin 转化为苯乙烯。为了评估苯乙烯的产量,我们构建了一株共同表达 AtPAL2 和来自酿酒酵母的阿魏酸脱羧酶的大肠杆菌。在与油醇进行双相培养后,苯乙烯产量和葡萄糖产量分别为 3.1 克/升和 26.7%(摩尔/摩尔),据我们所知,这是批量培养中获得的最高值。因此,该菌株可用于苯乙烯的大规模工业生产。
{"title":"Styrene Production in Genetically Engineered <i>Escherichia coli</i> in a Two-Phase Culture.","authors":"Shuhei Noda, Ryosuke Fujiwara, Yutaro Mori, Mayumi Dainin, Tomokazu Shirai, Akihiko Kondo","doi":"10.3390/biotech13010002","DOIUrl":"10.3390/biotech13010002","url":null,"abstract":"<p><p>Styrene is an important industrial chemical. Although several studies have reported microbial styrene production, the amount of styrene produced in batch cultures can be increased. In this study, styrene was produced using genetically engineered <i>Escherichia coli</i>. First, we evaluated five types of phenylalanine ammonia lyases (PALs) from <i>Arabidopsis thaliana</i> (AtPAL) and <i>Brachypodium distachyon</i> (BdPAL) for their ability to produce <i>trans</i>-cinnamic acid (Cin), a styrene precursor. AtPAL2-expressing <i>E. coli</i> produced approximately 700 mg/L of Cin and we found that BdPALs could convert Cin into styrene. To assess styrene production, we constructed an <i>E. coli</i> strain that co-expressed AtPAL2 and ferulic acid decarboxylase from <i>Saccharomyces cerevisiae</i>. After a biphasic culture with oleyl alcohol, styrene production and yield from glucose were 3.1 g/L and 26.7% (mol/mol), respectively, which, to the best of our knowledge, are the highest values obtained in batch cultivation. Thus, this strain can be applied to the large-scale industrial production of styrene.</p>","PeriodicalId":34490,"journal":{"name":"BioTech","volume":"13 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10801462/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139513708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene Therapy for Genetic Syndromes: Understanding the Current State to Guide Future Care 基因疗法治疗遗传综合征:了解现状,指导未来治疗
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-01-03 DOI: 10.3390/biotech13010001
Marian L. Henderson, Jacob K. Zieba, Xiaopeng Li, Daniel B. Campbell, Michael R. Williams, Daniel L. Vogt, Caleb P. Bupp, Yvonne Edgerly, S. Rajasekaran, Nicholas L. Hartog, Jeremy Prokop, Jena M. Krueger
Gene therapy holds promise as a life-changing option for individuals with genetic variants that give rise to disease. FDA-approved gene therapies for Spinal Muscular Atrophy (SMA), cerebral adrenoleukodystrophy, β-Thalassemia, hemophilia A/B, retinal dystrophy, and Duchenne Muscular Dystrophy have generated buzz around the ability to change the course of genetic syndromes. However, this excitement risks over-expansion into areas of genetic disease that may not fit the current state of gene therapy. While in situ (targeted to an area) and ex vivo (removal of cells, delivery, and administration of cells) approaches show promise, they have a limited target ability. Broader in vivo gene therapy trials have shown various continued challenges, including immune response, use of immune suppressants correlating to secondary infections, unknown outcomes of overexpression, and challenges in driving tissue-specific corrections. Viral delivery systems can be associated with adverse outcomes such as hepatotoxicity and lethality if uncontrolled. In some cases, these risks are far outweighed by the potentially lethal syndromes for which these systems are being developed. Therefore, it is critical to evaluate the field of genetic diseases to perform cost–benefit analyses for gene therapy. In this work, we present the current state while setting forth tools and resources to guide informed directions to avoid foreseeable issues in gene therapy that could prevent the field from continued success.
