首页 > 最新文献

Energetic Materials Frontiers最新文献

英文 中文
Anisotropic shock response in oriented omnidirectional TATB supercells based on reactive molecular dynamics simulations 基于反应分子动力学模拟的定向全向 TATB 超级胞体中的各向异性冲击响应
IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-01 DOI: 10.1016/j.enmf.2024.07.001
Guan-chen Dong , Jia-lu Guan , Ling-hua Tan , Jing Lv , Xiao-na Huang , Guang-cheng Yang
1,3,5-Triamino-2,4,6-trinitrobenzene (TATB) is a highly insensitive energetic material used in applications where extreme safety is required primarily. Ensuring the safe use of TATB as planned relies on research into intrinsic behavior under shock loading, which needs further investigation. Here, we study the shock response in oriented supercells of the highly anisotropic TATB based on reactive molecular dynamics simulations and multi-scale shock technique. Results demonstrate that the mechanical response primarily consists of adiabatic compression and plastic deformation. The system is more susceptible to be compressed rather than plastic deformed when shocked direction to the molecular layer at a 45° angle, resulting in the most obvious initial temperature increase. The chemical reaction pathways are similar in our simulations. Under shock loading, polymerization occurs first and then decomposition begins. However, the overall chemical kinetics response intensifies, as the angle between the shock direction and molecular layer decreases. Nonetheless, the rate of decomposition does not strictly correlate with shock direction. Moreover, clusters evolution shows different reactivity based on shock direction and velocity, which makes anisotropy weak at high shock velocity.
1,3,5-三氨基-2,4,6-三硝基苯(TATB)是一种高度不敏感的高能材料,主要用于对安全性要求极高的应用领域。确保按计划安全使用 TATB 有赖于对冲击载荷下的内在行为进行研究,这需要进一步的调查。在此,我们基于反应分子动力学模拟和多尺度冲击技术,研究了高度各向异性 TATB 的定向超胞中的冲击响应。结果表明,机械响应主要包括绝热压缩和塑性变形。当冲击方向与分子层成 45° 角时,系统更容易受到压缩而不是塑性变形,从而导致最明显的初始温度升高。在我们的模拟中,化学反应的途径与此类似。在冲击加载下,聚合首先发生,然后开始分解。然而,随着冲击方向与分子层之间的夹角减小,整个化学动力学反应会加剧。不过,分解速率与冲击方向并没有严格的相关性。此外,簇演化在冲击方向和速度的基础上显示出不同的反应性,这使得各向异性在高冲击速度下变得微弱。
{"title":"Anisotropic shock response in oriented omnidirectional TATB supercells based on reactive molecular dynamics simulations","authors":"Guan-chen Dong ,&nbsp;Jia-lu Guan ,&nbsp;Ling-hua Tan ,&nbsp;Jing Lv ,&nbsp;Xiao-na Huang ,&nbsp;Guang-cheng Yang","doi":"10.1016/j.enmf.2024.07.001","DOIUrl":"10.1016/j.enmf.2024.07.001","url":null,"abstract":"<div><div>1,3,5-Triamino-2,4,6-trinitrobenzene (TATB) is a highly insensitive energetic material used in applications where extreme safety is required primarily. Ensuring the safe use of TATB as planned relies on research into intrinsic behavior under shock loading, which needs further investigation. Here, we study the shock response in oriented supercells of the highly anisotropic TATB based on reactive molecular dynamics simulations and multi-scale shock technique. Results demonstrate that the mechanical response primarily consists of adiabatic compression and plastic deformation. The system is more susceptible to be compressed rather than plastic deformed when shocked direction to the molecular layer at a 45° angle, resulting in the most obvious initial temperature increase. The chemical reaction pathways are similar in our simulations. Under shock loading, polymerization occurs first and then decomposition begins. However, the overall chemical kinetics response intensifies, as the angle between the shock direction and molecular layer decreases. Nonetheless, the rate of decomposition does not strictly correlate with shock direction. Moreover, clusters evolution shows different reactivity based on shock direction and velocity, which makes anisotropy weak at high shock velocity.</div></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 4","pages":"Pages 318-328"},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141770485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Micromechanical models and experiments for diffractive elastic constants of TATB-based polymer-bonded explosives tatb基聚合物粘结炸药衍射弹性常数的微观力学模型与实验
IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-01 DOI: 10.1016/j.enmf.2024.09.002
Hua-peng Liu , Qian-qian Wen , Wei Tang , Hong Wang , Xi-lin Yan
TATB-based polymer-bonded explosives (PBXs) exhibit intricate internal stress distributions due to crystal anisotropy. When diffraction techniques are employed to measure these internal residual stresses, it is critical to identify the discrepancy between the diffraction elastic constants (DEC) of particular crystal planes of a TATB-based PBX and the macroscopic elastic constant of the PBX. This study introduced various micromechanical models to describe the mechanical behavior of TATB-based PBXs, as well as assessing their accuracy in predicting the elastic properties of the PBXs and calculating the DECs of different crystal planes. Using in situ tensile experiments, this study obtained accurate DECs of the 062 crystal plane of TATB-based PBXs and revised the residual stress measurements of the PBXs. The comparison between experimental results indicates that the two-phase and double-inclusion micromechanical models proposed in this study exhibit higher precision in predicting both the quasi-static mechanical properties of the PBXs and the DECs of the 062 crystal plane. Furthermore, the DECs of the PBXs with high volume fractions of TATB are close to those of pure TATB crystals. Based on the established double-inclusion model, it can be inferred that the DECs of different crystal planes vary as a function of the TATB volume fraction. This study lays the foundation for profound analyses of the mechanical characteristics of TATB-based PBXs using diffraction techniques.
