首页 > 最新文献

Journal of Alloys and Compounds最新文献

英文 中文
Low mobility of crystalline defects improves the cycle life stability of Alx(TiVNb)1-x-yMoy alloys for hydrogen storage 晶体缺陷的低迁移率提高了Alx(TiVNb)1-x-yMoy储氢合金的循环寿命稳定性
IF 6.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2026-02-06 DOI: 10.1016/j.jallcom.2026.186661
Nayely Pineda Romero, Joanna Grelska, Wojciech A. Sławiński, Jakub Cizek, Oksana Melikhova, Claudia Zlotea
Multi-principal element alloys have emerged as promising candidates for solid-state hydrogen storage but, their absorption/desorption cyclability remains poorly understood. In this study, the cycling behavior of four compositions in the bcc TiVNb related alloy family (ternary TiVNb, quaternary Al0.05(TiVNb)0.95, and two quinary Al0.05(TiVNb)0.95−xMox (x = 0.05, 0.10) variants) is highlighted to emphasize the effect of chemistry on the capacity degradation mechanisms. The best alloys showing a very fast stabilization of their performance and a minimum loss of capacity during cycling are the quinary ones, while TiVNb is the poorest one. Repeated cycling does not induce metal chemical species migration, phase segregation, or changes in average and local structures, as demonstrated by SEM-EDS, synchrotron-based total scattering, and related pair distribution function analysis coupled with reverse Monte Carlo modeling. Metal atoms are randomly distributed in the bcc lattice of these alloys, which enhances structural integrity during cycling. The only significant change that could explain the different cycling properties is related to defects’ evolution. Positron annihilation spectroscopy revealed the formation of both dislocations and vacancies during cycling, irrespective of the composition. However, the dynamics of defects strongly depends on the chemical composition: dislocations and vacancies are larger in volume in the ternary alloy than in the quinary variants, which suggests a lower defect mobility in the presence of Al and Mo. These results demonstrate that tailoring and controlling defect dynamics is paramount in enhancing the cycle-life properties of the multi-principal element alloys.
{"title":"Low mobility of crystalline defects improves the cycle life stability of Alx(TiVNb)1-x-yMoy alloys for hydrogen storage","authors":"Nayely Pineda Romero, Joanna Grelska, Wojciech A. Sławiński, Jakub Cizek, Oksana Melikhova, Claudia Zlotea","doi":"10.1016/j.jallcom.2026.186661","DOIUrl":"https://doi.org/10.1016/j.jallcom.2026.186661","url":null,"abstract":"Multi-principal element alloys have emerged as promising candidates for solid-state hydrogen storage but, their absorption/desorption cyclability remains poorly understood. In this study, the cycling behavior of four compositions in the <em>bcc</em> TiVNb related alloy family (ternary TiVNb, quaternary Al<sub>0.05</sub>(TiVNb)<sub>0.95</sub>, and two quinary Al<sub>0.05</sub>(TiVNb)<sub>0.95−<em>x</em></sub>Mo<sub><em>x</em></sub> (<em>x</em> = 0.05, 0.10) variants) is highlighted to emphasize the effect of chemistry on the capacity degradation mechanisms. The best alloys showing a very fast stabilization of their performance and a minimum loss of capacity during cycling are the quinary ones, while TiVNb is the poorest one. Repeated cycling does not induce metal chemical species migration, phase segregation, or changes in average and local structures, as demonstrated by SEM-EDS, synchrotron-based total scattering, and related pair distribution function analysis coupled with reverse Monte Carlo modeling. Metal atoms are randomly distributed in the <em>bcc</em> lattice of these alloys, which enhances structural integrity during cycling. The only significant change that could explain the different cycling properties is related to defects’ evolution. Positron annihilation spectroscopy revealed the formation of both dislocations and vacancies during cycling, irrespective of the composition. However, the dynamics of defects strongly depends on the chemical composition: dislocations and vacancies are larger in volume in the ternary alloy than in the quinary variants, which suggests a lower defect mobility in the presence of Al and Mo. These results demonstrate that tailoring and controlling defect dynamics is paramount in enhancing the cycle-life properties of the multi-principal element alloys.