首页 > 最新文献

Journal of Analytical and Applied Pyrolysis最新文献

英文 中文
Chemical recycling of PC/ABS-blends by pyrolysis
IF 5.8 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-02-20 DOI: 10.1016/j.jaap.2025.107047
Philipp-Henry Rathsack , David Scheithauer , Jörg Kleeberg , Martin Gräbner
Not all plastics can be recycled mechanically. Polycarbonate (PC) combined with acrylonitrile butadiene styrene (ABS) is one such material used in applications like electronic casings and automotive components. Since mechanical recycling of PC/ABS results in thermal degradation and the loss of required properties, alternative methods are sought. Pyrolysis, the thermal decomposition without oxygen, preferentially cleaves certain bonds, yielding valuable monomers. This study investigates the pyrolysis of non-flame-retarded and flame-retarded PC/ABS blends at laboratory and pilot plant scales. Analyses utilized thermogravimetry and infrared spectroscopy (TG-IR). The blends exhibited two decomposition stages influenced by flame retardants. The IR spectra provided insights into the structural properties of volatile compounds. CO2 yield ranged from 6 % to 8 %, with the flame-retarded blend showing 0.5–1 % higher yields. Subsequently, we conducted experiments in a fixed-bed reactor, varying the pyrolysis temperature, heating rate, and blend composition. Masses of gaseous, liquid, and solid products were measured, with a liquid yield optimum at 480–500C. All product fractions were analyzed. Liquid products contained valuable compounds like phenol, styrene, and bisphenol-A, analyzed using gas chromatography (GC) and comprehensive two-dimensional gas chromatography-mass spectrometry (GC×GC-MS). For the non-flame-retardant blend, bisphenol-A was the main product (25–30 %), while phenol dominated (10–15 %) in the flame-retardant blend.
{"title":"Chemical recycling of PC/ABS-blends by pyrolysis","authors":"Philipp-Henry Rathsack ,&nbsp;David Scheithauer ,&nbsp;Jörg Kleeberg ,&nbsp;Martin Gräbner","doi":"10.1016/j.jaap.2025.107047","DOIUrl":"10.1016/j.jaap.2025.107047","url":null,"abstract":"<div><div>Not all plastics can be recycled mechanically. Polycarbonate (PC) combined with acrylonitrile butadiene styrene (ABS) is one such material used in applications like electronic casings and automotive components. Since mechanical recycling of PC/ABS results in thermal degradation and the loss of required properties, alternative methods are sought. Pyrolysis, the thermal decomposition without oxygen, preferentially cleaves certain bonds, yielding valuable monomers. This study investigates the pyrolysis of non-flame-retarded and flame-retarded PC/ABS blends at laboratory and pilot plant scales. Analyses utilized thermogravimetry and infrared spectroscopy (TG-IR). The blends exhibited two decomposition stages influenced by flame retardants. The IR spectra provided insights into the structural properties of volatile compounds. CO<sub>2</sub> yield ranged from 6 % to 8 %, with the flame-retarded blend showing 0.5–1 % higher yields. Subsequently, we conducted experiments in a fixed-bed reactor, varying the pyrolysis temperature, heating rate, and blend composition. Masses of gaseous, liquid, and solid products were measured, with a liquid yield optimum at 480–500<sup>∘</sup>C. All product fractions were analyzed. Liquid products contained valuable compounds like phenol, styrene, and bisphenol-A, analyzed using gas chromatography (GC) and comprehensive two-dimensional gas chromatography-mass spectrometry (GC×GC-MS). For the non-flame-retardant blend, bisphenol-A was the main product (25–30 %), while phenol dominated (10–15 %) in the flame-retardant blend.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"188 ","pages":"Article 107047"},"PeriodicalIF":5.8,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143487638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Micro-Raman spectroscopy and Petrography for unraveling the complex heterogeneous physicochemical structures of biochar from the scale of bulk to micro: A comparison and discussion
IF 5.8 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-02-20 DOI: 10.1016/j.jaap.2025.107057
Dezhi Chen , Zhou Fang , Yufan Wei , Jun Xu , Kai Xu , Long Jiang , Yi Wang , Sheng Su , Song Hu , Jun Xiang
This study produced biochar from coconut shells and corncobs through pyrolysis under a nitrogen atmosphere with temperatures ranging from 350℃ to 1400℃. The surface regions of the biochar were characterized at the micro-scale using a combination of micro-Raman spectroscopy and petrography. Extensive data from both methods were compared and correlated from the scale of bulk to micro- levels. The results indicate that for bulk structures, the average random reflectance (Rf) increases and Raman parameter α decreases with temperature, indicating a higher thermal maturity and lower C-H, C-O etc. structures. However, AD/AG, A(VR+VL+GR)/AD and A(VR+VL+GR)/AG exhibit significant inflection points at specific temperatures. These inflection points are linked to key structural transformations: aromatization at 600 ℃ and graphitization at 1000 ℃. At microscale, biochar contains pores of varying shapes and sizes (approximately 5–100μm) with ash deposits embedded within them. These features significantly influence the heterogeneity in Rf measurements, resulting in a broaden distribution of Rf as the pyrolysis process progressed. Besides, micro-Raman spectroscopy shows that biochar particles with higher substituent and side-chain abundances have a tendency towards preferential reactivity. Furthermore, the chemical structural distribution of biochar became more concentrated and focused below 1000 ℃. However, biochar undergoes heterogeneous graphitization at 1000 ℃, and the distribution of aromatic rings and graphite structure becomes even more dispersed between 1000 ℃-1400 ℃. The correlations between the results of petrographic method and micro-Raman at the bulk and micro-scale have been set up and discussed, and it can provide guidance for the comprehensive characterization of the heterogeneous structure of biochar.