由于晶体各向异性,tatb基聚合物粘结炸药(PBXs)具有复杂的内应力分布。当采用衍射技术测量这些内部残余应力时,关键是要确定基于tatb的PBX的特定晶体平面的衍射弹性常数(DEC)与PBX的宏观弹性常数之间的差异。本研究引入了各种微观力学模型来描述基于tatb的pbx的力学行为,并评估了它们在预测pbx弹性性能和计算不同晶面DECs方面的准确性。本研究通过原位拉伸实验,获得了基于tatb的pbx的062形式的精确的DECs,并修正了pbx的残余应力测量值。实验结果的对比表明,本文提出的两相和双夹杂微观力学模型在预测062形式的PBXs和DECs的准静态力学性能方面都具有较高的精度。此外,高TATB体积分数的pbx的DECs与纯TATB晶体的DECs接近。根据所建立的双包合模型,可以推断出不同晶面DECs随TATB体积分数的变化而变化。该研究为利用衍射技术深入分析tatb基pbx的力学特性奠定了基础。
{"title":"Micromechanical models and experiments for diffractive elastic constants of TATB-based polymer-bonded explosives","authors":"Hua-peng Liu ,&nbsp;Qian-qian Wen ,&nbsp;Wei Tang ,&nbsp;Hong Wang ,&nbsp;Xi-lin Yan","doi":"10.1016/j.enmf.2024.09.002","DOIUrl":"10.1016/j.enmf.2024.09.002","url":null,"abstract":"<div><div>TATB-based polymer-bonded explosives (PBXs) exhibit intricate internal stress distributions due to crystal anisotropy. When diffraction techniques are employed to measure these internal residual stresses, it is critical to identify the discrepancy between the diffraction elastic constants (DEC) of particular crystal planes of a TATB-based PBX and the macroscopic elastic constant of the PBX. This study introduced various micromechanical models to describe the mechanical behavior of TATB-based PBXs, as well as assessing their accuracy in predicting the elastic properties of the PBXs and calculating the DECs of different crystal planes. Using in situ tensile experiments, this study obtained accurate DECs of the <span><math><mrow><mn>06</mn><mover><mn>2</mn><mo>‾</mo></mover></mrow></math></span> crystal plane of TATB-based PBXs and revised the residual stress measurements of the PBXs. The comparison between experimental results indicates that the two-phase and double-inclusion micromechanical models proposed in this study exhibit higher precision in predicting both the quasi-static mechanical properties of the PBXs and the DECs of the <span><math><mrow><mn>06</mn><mover><mn>2</mn><mo>‾</mo></mover></mrow></math></span> crystal plane. Furthermore, the DECs of the PBXs with high volume fractions of TATB are close to those of pure TATB crystals. Based on the established double-inclusion model, it can be inferred that the DECs of different crystal planes vary as a function of the TATB volume fraction. This study lays the foundation for profound analyses of the mechanical characteristics of TATB-based PBXs using diffraction techniques.</div></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 4","pages":"Pages 343-352"},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143230256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shock reaction model for impact energy release behavior of Al/PTFE reactive material Al/PTFE反应材料冲击能量释放行为的冲击反应模型
IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-01 DOI: 10.1016/j.enmf.2024.09.004
Bao-yue Guo , Ke-rong Ren , Xia-yin Ma , Gan Li , Cai-min Huang , Zhi-bin Li , Rong Chen
Metal/polymer reactive materials are inert under normal temperature and pressure conditions and possess a certain level of structural strength, allowing them to be fabricated into components such as fragments. However, under strong impact, they can undergo intense reactions and release a large amount of chemical energy. Al/PTFE is one of the most typical metal/polymer reactive materials. When reactive materials are used to make warhead fragments, they can deliver a significant amount of chemical energy to the target in addition to the kinetic energy damage. When used as the core of a PELE (Penetrator with Enhanced Lateral Efficiency) projectile, reactive materials can enhance the fragmentation of the projectile shell after penetrating the target, causing both physical and chemical damage. The reaction mechanism of these materials is complex, and it is difficult to directly monitor the chemical reaction process. The shock energy release process of reactive materials is different from the shock detonation process of traditional high explosives. Therefore, the existing reaction models describing the shock detonation process of explosives are not applicable to describe reactive substances. Consequently, understanding and describing the shock reaction characteristics of reactive materials on a macroscopic scale is crucial for promoting their engineering applications. Based on the plate impact experiments and thermal analysis of typical Al/PTFE reactive materials (with a mass ratio of Al to PTFE of 26.5:73.5), this paper proposes a phenomenological shock reaction model. The shock reaction model can describe the chemical reaction behavior of materials during shock compression. The mathematical expressions, programming implementation principles, and methods for obtaining model parameters of the shock reaction model are elaborated. At the same time, the shock reaction model is embedded into the material library of the LS-DYNA nonlinear dynamic simulation software as a secondary development. Numerical simulations of the behavior of Al/PTFE reactive materials in several typical applications are carried out. The results show that the shock reaction model can well describe the mechanical-thermal-chemical coupling behavior of Al/PTFE reactive materials under shock compression. This is of great significance for accelerating the engineering application of reactive materials in military fields such as weapon damage.