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"301 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146122161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid thermomechanical approach for developing triple synergy of strength, ductility and bond integrity in Al/Cu bimetallic sheets 开发Al/Cu双金属板强度、延展性和键合完整性三重协同作用的混合热-机械方法
IF 6.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2026-02-06 DOI: 10.1016/j.jallcom.2026.186670
B. Prathyusha, R. Kumar, S.K. Panigrahi
{"title":"Hybrid thermomechanical approach for developing triple synergy of strength, ductility and bond integrity in Al/Cu bimetallic sheets","authors":"B. Prathyusha, R. Kumar, S.K. Panigrahi","doi":"10.1016/j.jallcom.2026.186670","DOIUrl":"https://doi.org/10.1016/j.jallcom.2026.186670","url":null,"abstract":"","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"30 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature-dependent Spin Thermopowers in Pt/Ni80Fe20/Al2O3 Heterostructures via the Longitudinal Spin Seebeck Effect 利用纵向自旋塞贝克效应研究Pt/Ni80Fe20/Al2O3异质结构中温度相关的自旋热电能
IF 6.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2026-02-06 DOI: 10.1016/j.jallcom.2026.186666
Jae Won Choi, Seong-Joon Won, Jung-Min Cho, Yun-Ho Kim, Gangmin Park, Dong-Hoon Jang, No-Won Park, Gil-Sung Kim, Sangjun Jeon, Sang-Kwon Lee
{"title":"Temperature-dependent Spin Thermopowers in Pt/Ni80Fe20/Al2O3 Heterostructures via the Longitudinal Spin Seebeck Effect","authors":"Jae Won Choi, Seong-Joon Won, Jung-Min Cho, Yun-Ho Kim, Gangmin Park, Dong-Hoon Jang, No-Won Park, Gil-Sung Kim, Sangjun Jeon, Sang-Kwon Lee","doi":"10.1016/j.jallcom.2026.186666","DOIUrl":"https://doi.org/10.1016/j.jallcom.2026.186666","url":null,"abstract":"","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"1 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinetic and Modeling Studies of the Mechanism of the Dehydrogenation of Mg(BH4)2 to Mg(B3H8)2 Mg(BH4)2脱氢生成Mg(B3H8)2的动力学与模型研究
IF 6.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2026-02-06 DOI: 10.1016/j.jallcom.2026.186659
Sunil Shrestha, McKinley A. Prager, Kazuumi Fujioka, Rui Sun, Craig M. Jensen
{"title":"Kinetic and Modeling Studies of the Mechanism of the Dehydrogenation of Mg(BH4)2 to Mg(B3H8)2","authors":"Sunil Shrestha, McKinley A. Prager, Kazuumi Fujioka, Rui Sun, Craig M. Jensen","doi":"10.1016/j.jallcom.2026.186659","DOIUrl":"https://doi.org/10.1016/j.jallcom.2026.186659","url":null,"abstract":"","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"307 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elastic accommodation and anomalous tetragonality of thin-plate martensite in an Fe-31Ni-10Co-3Ti alloy revealed by in situ neutron diffraction at cryogenic temperatures 低温原位中子衍射揭示了Fe-31Ni-10Co-3Ti合金薄板马氏体的弹性调节和反常四方性
IF 6.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2026-02-06 DOI: 10.1016/j.jallcom.2026.186668
Takayuki Yamashita, Stefanus Harjo, Wu Gong, Takuro Kawasaki, Shigekazu Morito, Satoshi Morooka, Hidetoshi Fujii, Yo Tomota
{"title":"Elastic accommodation and anomalous tetragonality of thin-plate martensite in an Fe-31Ni-10Co-3Ti alloy revealed by in situ neutron diffraction at cryogenic temperatures","authors":"Takayuki Yamashita, Stefanus Harjo, Wu Gong, Takuro Kawasaki, Shigekazu Morito, Satoshi Morooka, Hidetoshi Fujii, Yo Tomota","doi":"10.1016/j.jallcom.2026.186668","DOIUrl":"https://doi.org/10.1016/j.jallcom.2026.186668","url":null,"abstract":"","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"48 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Universal synthesis of mesoporous alumina supported nitride catalysts for hydrogen production from ammonia decomposition 氨分解制氢介孔氧化铝负载氮化物催化剂的通用合成