这项研究利用椰子壳和玉米芯在氮气环境下进行热解,温度范围为 350℃ 至 1400℃,从而生产出生物炭。研究人员采用显微拉曼光谱法和岩相法对生物炭的表面区域进行了微观表征。对这两种方法获得的大量数据进行了比较,并将这些数据从块状尺度到微观尺度进行了关联。结果表明,对于块状结构,平均随机反射率(Rf)随温度升高而增加,拉曼参数α随温度升高而降低,这表明热成熟度较高,C-H、C-O 等结构较低。然而,AD/AG、A(VR+VL+GR)/AD 和 A(VR+VL+GR)/AG 在特定温度下会出现明显的拐点。这些拐点与关键的结构转变有关:600 ℃ 时的芳香化和 1000 ℃ 时的石墨化。在微观尺度上,生物炭含有形状和大小不一的孔隙(约 5-100μm),孔隙中蕴藏着灰分沉积物。这些特征极大地影响了 Rf 测量的异质性,导致 Rf 分布随着热解过程的进行而扩大。此外,显微拉曼光谱显示,取代基和侧链丰度较高的生物炭颗粒具有优先反应性倾向。此外,生物炭的化学结构分布在 1000 ℃ 以下更加集中。然而,生物炭在 1000 ℃ 时发生了异质石墨化,芳香环和石墨结构的分布在 1000 ℃-1400 ℃ 之间变得更加分散。建立并讨论了岩相法和显微拉曼法在体积尺度和微观尺度上的相关性,可为生物炭异质结构的综合表征提供指导。
{"title":"Micro-Raman spectroscopy and Petrography for unraveling the complex heterogeneous physicochemical structures of biochar from the scale of bulk to micro: A comparison and discussion","authors":"Dezhi Chen ,&nbsp;Zhou Fang ,&nbsp;Yufan Wei ,&nbsp;Jun Xu ,&nbsp;Kai Xu ,&nbsp;Long Jiang ,&nbsp;Yi Wang ,&nbsp;Sheng Su ,&nbsp;Song Hu ,&nbsp;Jun Xiang","doi":"10.1016/j.jaap.2025.107057","DOIUrl":"10.1016/j.jaap.2025.107057","url":null,"abstract":"<div><div>This study produced biochar from coconut shells and corncobs through pyrolysis under a nitrogen atmosphere with temperatures ranging from 350℃ to 1400℃. The surface regions of the biochar were characterized at the micro-scale using a combination of micro-Raman spectroscopy and petrography. Extensive data from both methods were compared and correlated from the scale of bulk to micro- levels. The results indicate that for bulk structures, the average random reflectance (R<sub>f</sub>) increases and Raman parameter α decreases with temperature, indicating a higher thermal maturity and lower C-H, C-O etc. structures. However, A<sub>D</sub>/A<sub>G</sub>, A<sub>(VR+VL+GR)</sub>/A<sub>D</sub> and A<sub>(VR+VL+GR)</sub>/A<sub>G</sub> exhibit significant inflection points at specific temperatures. These inflection points are linked to key structural transformations: aromatization at 600 ℃ and graphitization at 1000 ℃. At microscale, biochar contains pores of varying shapes and sizes (approximately 5–100μm) with ash deposits embedded within them. These features significantly influence the heterogeneity in R<sub>f</sub> measurements, resulting in a broaden distribution of R<sub>f</sub> as the pyrolysis process progressed. Besides, micro-Raman spectroscopy shows that biochar particles with higher substituent and side-chain abundances have a tendency towards preferential reactivity. Furthermore, the chemical structural distribution of biochar became more concentrated and focused below 1000 ℃. However, biochar undergoes heterogeneous graphitization at 1000 ℃, and the distribution of aromatic rings and graphite structure becomes even more dispersed between 1000 ℃-1400 ℃. The correlations between the results of petrographic method and micro-Raman at the bulk and micro-scale have been set up and discussed, and it can provide guidance for the comprehensive characterization of the heterogeneous structure of biochar.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"188 ","pages":"Article 107057"},"PeriodicalIF":5.8,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143465033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis and pyrolysis study of sucrose esters in flue-cured tobacco
IF 5.8 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-02-20 DOI: 10.1016/j.jaap.2025.107054
Junchen Zhu , Qi Li , Hairong Yang , Yue Xie , Hongru Feng , Huabing Liu , Boka Xiang , Kailong Yuan , Cuirong Sun , Yuanjiang Pan
Pyrolysis behavior of sucrose esters (SEs) significantly impacts the aroma and quality of cigarettes. However, there is limited research on SEs and their pyrolysis in Flue-cured tobacco. In this study, nine SEs and their three pyrolysis products, glucose esters (GEs), were identified using LC-MSn, with six esters being reported in Flue-cured tobacco for the first time. The aging and baking processes of tobacco leaves promoted the pyrolysis of most SEs along with the formation of GEs. During long-term storage at 4 ℃, tobacco SE was found to undergo 3-methylvaleryl intramolecular migration from glucose to fructose as well as intermolecular elimination and addition reaction of acetyl groups, greatly enriching the types of tobacco SEs. By comparing different storage temperatures, this acyl migration demonstrated a temperature dependence. Under simulated cigarette smoking conditions via thermal microwave plasma treatment, SE was rapidly degraded into GE intermediates, fatty acids, furfural, and other aroma compounds. These insights advance our understanding of SE pyrolysis and aroma development, and provide potential explanations for the structural diversity of tobacco SEs.