金属/聚合物反应材料在常温常压条件下是惰性的,并具有一定的结构强度,使其能够被制造成碎片等组件。然而,在强烈的冲击下,它们会发生激烈的反应,释放出大量的化学能。Al/PTFE是最典型的金属/聚合物反应材料之一。当使用反应性材料制造战斗部破片时,除了动能破坏外,还能向目标输送大量的化学能。反应材料作为PELE (Penetrator with Enhanced Lateral Efficiency)弹丸的核心材料,在穿透目标后可以增强弹壳的破片,造成物理和化学损伤。这些材料的反应机理复杂,难以对化学反应过程进行直接监测。反应物质的激波能量释放过程不同于传统烈性炸药的激波爆轰过程。因此,现有的描述炸药激波爆轰过程的反应模型不适用于描述反应性物质。因此,在宏观尺度上理解和描述反应材料的冲击反应特性对于促进其工程应用至关重要。基于典型Al/PTFE反应材料(Al/PTFE质量比为26.5:73.5)的板冲击实验和热分析,提出了一种现象学冲击反应模型。冲击反应模型可以描述材料在冲击压缩过程中的化学反应行为。阐述了冲击反应模型的数学表达式、编程实现原理和模型参数的获取方法。同时,将冲击反应模型作为二次开发嵌入到LS-DYNA非线性动态仿真软件的素材库中。对Al/PTFE反应材料在几种典型应用中的行为进行了数值模拟。结果表明,冲击反应模型能较好地描述Al/PTFE反应材料在冲击压缩下的力学-热-化学耦合行为。这对于加快反应材料在武器损伤等军事领域的工程应用具有重要意义。
{"title":"Shock reaction model for impact energy release behavior of Al/PTFE reactive material","authors":"Bao-yue Guo ,&nbsp;Ke-rong Ren ,&nbsp;Xia-yin Ma ,&nbsp;Gan Li ,&nbsp;Cai-min Huang ,&nbsp;Zhi-bin Li ,&nbsp;Rong Chen","doi":"10.1016/j.enmf.2024.09.004","DOIUrl":"10.1016/j.enmf.2024.09.004","url":null,"abstract":"<div><div>Metal/polymer reactive materials are inert under normal temperature and pressure conditions and possess a certain level of structural strength, allowing them to be fabricated into components such as fragments. However, under strong impact, they can undergo intense reactions and release a large amount of chemical energy. Al/PTFE is one of the most typical metal/polymer reactive materials. When reactive materials are used to make warhead fragments, they can deliver a significant amount of chemical energy to the target in addition to the kinetic energy damage. When used as the core of a PELE (Penetrator with Enhanced Lateral Efficiency) projectile, reactive materials can enhance the fragmentation of the projectile shell after penetrating the target, causing both physical and chemical damage. The reaction mechanism of these materials is complex, and it is difficult to directly monitor the chemical reaction process. The shock energy release process of reactive materials is different from the shock detonation process of traditional high explosives. Therefore, the existing reaction models describing the shock detonation process of explosives are not applicable to describe reactive substances. Consequently, understanding and describing the shock reaction characteristics of reactive materials on a macroscopic scale is crucial for promoting their engineering applications. Based on the plate impact experiments and thermal analysis of typical Al/PTFE reactive materials (with a mass ratio of Al to PTFE of 26.5:73.5), this paper proposes a phenomenological shock reaction model. The shock reaction model can describe the chemical reaction behavior of materials during shock compression. The mathematical expressions, programming implementation principles, and methods for obtaining model parameters of the shock reaction model are elaborated. At the same time, the shock reaction model is embedded into the material library of the LS-DYNA nonlinear dynamic simulation software as a secondary development. Numerical simulations of the behavior of Al/PTFE reactive materials in several typical applications are carried out. The results show that the shock reaction model can well describe the mechanical-thermal-chemical coupling behavior of Al/PTFE reactive materials under shock compression. This is of great significance for accelerating the engineering application of reactive materials in military fields such as weapon damage.</div></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 4","pages":"Pages 329-342"},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143230257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying the determining factors of detonation properties for linear nitroaliphatics with high-throughput computation and machine learning 用高通量计算和机器学习方法确定线性硝基脂肪族爆轰特性的决定因素
IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-01 DOI: 10.1016/j.enmf.2023.05.002
Wen Qian , Jing Huang , Shi-tai Guo , Bo-wen Duan , Wei-yu Xie , Jian Liu , Chao-yang Zhang
In this work, a high-throughput computation (HTC) and machine learning (ML) combined method was applied to identify the determining factors of the detonation velocity (vd) and detonation pressure (pd) of energetic molecules and screen potential high-energy molecules with acceptable stability in a high-throughput way. The HTC was performed based on 1725 sample molecules abstracted from a dataset of over 106 linear nitroaliphatics with 1- to 6-membered C backbones and three types of substituents, namely single nitro group (-NO2), nitroamine (-NNO2), and nitrate ester (-ONO2). ML models were established based on the HTC results to screen high-energy molecules and to identify the determining factors of vd and pd. Compared with quantum chemistry calculation results, the absolute relative errors of vd and pd obtained using the ML models were less than 3.63% and 5%, respectively. Furthermore, eight molecules with high energy and acceptable stability were selected as potential candidates. This study shows the high efficiency of the combination of HTC and ML in high-throughput screening.