IF 6.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2026-02-06 DOI: 10.1016/j.jallcom.2026.186676
Xiaoyu Tian, Fangfei Lv, Meng Zhang, Wei-Wei Wang, Lili Huo
{"title":"Universal synthesis of mesoporous alumina supported nitride catalysts for hydrogen production from ammonia decomposition","authors":"Xiaoyu Tian, Fangfei Lv, Meng Zhang, Wei-Wei Wang, Lili Huo","doi":"10.1016/j.jallcom.2026.186676","DOIUrl":"https://doi.org/10.1016/j.jallcom.2026.186676","url":null,"abstract":"","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"182 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Multiscale Data-Driven Framework for Mechanical Property Prediction in LPBF-Processed TA15 Alloy: Integrating Explainable Machine Learning with Data Augmentation lpbf加工TA15合金力学性能预测的多尺度数据驱动框架:可解释机器学习与数据增强的集成
IF 6.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2026-02-06 DOI: 10.1016/j.jallcom.2026.186667
Zhanhua Ye, Chi Zhang, Yang Liu, Xiaoxi Jin, Tianyu Wei, Yaojun Lin, Fei Chen
{"title":"A Multiscale Data-Driven Framework for Mechanical Property Prediction in LPBF-Processed TA15 Alloy: Integrating Explainable Machine Learning with Data Augmentation","authors":"Zhanhua Ye, Chi Zhang, Yang Liu, Xiaoxi Jin, Tianyu Wei, Yaojun Lin, Fei Chen","doi":"10.1016/j.jallcom.2026.186667","DOIUrl":"https://doi.org/10.1016/j.jallcom.2026.186667","url":null,"abstract":"","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"30 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced strength-ductility synergy in laminated magnesium composites via wire arc additive manufacturing 通过电弧增材制造增强层合镁复合材料的强度-延展性协同作用
IF 6.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2026-02-06 DOI: 10.1016/j.jallcom.2026.186658
Kai Duan, Xiangcheng Cui, Dandan Qin, Yongzhe Wang, Weiqi Wang, Lidan Qu, Yunzhuo Lu
{"title":"Enhanced strength-ductility synergy in laminated magnesium composites via wire arc additive manufacturing","authors":"Kai Duan, Xiangcheng Cui, Dandan Qin, Yongzhe Wang, Weiqi Wang, Lidan Qu, Yunzhuo Lu","doi":"10.1016/j.jallcom.2026.186658","DOIUrl":"https://doi.org/10.1016/j.jallcom.2026.186658","url":null,"abstract":"","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"307 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Energy Storage in NaNbO3-based Ceramics via Polar Phase Evolution over a Wide Temperature Range 在宽温度范围内通过极性相演变增强纳米bo3基陶瓷的储能
IF 6.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2026-02-06 DOI: 10.1016/j.jallcom.2026.186664
Wei Zhang, Huanhuan Li, Ya Yang, Jianxu Hu, Huajie Luo, Jinjun Liu
Electronics and electrical systems operating in high-temperature environments demand advanced dielectric materials for capacitive energy storage. Ceramic dielectrics, while considered ideal for electrostatic capacitors, are often limited by insufficient energy storage performance and inadequate thermal stability under harsh conditions. Herein, a universal strategy is reported to optimize overall capacitive performance through chemically modified induced polar-phase evolution. The introduction of Bi0.5Na0.5TiO3 (BNT) into 0.82NaNbO3-0.18Ca0.7Sm0.2TiO3 (NN‑CST) ceramics induces lattice distortion and promotes the formation of a highly polar rhombohedral phase (R3c), leading to significantly enhanced maximum polarization. Furthermore, the corresponding ceramic exhibits pronounced relaxor behavior, low leakage current density, and a wide bandgap, which synergistically improve the breakdown strength. Consequently, the 0.85(NN‑CST)–0.15BNT ceramic achieves a high recoverable energy storage density (Wrec) of 7.42 J cm-3 with an efficiency (η) of 91% at 660 kV cm-1, along with excellent thermal stability over 20-180 ℃ (Wrec = 3.45 ± 5% J cm-3, η = 94 ± 2%). This work provides a viable approach for designing high-performance lead-free dielectric ceramics for high-temperature capacitive energy storage applications.