{"title":"Analysis and pyrolysis study of sucrose esters in flue-cured tobacco","authors":"Junchen Zhu ,&nbsp;Qi Li ,&nbsp;Hairong Yang ,&nbsp;Yue Xie ,&nbsp;Hongru Feng ,&nbsp;Huabing Liu ,&nbsp;Boka Xiang ,&nbsp;Kailong Yuan ,&nbsp;Cuirong Sun ,&nbsp;Yuanjiang Pan","doi":"10.1016/j.jaap.2025.107054","DOIUrl":"10.1016/j.jaap.2025.107054","url":null,"abstract":"<div><div>Pyrolysis behavior of sucrose esters (SEs) significantly impacts the aroma and quality of cigarettes. However, there is limited research on SEs and their pyrolysis in Flue-cured tobacco. In this study, nine SEs and their three pyrolysis products, glucose esters (GEs), were identified using LC-MS<sup>n</sup>, with six esters being reported in Flue-cured tobacco for the first time. The aging and baking processes of tobacco leaves promoted the pyrolysis of most SEs along with the formation of GEs. During long-term storage at 4 ℃, tobacco SE was found to undergo 3-methylvaleryl intramolecular migration from glucose to fructose as well as intermolecular elimination and addition reaction of acetyl groups, greatly enriching the types of tobacco SEs. By comparing different storage temperatures, this acyl migration demonstrated a temperature dependence. Under simulated cigarette smoking conditions via thermal microwave plasma treatment, SE was rapidly degraded into GE intermediates, fatty acids, furfural, and other aroma compounds. These insights advance our understanding of SE pyrolysis and aroma development, and provide potential explanations for the structural diversity of tobacco SEs.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"189 ","pages":"Article 107054"},"PeriodicalIF":5.8,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143512269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrothermal liquefaction of Spanish crude olive pomace for biofuel and biochar production
IF 5.8 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-02-20 DOI: 10.1016/j.jaap.2025.107050
Luis Cutz , Sarvesh Misar , Bernat Font , Majd Al-Naji , Wiebren de Jong
The olive oil industry is an important source of agricultural residues throughout its value chain, ranging from intermediate process slurries to relatively dry content pruning residues. Among them, crude olive pomace (COP) is of particular interest since it is abundant, low cost and can be a promising source for bioenergy. Nevertheless, because COP is phytotoxic and has a high moisture content and low energy density, it represents a challenge to conventional processes that usually require a dry and homogenous material. The main novelty of this study is the use of a transition metal catalyst and a central composite design (CCD) approach to optimize the conversion of COP through hydrothermal liquefaction (HTL) into valuable products. Results show that catalytic HTL is capable of converting up to half of the COP into bio-oil. Higher process temperatures resulted in lower bio-oil yields but larger higher heating value (HHV) and lower N content. The bio-oils produced at higher temperatures also show lower concentration of phenols and regarding biochar, a low inorganic content. Without any further upgrading, COP bio-oils produced by HTL are rich in valuable compounds such as oleic acid, phenolic compounds and ketones that can be used in the polymer industry or as chemical intermediates. The highest bio-oil yield was 51.96 wt% at 330 ºC for 30 min and 7.5 wt% catalyst with a HHV of 22.0 MJ/kg. At those operational conditions, the biochar yield was 16.49 wt% with a HHV of 8.9 MJ/kg. The major minerals found in the biochars (CaO, SiO2 and P2O5) suggests that biochar could be well-suited for use in soil applications or as materials for adsorption, especially the non-catalytic ones. Furthermore, the experimental results acquired from HTL of COP were used to develop a global kinetic model. Using an explicit Runge-Kutta method, the kinetic parameters were calculated. After comparing the global kinetic model with a linear system of ordinary differential equations (ODEs) based on the CCD models, results indicate that this approach is more effective in predicting the yields of HTL products.