本研究采用高通量计算(HTC)和机器学习(ML)相结合的方法,确定高能分子的爆速(vd)和爆压(pd)的决定因素,并以高通量的方式筛选稳定性可接受的潜在高能分子。HTC是基于从106个具有1- 6元C骨架和三种取代基(单硝基(- no2)、硝胺(- nno2)和硝酸酯(- ono2)的线性硝基脂肪族数据集中提取的1725个样品分子进行的。基于HTC结果建立ML模型,筛选高能分子,确定vd和pd的决定因素。与量子化学计算结果相比,用ML模型得到的vd和pd的绝对相对误差分别小于3.63%和5%。此外,还选择了8个具有高能量和可接受稳定性的分子作为候选分子。本研究显示了HTC与ML联合进行高通量筛选的高效率。
{"title":"Identifying the determining factors of detonation properties for linear nitroaliphatics with high-throughput computation and machine learning","authors":"Wen Qian ,&nbsp;Jing Huang ,&nbsp;Shi-tai Guo ,&nbsp;Bo-wen Duan ,&nbsp;Wei-yu Xie ,&nbsp;Jian Liu ,&nbsp;Chao-yang Zhang","doi":"10.1016/j.enmf.2023.05.002","DOIUrl":"10.1016/j.enmf.2023.05.002","url":null,"abstract":"<div><div>In this work, a high-throughput computation (HTC) and machine learning (ML) combined method was applied to identify the determining factors of the detonation velocity (<span><math><mrow><msub><mi>v</mi><mi>d</mi></msub></mrow></math></span>) and detonation pressure (<span><math><mrow><msub><mi>p</mi><mi>d</mi></msub></mrow></math></span>) of energetic molecules and screen potential high-energy molecules with acceptable stability in a high-throughput way. The HTC was performed based on 1725 sample molecules abstracted from a dataset of over 10<sup>6</sup> linear nitroaliphatics with 1- to 6-membered C backbones and three types of substituents, namely single nitro group (-NO<sub>2</sub>), nitroamine (-NNO<sub>2</sub>), and nitrate ester (-ONO<sub>2</sub>). ML models were established based on the HTC results to screen high-energy molecules and to identify the determining factors of <span><math><mrow><msub><mi>v</mi><mi>d</mi></msub></mrow></math></span> and <span><math><mrow><msub><mi>p</mi><mi>d</mi></msub></mrow></math></span>. Compared with quantum chemistry calculation results, the absolute relative errors of <span><math><mrow><msub><mi>v</mi><mi>d</mi></msub></mrow></math></span> and <span><math><mrow><msub><mi>p</mi><mi>d</mi></msub></mrow></math></span> obtained using the ML models were less than 3.63% and 5%, respectively. Furthermore, eight molecules with high energy and acceptable stability were selected as potential candidates. This study shows the high efficiency of the combination of HTC and ML in high-throughput screening.</div></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 4","pages":"Pages 283-292"},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43681792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graphical Abstract 图形抽象
IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-01 DOI: 10.1016/S2666-6472(24)00091-5
{"title":"Graphical Abstract","authors":"","doi":"10.1016/S2666-6472(24)00091-5","DOIUrl":"10.1016/S2666-6472(24)00091-5","url":null,"abstract":"","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 4","pages":"Pages iii-v"},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143353888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EM Database v1.0: A benchmark informatics platform for data-driven discovery of energetic materials EM数据库v1.0:用于数据驱动的高能材料发现的基准信息学平台
IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-01 DOI: 10.1016/j.enmf.2023.09.002
Xin Huang , Wen Qian , Jian Liu , Jun-hong Zhou , Chao-yang Zhang
Large-scale data demonstrates great significance for the discovery of novel energetic materials (EMs). However, the open-source databases of EMs are not readily available. In pursuit of high-performance EMs before synthetic attempts in the laboratory, the theoretically predicted properties and experimental results that can be easily accessed are desired. Herein, a benchmark informatics platform of EMs, namely EM Database, has been developed for the purpose of data storage and sharing. EM Database v1.0 currently contains the properties of approximately 100000 unique compounds obtained through quantum chemistry (QC) calculations and the experimental results of about 10000 unique compounds extracted from literature. The QC data in the database were extracted via ground-state density functional calculations using the B3LYP/6-31G(d,p) method. These data include geometrical conformation, electronic structures, and predicted properties (i.e., crystal density, enthalpy of sublimation, molar heat of formation, detonation pressure, detonation velocity, detonation heat, and detonation volume) obtained using models of quantitative structure-property relationships. The experimental data were manually collected from literature and were then doubly curated by our project team members. These data include the physicochemical, thermal, combustion, detonation, spectra, and sensitivity properties. In this paper, we also discuss the techniques for constructing the EM Database and present the fundamental features of the database. The EM Database is expected to serve as an effective benchmark informatics platform for forthcoming research on EMs.