{"title":"Enhanced Energy Storage in NaNbO3-based Ceramics via Polar Phase Evolution over a Wide Temperature Range","authors":"Wei Zhang, Huanhuan Li, Ya Yang, Jianxu Hu, Huajie Luo, Jinjun Liu","doi":"10.1016/j.jallcom.2026.186664","DOIUrl":"https://doi.org/10.1016/j.jallcom.2026.186664","url":null,"abstract":"Electronics and electrical systems operating in high-temperature environments demand advanced dielectric materials for capacitive energy storage. Ceramic dielectrics, while considered ideal for electrostatic capacitors, are often limited by insufficient energy storage performance and inadequate thermal stability under harsh conditions. Herein, a universal strategy is reported to optimize overall capacitive performance through chemically modified induced polar-phase evolution. The introduction of Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub> (BNT) into 0.82NaNbO<sub>3</sub>-0.18Ca<sub>0.7</sub>Sm<sub>0.2</sub>TiO<sub>3</sub> (NN‑CST) ceramics induces lattice distortion and promotes the formation of a highly polar rhombohedral phase (<em>R3c</em>), leading to significantly enhanced maximum polarization. Furthermore, the corresponding ceramic exhibits pronounced relaxor behavior, low leakage current density, and a wide bandgap, which synergistically improve the breakdown strength. Consequently, the 0.85(NN‑CST)–0.15BNT ceramic achieves a high recoverable energy storage density (<em>W</em><sub>rec</sub>) of 7.42<!-- --> <!-- -->J<!-- --> <!-- -->cm<sup>-3</sup> with an efficiency (<em>η</em>) of 91% at 660<!-- --> <!-- -->kV<!-- --> <!-- -->cm<sup>-1</sup>, along with excellent thermal stability over 20-180 ℃ (<em>W</em><sub>rec</sub> = 3.45 ± 5% J cm<sup>-3</sup>, <em>η</em> = 94 ± 2%). This work provides a viable approach for designing high-performance lead-free dielectric ceramics for high-temperature capacitive energy storage applications.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"17 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146122159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rod-like Clustered Cu₃(MoO₄)₂(OH)₂ with Hierarchical Structure for High-Performance Aqueous Ammonium-Ion Batteries 具有层次结构的棒状簇状Cu₃(MoO₄)₂(OH)₂用于高性能水铵离子电池
IF 6.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2026-02-06 DOI: 10.1016/j.jallcom.2026.186652
Jialin Liu, Guopei Qiu, Wentao Li, Kaihuan Liu, Xinruo Xie, Jiajun Hu, Aokui Sun
{"title":"Rod-like Clustered Cu₃(MoO₄)₂(OH)₂ with Hierarchical Structure for High-Performance Aqueous Ammonium-Ion Batteries","authors":"Jialin Liu, Guopei Qiu, Wentao Li, Kaihuan Liu, Xinruo Xie, Jiajun Hu, Aokui Sun","doi":"10.1016/j.jallcom.2026.186652","DOIUrl":"https://doi.org/10.1016/j.jallcom.2026.186652","url":null,"abstract":"","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"9 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Alloys and Compounds
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1