橄榄油产业是整个价值链中农业残留物的重要来源,从中间加工过程的泥浆到相对干燥的修剪残留物。其中,粗橄榄渣(COP)尤其引人关注,因为它资源丰富、成本低廉,是一种很有前景的生物能源。然而,由于 COP 具有植物毒性,而且水分含量高、能量密度低,这对通常需要干燥、均匀材料的传统工艺来说是一个挑战。本研究的主要创新点是使用过渡金属催化剂和中心复合设计(CCD)方法,通过水热液化(HTL)优化 COP 向有价值产品的转化。结果表明,催化 HTL 能够将多达一半的 COP 转化为生物油。工艺温度越高,生物油产量越低,但热值(HHV)越高,氮含量越低。在较高温度下生产的生物油还显示出较低的酚类物质浓度,就生物炭而言,无机物含量较低。在不进行任何进一步升级的情况下,高温催化燃烧产生的 COP 生物油富含有价值的化合物,如油酸、酚类化合物和酮,可用于聚合物工业或用作化学中间体。在 330 ºC 30 分钟和 7.5 wt% 催化剂条件下,生物油产量最高,达到 51.96 wt%,HHV 为 22.0 MJ/kg。在这些操作条件下,生物炭产量为 16.49 wt%,HHV 为 8.9 MJ/kg。在生物炭中发现的主要矿物质(CaO、SiO2 和 P2O5)表明,生物炭非常适合用于土壤应用或作为吸附材料,尤其是非催化材料。此外,从 COP HTL 中获得的实验结果被用于开发一个全局动力学模型。使用显式 Runge-Kutta 方法计算了动力学参数。在将全局动力学模型与基于 CCD 模型的线性常微分方程(ODE)系统进行比较后,结果表明这种方法在预测 HTL 产物的产量方面更为有效。
{"title":"Hydrothermal liquefaction of Spanish crude olive pomace for biofuel and biochar production","authors":"Luis Cutz ,&nbsp;Sarvesh Misar ,&nbsp;Bernat Font ,&nbsp;Majd Al-Naji ,&nbsp;Wiebren de Jong","doi":"10.1016/j.jaap.2025.107050","DOIUrl":"10.1016/j.jaap.2025.107050","url":null,"abstract":"<div><div>The olive oil industry is an important source of agricultural residues throughout its value chain, ranging from intermediate process slurries to relatively dry content pruning residues. Among them, crude olive pomace (COP) is of particular interest since it is abundant, low cost and can be a promising source for bioenergy. Nevertheless, because COP is phytotoxic and has a high moisture content and low energy density, it represents a challenge to conventional processes that usually require a dry and homogenous material. The main novelty of this study is the use of a transition metal catalyst and a central composite design (CCD) approach to optimize the conversion of COP through hydrothermal liquefaction (HTL) into valuable products. Results show that catalytic HTL is capable of converting up to half of the COP into bio-oil. Higher process temperatures resulted in lower bio-oil yields but larger higher heating value (HHV) and lower N content. The bio-oils produced at higher temperatures also show lower concentration of phenols and regarding biochar, a low inorganic content. Without any further upgrading, COP bio-oils produced by HTL are rich in valuable compounds such as oleic acid, phenolic compounds and ketones that can be used in the polymer industry or as chemical intermediates. The highest bio-oil yield was 51.96 wt% at 330 ºC for 30 min and 7.5 wt% catalyst with a HHV of 22.0 MJ/kg. At those operational conditions, the biochar yield was 16.49 wt% with a HHV of 8.9 MJ/kg. The major minerals found in the biochars (CaO, SiO<sub>2</sub> and P<sub>2</sub>O<sub>5</sub>) suggests that biochar could be well-suited for use in soil applications or as materials for adsorption, especially the non-catalytic ones. Furthermore, the experimental results acquired from HTL of COP were used to develop a global kinetic model. Using an explicit Runge-Kutta method, the kinetic parameters were calculated. After comparing the global kinetic model with a linear system of ordinary differential equations (ODEs) based on the CCD models, results indicate that this approach is more effective in predicting the yields of HTL products.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"188 ","pages":"Article 107050"},"PeriodicalIF":5.8,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143465034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the pyrolysis of Agave species as a novel bioenergy source: Thermo-kinetics, modeling, and product composition insights
IF 5.8 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-02-20 DOI: 10.1016/j.jaap.2025.107053
Jean Constantino Gomes da Silva , Santiago Arias , José Geraldo A. Pacheco , Fábio Trigo Raya , Gonçalo Amarante Guimarães Pereira , Gustavo Mockaitis