大规模数据对发现新型能材料具有重要意义。但是,EMs的开源数据库并不容易获得。在实验室尝试合成之前,追求高性能的电磁,需要理论预测的性质和易于获得的实验结果。为此,我们开发了一个EMs基准信息学平台,即EMs数据库,以实现数据的存储和共享。EM Database v1.0目前包含了通过量子化学(QC)计算得到的大约100000种独特化合物的性质,以及从文献中提取的大约10000种独特化合物的实验结果。数据库中的QC数据采用B3LYP/6-31G(d,p)方法通过基态密度泛函计算提取。这些数据包括几何构象、电子结构和预测性质(即晶体密度、升华焓、摩尔生成热、爆轰压力、爆轰速度、爆轰热和爆轰体积),这些数据是通过定量结构-性质关系模型获得的。实验数据是手工从文献中收集的,然后由我们的项目团队成员进行双重整理。这些数据包括物理化学、热、燃烧、爆轰、光谱和灵敏度特性。本文还讨论了构建电磁数据库的技术,并介绍了该数据库的基本特征。新兴市场数据库有望成为即将开展的新兴市场研究的有效基准信息学平台。
{"title":"EM Database v1.0: A benchmark informatics platform for data-driven discovery of energetic materials","authors":"Xin Huang ,&nbsp;Wen Qian ,&nbsp;Jian Liu ,&nbsp;Jun-hong Zhou ,&nbsp;Chao-yang Zhang","doi":"10.1016/j.enmf.2023.09.002","DOIUrl":"10.1016/j.enmf.2023.09.002","url":null,"abstract":"<div><div>Large-scale data demonstrates great significance for the discovery of novel energetic materials (EMs). However, the open-source databases of EMs are not readily available. In pursuit of high-performance EMs before synthetic attempts in the laboratory, the theoretically predicted properties and experimental results that can be easily accessed are desired. Herein, a benchmark informatics platform of EMs, namely EM Database, has been developed for the purpose of data storage and sharing. EM Database v1.0 currently contains the properties of approximately 100000 unique compounds obtained through quantum chemistry (QC) calculations and the experimental results of about 10000 unique compounds extracted from literature. The QC data in the database were extracted via ground-state density functional calculations using the B3LYP/6-31G(d,p) method. These data include geometrical conformation, electronic structures, and predicted properties (i.e., crystal density, enthalpy of sublimation, molar heat of formation, detonation pressure, detonation velocity, detonation heat, and detonation volume) obtained using models of quantitative structure-property relationships. The experimental data were manually collected from literature and were then doubly curated by our project team members. These data include the physicochemical, thermal, combustion, detonation, spectra, and sensitivity properties. In this paper, we also discuss the techniques for constructing the EM Database and present the fundamental features of the database. The EM Database is expected to serve as an effective benchmark informatics platform for forthcoming research on EMs.</div></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 4","pages":"Pages 267-273"},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135889387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of the crystallinity of fluoropolymer binders components in polymer-bonded explosives on shock Hugoniots: A computational study 聚合物粘结炸药中含氟聚合物粘结剂成分的结晶度对冲击休格诺茨的影响:计算研究
IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-12-01 DOI: 10.1016/j.enmf.2024.03.001
Wen-yu Zhou , Hua-rong Li , Yong Han , Liu Liu , Hong Yang , Yang Zhou
Fluoropolymers play a crucial role as binders in polymer-bonded explosive (PBX) formulations. However, there is a lack of clear understanding of the effects of increased fluoropolymer crystallinity on the shock response of PBXs in the service environment. This study investigated the shock Hugoniots of two widely applied fluoropolymer binders: (1) F2314 from China—a copolymer with a molar ratio of vinylidene fluoride (VDF) to chlorotrifluoroethylene (CTFE) of 1:4 and (2) F2313 from the United States, also known as Kel F-800, with a VDF to CTFE molar ratio of 1:3. The Hugoniot curves of both fluoropolymers were calculated based on equilibrium molecular dynamics (MD) and a mixing rule. Furthermore, the corresponding PV curves were obtained through fitting using the Tait equation of state (EOS). Their calculated parameters, including zero-pressure bulk modulus (κo) and sound velocity (co), agreed well with experimental data. The results reveal that the Hugoniots of amorphous F2314 and F2313 exhibited negligible differences. However, increasing crystallinity significantly impacted the Hugoniot curves of both fluoropolymers, especially for F2314 with high crystallinity. The obtained macroscopic characteristic parameters, namely κo and co, exhibited an exponential dependence on crystallinity. Physically, this phenomenon can be attributed to a reduction in the compressible free volume of the fluoropolymers due to a more orderly chain arrangement. Additionally, under the same compression ratio, the shock temperature of the fluoropolymers increased with the crystallinity, posing potential safety risks to explosives. These findings establish a correlation between the crystallinity of fluoropolymers and the shock properties of PBXs, providing a theoretical reference for the formulation design of fluoropolymer-based PBXs.