基因疗法有望改变基因变异患者的生活。美国食品和药物管理局批准的脊髓性肌肉萎缩症(SMA)、脑腺样白质营养不良症、β-地中海贫血症、A/B 型血友病、视网膜营养不良症和杜氏肌营养不良症的基因疗法已经引起了人们对改变遗传综合征病程的关注。然而,这种兴奋有可能过度扩展到可能不符合基因疗法现状的遗传疾病领域。虽然原位(靶向某一区域)和体外(移除细胞、输送和施用细胞)方法显示了前景,但它们的靶向能力有限。更广泛的体内基因治疗试验显示出各种持续存在的挑战,包括免疫反应、使用与继发性感染相关的免疫抑制剂、过表达的未知结果以及驱动组织特异性校正的挑战。如果不加以控制,病毒递送系统可能会产生不良后果,如肝毒性和致死性。在某些情况下,这些风险远远大于这些系统正在开发的潜在致命综合症。因此,评估遗传疾病领域的基因治疗成本效益分析至关重要。在这项工作中,我们介绍了目前的状况,同时提出了一些工具和资源,以指导人们在知情的情况下避免基因治疗中可预见的问题,这些问题可能会阻碍基因治疗领域继续取得成功。
{"title":"Gene Therapy for Genetic Syndromes: Understanding the Current State to Guide Future Care","authors":"Marian L. Henderson, Jacob K. Zieba, Xiaopeng Li, Daniel B. Campbell, Michael R. Williams, Daniel L. Vogt, Caleb P. Bupp, Yvonne Edgerly, S. Rajasekaran, Nicholas L. Hartog, Jeremy Prokop, Jena M. Krueger","doi":"10.3390/biotech13010001","DOIUrl":"https://doi.org/10.3390/biotech13010001","url":null,"abstract":"Gene therapy holds promise as a life-changing option for individuals with genetic variants that give rise to disease. FDA-approved gene therapies for Spinal Muscular Atrophy (SMA), cerebral adrenoleukodystrophy, β-Thalassemia, hemophilia A/B, retinal dystrophy, and Duchenne Muscular Dystrophy have generated buzz around the ability to change the course of genetic syndromes. However, this excitement risks over-expansion into areas of genetic disease that may not fit the current state of gene therapy. While in situ (targeted to an area) and ex vivo (removal of cells, delivery, and administration of cells) approaches show promise, they have a limited target ability. Broader in vivo gene therapy trials have shown various continued challenges, including immune response, use of immune suppressants correlating to secondary infections, unknown outcomes of overexpression, and challenges in driving tissue-specific corrections. Viral delivery systems can be associated with adverse outcomes such as hepatotoxicity and lethality if uncontrolled. In some cases, these risks are far outweighed by the potentially lethal syndromes for which these systems are being developed. Therefore, it is critical to evaluate the field of genetic diseases to perform cost–benefit analyses for gene therapy. In this work, we present the current state while setting forth tools and resources to guide informed directions to avoid foreseeable issues in gene therapy that could prevent the field from continued success.","PeriodicalId":34490,"journal":{"name":"BioTech","volume":"39 13","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139451947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biocatalysts Based on Immobilized Lipases for the Production of Fatty Acid Ethyl Esters: Enhancement of Activity through Ionic Additives and Ion Exchange Supports. 基于固定化脂肪酶的生物催化剂用于脂肪酸乙酯的生产:通过离子添加剂和离子交换载体提高活性。
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2023-12-18 DOI: 10.3390/biotech12040067
Juan S Pardo-Tamayo, Sebastián Arteaga-Collazos, Laura C Domínguez-Hoyos, César A Godoy

Ionic additives affect the structure, activity and stability of lipases, which allow for solving common application challenges, such as preventing the formation of protein aggregates or strengthening enzyme-support binding, preventing their desorption in organic media. This work aimed to design a biocatalyst, based on lipase improved by the addition of ionic additives, applicable in the production of ethyl esters of fatty acids (EE). Industrial enzymes from Thermomyces lanuginosus (TLL), Rhizomucor miehei (RML), Candida antárctica B (CALB) and Lecitase®, immobilized in commercial supports like Lewatit®, Purolite® and Q-Sepharose®, were tested. The best combination was achieved by immobilizing lipase TLL onto Q-Sepharose® as it surpassed, in terms of %EE (70.1%), the commercial biocatalyst Novozyme® 435 (52.7%) and was similar to that of Lipozyme TL IM (71.3%). Hence, the impact of ionic additives like polymers and surfactants on both free and immobilized TLL on Q-Sepharose® was assessed. It was observed that, when immobilized, in the presence of sodium dodecyl sulfate (SDS), the TLL derivative exhibited a significantly higher activity, with a 93-fold increase (1.02 IU), compared to the free enzyme under identical conditions (0.011 IU). In fatty acids ethyl esters synthesis, Q-SDS-TLL novel derivatives achieved results similar to commercial biocatalysts using up to ~82 times less enzyme (1 mg/g). This creates an opportunity to develop biocatalysts with reduced enzyme consumption, a factor often associated with higher production costs. Such advancements would ease their integration into the biodiesel industry, fostering a greener production approach compared to conventional methods.