含氟聚合物作为粘合剂在聚合物粘合炸药(PBX)配方中发挥着至关重要的作用。然而,人们对增加含氟聚合物结晶度对 PBX 在使用环境中的冲击响应所产生的影响还缺乏清晰的认识。本研究调查了两种广泛应用的含氟聚合物粘合剂的冲击休格尼特曲线:(1) 中国的 F2314(一种共聚物,其偏氟乙烯(VDF)与三氟氯乙烯(CTFE)的摩尔比为 1:4);(2) 美国的 F2313(又称 Kel F-800,其 VDF 与 CTFE 的摩尔比为 1:3)。这两种含氟聚合物的休格诺曲线都是根据平衡分子动力学(MD)和混合规则计算得出的。此外,通过使用 Tait 状态方程(EOS)进行拟合,还得到了相应的 P-V 曲线。其计算参数,包括零压体积模量()和声速(),与实验数据吻合良好。结果表明,无定形 F2314 和 F2313 的休格尼系数差异可以忽略不计。然而,结晶度的增加会对这两种含氟聚合物的休格尼奥特曲线产生重大影响,尤其是结晶度较高的 F2314。所获得的宏观特征参数(即和)与结晶度呈指数关系。从物理学角度看,这一现象可归因于氟聚合物的链排列更有序,从而减少了可压缩自由体积。此外,在相同的压缩比下,氟聚合物的冲击温度随结晶度的增加而升高,这对爆炸物构成了潜在的安全风险。这些发现确立了氟聚合物结晶度与 PBX 冲击特性之间的相关性,为基于氟聚合物的 PBX 配方设计提供了理论参考。
{"title":"Effects of the crystallinity of fluoropolymer binders components in polymer-bonded explosives on shock Hugoniots: A computational study","authors":"Wen-yu Zhou ,&nbsp;Hua-rong Li ,&nbsp;Yong Han ,&nbsp;Liu Liu ,&nbsp;Hong Yang ,&nbsp;Yang Zhou","doi":"10.1016/j.enmf.2024.03.001","DOIUrl":"10.1016/j.enmf.2024.03.001","url":null,"abstract":"<div><div>Fluoropolymers play a crucial role as binders in polymer-bonded explosive (PBX) formulations. However, there is a lack of clear understanding of the effects of increased fluoropolymer crystallinity on the shock response of PBXs in the service environment. This study investigated the shock Hugoniots of two widely applied fluoropolymer binders: (1) F2314 from China—a copolymer with a molar ratio of vinylidene fluoride (VDF) to chlorotrifluoroethylene (CTFE) of 1:4 and (2) F2313 from the United States, also known as Kel F-800, with a VDF to CTFE molar ratio of 1:3. The Hugoniot curves of both fluoropolymers were calculated based on equilibrium molecular dynamics (MD) and a mixing rule. Furthermore, the corresponding <em>P</em>–<em>V</em> curves were obtained through fitting using the Tait equation of state (EOS). Their calculated parameters, including zero-pressure bulk modulus (<em>κ</em><sub>o</sub>) and sound velocity (<em>c</em><sub>o</sub>), agreed well with experimental data. The results reveal that the Hugoniots of amorphous F2314 and F2313 exhibited negligible differences. However, increasing crystallinity significantly impacted the Hugoniot curves of both fluoropolymers, especially for F2314 with high crystallinity. The obtained macroscopic characteristic parameters, namely <em>κ</em><sub>o</sub> and <em>c</em><sub>o</sub>, exhibited an exponential dependence on crystallinity. Physically, this phenomenon can be attributed to a reduction in the compressible free volume of the fluoropolymers due to a more orderly chain arrangement. Additionally, under the same compression ratio, the shock temperature of the fluoropolymers increased with the crystallinity, posing potential safety risks to explosives. These findings establish a correlation between the crystallinity of fluoropolymers and the shock properties of PBXs, providing a theoretical reference for the formulation design of fluoropolymer-based PBXs.</div></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 4","pages":"Pages 309-317"},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140128400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interactions between a neutral polymeric bonding agent and nitramine explosives and their influencing factors 中性聚合粘接剂与硝胺炸药之间的相互作用及其影响因素
IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-01 DOI: 10.1016/j.enmf.2024.03.002
Neutral polymer bonding agents (NPBAs) have proven highly effective in enhancing the interfacial bonding between the bonding matrix and nitramine explosives such as cyclic trimethylene trinitramine (RDX) and cyclic tetramethylene trinitramine (HMX). However, there is a lack of clear understanding of the mechanisms behind their interactions, and it has been found that NPBAs produce different interfacial bonding effects on RDX and HMX. To gain deeper insights into the molecular-scale interfacial interactions of nitramine explosives/NPBAs, this study investigated the molecular electrostatic potentials, intermolecular interactions, surface structural features, and interfacial adsorption of a NPBA onto nitramine explosives using the density functional theory and molecular dynamics (MD) technique. The results indicate that the N atom on the cyano group of the NPBA molecule can form weak hydrogen bonds C–H⋅⋅⋅NC and C–H⋅⋅⋅O with the H atoms in the RDX and HMX molecules. The strength of such weak hydrogen bonding interactions is affected by the electrostatic potential range of nitramine molecules. Additionally, the surface structure of the nitramine plays a critical role in the NPBA adsorption strength. Compared to HMX, RDX exhibits a narrower surface electrostatic potential range and smoother crystal surface, resulting in weaker intermolecular interactions between the NPBA and the RDX surface.
事实证明,中性聚合物粘接剂(NPBAs)在增强粘接基体与环三亚甲基三硝胺(RDX)和环四亚甲基三硝胺(HMX)等硝胺炸药之间的界面粘接方面非常有效。然而,人们对其相互作用背后的机制还缺乏清晰的认识,而且发现 NPBA 对 RDX 和 HMX 产生不同的界面键合效应。为了深入了解硝胺炸药/NPBA 的分子尺度界面相互作用,本研究利用密度泛函理论和分子动力学(MD)技术研究了 NPBA 在硝胺炸药上的分子静电势、分子间相互作用、表面结构特征以及界面吸附。结果表明,NPBA 分子氰基上的 N 原子可与 RDX 和 HMX 分子中的 H 原子形成 C-H⋅⋅⋅N C 和 C-H⋅⋅⋅O 弱氢键。这种弱氢键相互作用的强度受到硝胺分子静电电位范围的影响。此外,硝胺的表面结构对 NPBA 吸附强度也起着关键作用。与 HMX 相比,RDX 的表面静电势范围更窄,晶面更光滑,因此 NPBA 与 RDX 表面之间的分子间相互作用更弱。
{"title":"Interactions between a neutral polymeric bonding agent and nitramine explosives and their influencing factors","authors":"","doi":"10.1016/j.enmf.2024.03.002","DOIUrl":"10.1016/j.enmf.2024.03.002","url":null,"abstract":"<div><div>Neutral polymer bonding agents (NPBAs) have proven highly effective in enhancing the interfacial bonding between the bonding matrix and nitramine explosives such as cyclic trimethylene trinitramine (RDX) and cyclic tetramethylene trinitramine (HMX). However, there is a lack of clear understanding of the mechanisms behind their interactions, and it has been found that NPBAs produce different interfacial bonding effects on RDX and HMX. To gain deeper insights into the molecular-scale interfacial interactions of nitramine explosives/NPBAs, this study investigated the molecular electrostatic potentials, intermolecular interactions, surface structural features, and interfacial adsorption of a NPBA onto nitramine explosives using the density functional theory and molecular dynamics (MD) technique. The results indicate that the N atom on the cyano group of the NPBA molecule can form weak hydrogen bonds C–H⋅⋅⋅N<img>C and C–H⋅⋅⋅O with the H atoms in the RDX and HMX molecules. The strength of such weak hydrogen bonding interactions is affected by the electrostatic potential range of nitramine molecules. Additionally, the surface structure of the nitramine plays a critical role in the NPBA adsorption strength. Compared to HMX, RDX exhibits a narrower surface electrostatic potential range and smoother crystal surface, resulting in weaker intermolecular interactions between the NPBA and the RDX surface.</div></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 3","pages":"Pages 248-256"},"PeriodicalIF":3.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140128445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-time X-ray diffraction measurement on laser shock-loaded hexanitrostilbene (HNS) 激光冲击载荷己酮二苯乙烯(HNS)的实时 X 射线衍射测量
IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-01 DOI: 10.1016/j.enmf.2024.04.002
Understanding the lattice evolution of hexanitrostilbene (HNS) is crucial for ensuring its safety and reliability under shock loading. However, the lack of in situ, real-time diagnostics has limited the availability of lattice parameters for shock-loaded explosives. In this study, we utilized dynamic X-ray diffraction technology to obtain the diffraction spectrum of laser shock-loaded HNS and to determine its temporal evolution. Additionally, by improving the laser energy, we initiated HNS and obtained the diffraction spectrum of detonation products during the detonation process. The experimental results showed the presence of a diamond structure in the detonation product, suggesting the existence of either diamond or diamond-like carbon. Our research not only elucidates the crystal structure of shock-loaded HNS and its detonation products but also provides an avenue for laboratory-scale investigations into dynamically loaded explosives, which furnishing an opportunity to unveil the underlying mechanism governing explosive dynamic response behavior.