离子添加剂会影响脂肪酶的结构、活性和稳定性,从而解决常见的应用难题,如防止形成蛋白质聚集或加强酶与支持物的结合,防止它们在有机介质中解吸附。这项工作旨在设计一种基于脂肪酶的生物催化剂,通过添加离子添加剂加以改进,适用于脂肪酸乙酯(EE)的生产。研究人员测试了固定在 Lewatit®、Purolite® 和 Q-Sepharose® 等商业支持物上的来自蓝绿热酵母菌(TLL)、米黑根瘤菌(RML)、白色念珠菌 Antárctica B(CALB)和 Lecitase® 的工业酶。将脂肪酶 TLL 固定在 Q-Sepharose® 上实现了最佳组合,其EE%(70.1%)超过了商用生物催化剂 Novozyme® 435(52.7%),与 Lipozyme TL IM(71.3%)相近。因此,我们评估了聚合物和表面活性剂等离子添加剂对 Q-Sepharose® 上游离和固定 TLL 的影响。结果表明,在十二烷基硫酸钠(SDS)存在的条件下,固定化 TLL 衍生物的活性明显提高,与相同条件下的游离酶(0.011 IU)相比,活性提高了 93 倍(1.02 IU)。在脂肪酸乙酯合成中,Q-SDS-TLL 新型衍生物使用的酶(1 毫克/克)最多减少了约 82 倍,其结果与商业生物催化剂相似。这为开发酶消耗量更低的生物催化剂创造了机会,而酶消耗量的降低往往与生产成本的提高有关。与传统方法相比,这种进步将使生物催化剂更容易融入生物柴油行业,促进更环保的生产方法。
{"title":"Biocatalysts Based on Immobilized Lipases for the Production of Fatty Acid Ethyl Esters: Enhancement of Activity through Ionic Additives and Ion Exchange Supports.","authors":"Juan S Pardo-Tamayo, Sebastián Arteaga-Collazos, Laura C Domínguez-Hoyos, César A Godoy","doi":"10.3390/biotech12040067","DOIUrl":"10.3390/biotech12040067","url":null,"abstract":"<p><p>Ionic additives affect the structure, activity and stability of lipases, which allow for solving common application challenges, such as preventing the formation of protein aggregates or strengthening enzyme-support binding, preventing their desorption in organic media. This work aimed to design a biocatalyst, based on lipase improved by the addition of ionic additives, applicable in the production of ethyl esters of fatty acids (EE). Industrial enzymes from <i>Thermomyces lanuginosus</i> (TLL), <i>Rhizomucor miehei</i> (RML), <i>Candida antárctica B</i> (CALB) and Lecitase<sup>®</sup>, immobilized in commercial supports like Lewatit<sup>®</sup>, Purolite<sup>®</sup> and Q-Sepharose<sup>®</sup>, were tested. The best combination was achieved by immobilizing lipase TLL onto Q-Sepharose<sup>®</sup> as it surpassed, in terms of %EE (70.1%), the commercial biocatalyst Novozyme<sup>®</sup> 435 (52.7%) and was similar to that of Lipozyme TL IM (71.3%). Hence, the impact of ionic additives like polymers and surfactants on both free and immobilized TLL on Q-Sepharose<sup>®</sup> was assessed. It was observed that, when immobilized, in the presence of sodium dodecyl sulfate (SDS), the TLL derivative exhibited a significantly higher activity, with a 93-fold increase (1.02 IU), compared to the free enzyme under identical conditions (0.011 IU). In fatty acids ethyl esters synthesis, Q-SDS-TLL novel derivatives achieved results similar to commercial biocatalysts using up to ~82 times less enzyme (1 mg/g). This creates an opportunity to develop biocatalysts with reduced enzyme consumption, a factor often associated with higher production costs. Such advancements would ease their integration into the biodiesel industry, fostering a greener production approach compared to conventional methods.</p>","PeriodicalId":34490,"journal":{"name":"BioTech","volume":"12 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10742180/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138831956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
BioTech
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1