了解己酮二苯乙烯(HNS)的晶格演变对于确保其在冲击载荷下的安全性和可靠性至关重要。然而,由于缺乏原位实时诊断技术,限制了冲击加载炸药晶格参数的可用性。在本研究中,我们利用动态 X 射线衍射技术获得了激光冲击加载 HNS 的衍射谱,并确定了其时间演变。此外,通过提高激光能量,我们启动了 HNS 并获得了引爆过程中引爆产物的衍射谱。实验结果表明,引爆产物中存在金刚石结构,这表明存在金刚石或类金刚石碳。我们的研究不仅阐明了冲击载荷 HNS 及其引爆产物的晶体结构,还为实验室规模的动态载荷炸药研究提供了途径,为揭示炸药动态响应行为的内在机制提供了机会。
{"title":"Real-time X-ray diffraction measurement on laser shock-loaded hexanitrostilbene (HNS)","authors":"","doi":"10.1016/j.enmf.2024.04.002","DOIUrl":"10.1016/j.enmf.2024.04.002","url":null,"abstract":"<div><div>Understanding the lattice evolution of hexanitrostilbene (HNS) is crucial for ensuring its safety and reliability under shock loading. However, the lack of <em>in situ</em>, real-time diagnostics has limited the availability of lattice parameters for shock-loaded explosives. In this study, we utilized dynamic X-ray diffraction technology to obtain the diffraction spectrum of laser shock-loaded HNS and to determine its temporal evolution. Additionally, by improving the laser energy, we initiated HNS and obtained the diffraction spectrum of detonation products during the detonation process. The experimental results showed the presence of a diamond structure in the detonation product, suggesting the existence of either diamond or diamond-like carbon. Our research not only elucidates the crystal structure of shock-loaded HNS and its detonation products but also provides an avenue for laboratory-scale investigations into dynamically loaded explosives, which furnishing an opportunity to unveil the underlying mechanism governing explosive dynamic response behavior.</div></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 3","pages":"Pages 224-231"},"PeriodicalIF":3.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141056347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new sulfur-containing laser-sensitive primary explosive based on thiazole-4-carbohydrazide 基于噻唑-4-甲酰肼的新型含硫激光敏感原爆物
IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-01 DOI: 10.1016/j.enmf.2024.02.005
This study effectively synthesized thiazole-4-carbohydrazide (SZCA) and its ionic salt SZCA·HClO4 and energetic complex Cu(SZCA)2(ClO4)2 (ECC-1). The new compound SZCA, SZCA·HClO4 and ECC-1 were fully characterized through elemental analysis, infrared spectroscopy, 13C NMR spectroscopy and thermal stability analysis. The combustion heat of ECC-1 was measured by oxygen bomb calorimetry, and its detonation performance was predicted by Kamlet-Jacobs formula and EXPLO5, respectively. The mechanical sensitivity of ECC-1 was tested using BAM method. In particular, we comprehensively evaluated the initiation ability of ECC-1 through lead plate destruction experiment and laser initiation experiment. The results show that ECC-1 have a decomposition temperature of 236 °C, exhibits acceptable mechanical sensitivity (impact sensitivity: 3.4 J, friction sensitivity: 4 N), and decent detonation properties (D: 6.6 km s−1, P: 21.3 GPa). And ECC-1 could be initiated by a single-pulse laser (λ: 808 nm, P: 20 W, t: 3 ms), and successfully detonated the next charge, such as RDX and CL-20.
本研究有效合成了噻唑-4-甲酰肼(SZCA)及其离子盐 SZCA-HClO4,以及高能络合物 Cu(SZCA)2(ClO4)2(ECC-1)。通过元素分析、红外光谱、13C NMR 光谱和热稳定性分析,对新化合物 SZCA、SZCA-HClO4 和 ECC-1 进行了全面表征。氧弹量热法测量了 ECC-1 的燃烧热,并分别用 Kamlet-Jacobs 公式和 EXPLO5 预测了其引爆性能。采用 BAM 法测试了 ECC-1 的机械敏感性。特别是,我们通过铅板破坏实验和激光起爆实验全面评估了 ECC-1 的起爆能力。结果表明,ECC-1 的分解温度为 236 ℃,具有可接受的机械灵敏度(冲击灵敏度:3.4 J,摩擦灵敏度:4 N)和良好的起爆性能(D:6.6 km s-1,P:21.3 GPa)。单脉冲激光(λ:808 nm,P:20 W,t:3 ms)可触发 ECC-1,并成功引爆下一个装药,如 RDX 和 CL-20。
{"title":"A new sulfur-containing laser-sensitive primary explosive based on thiazole-4-carbohydrazide","authors":"","doi":"10.1016/j.enmf.2024.02.005","DOIUrl":"10.1016/j.enmf.2024.02.005","url":null,"abstract":"<div><div>This study effectively synthesized thiazole-4-carbohydrazide (SZCA) and its ionic salt SZCA·HClO<sub>4</sub> and energetic complex Cu(SZCA)<sub>2</sub>(ClO<sub>4</sub>)<sub>2</sub> (<strong>ECC-1</strong>). The new compound SZCA, SZCA·HClO<sub>4</sub> and <strong>ECC-1</strong> were fully characterized through elemental analysis, infrared spectroscopy, <sup>13</sup>C NMR spectroscopy and thermal stability analysis. The combustion heat of <strong>ECC-1</strong> was measured by oxygen bomb calorimetry, and its detonation performance was predicted by Kamlet-Jacobs formula and EXPLO5, respectively. The mechanical sensitivity of <strong>ECC-1</strong> was tested using BAM method. In particular, we comprehensively evaluated the initiation ability of <strong>ECC-1</strong> through lead plate destruction experiment and laser initiation experiment. The results show that <strong>ECC-1</strong> have a decomposition temperature of 236 °C, exhibits acceptable mechanical sensitivity (impact sensitivity: 3.4 J, friction sensitivity: 4 N), and decent detonation properties (<em>D</em>: 6.6 km s<sup>−1</sup>, <em>P</em>: 21.3 GPa). And <strong>ECC-1</strong> could be initiated by a single-pulse laser (λ: 808 nm, <em>P</em>: 20 W, <em>t</em>: 3 ms), and successfully detonated the next charge, such as RDX and CL-20.</div></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 3","pages":"Pages 191-198"},"PeriodicalIF":3.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139886297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Energetic Materials Frontiers
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1