The Agave economic chain generates a significant waste, which has potential for sustainable bioenergy through pyrolysis. However, the diversity and heterogeneity of chemical composition of Agave species may pose challenges. This study investigates the impact of species heterogeneity on the pyrolysis of three Agave species (Agave sisalana, Agave tequilana, and Agave wercklei), aiming to correlate pyrolysis and biomass properties. Solid characterization and Py-GC/MS were used to understand Agave physicochemical characteristics and organic group distribution in volatiles, respectively. A multi-step model and advanced numerical methods were employed for the kinetic study. The physicochemical characteristics showed similar values but a distinct distribution of inorganic compounds, predominantly composed of alkali and alkaline earth metals (6–11 %w.b.), potentially influencing the organic groups’ distribution in the volatiles. High relative areas of aliphatic components (13–28 % at 773 K and 16–36 % at 873 K) and low quantity of acidic groups (<2 %) could be attributed to the catalytic deoxygenation promoted by alkali and alkaline earth metals. These findings are significant for future application of Agave in bio-oil production by pyrolysis, as commercial biomasses often yield a high content of oxygenated and acid groups. For the kinetic study, six decomposition profiles were identified in the pyrolysis, encompassing the decomposition of extractives, saponins, lignocellulose, and oxalate salts. The similarity in profiles resulted in approximately equivalent kinetic parameter values and mechanisms among the species. The average values of Ea ranged from 71 to 324 kJ mol−1, k0 values varied between 107-1022, and the reaction mechanisms included n-order and Avrami-Erofeyev types. The validity of the parameters was verified through curve reconstruction. The inorganic composition was chosen as the parameter related to pyrolysis characteristics, as it was the only parameter that differed significantly among the species. Based on the data, normalization and the proposed model demonstrated satisfactory values of R² (>0.9251), QOF (>94 %), and MSE (<2.73 ×10−3). This underscores the model's potential to describe decomposition profiles solely based on knowledge of inorganic composition, regardless of selected Agave species.
{"title":"Exploring the pyrolysis of Agave species as a novel bioenergy source: Thermo-kinetics, modeling, and product composition insights","authors":"Jean Constantino Gomes da Silva ,&nbsp;Santiago Arias ,&nbsp;José Geraldo A. Pacheco ,&nbsp;Fábio Trigo Raya ,&nbsp;Gonçalo Amarante Guimarães Pereira ,&nbsp;Gustavo Mockaitis","doi":"10.1016/j.jaap.2025.107053","DOIUrl":"10.1016/j.jaap.2025.107053","url":null,"abstract":"<div><div>The <em>Agave</em> economic chain generates a significant waste, which has potential for sustainable bioenergy through pyrolysis. However, the diversity and heterogeneity of chemical composition of <em>Agave</em> species may pose challenges. This study investigates the impact of species heterogeneity on the pyrolysis of three <em>Agave</em> species (<em>Agave sisalana</em>, <em>Agave tequilana</em>, and <em>Agave wercklei</em>), aiming to correlate pyrolysis and biomass properties. Solid characterization and Py-GC/MS were used to understand <em>Agave</em> physicochemical characteristics and organic group distribution in volatiles, respectively. A multi-step model and advanced numerical methods were employed for the kinetic study. The physicochemical characteristics showed similar values but a distinct distribution of inorganic compounds, predominantly composed of alkali and alkaline earth metals (6–11 %<sub>w.b.</sub>), potentially influencing the organic groups’ distribution in the volatiles. High relative areas of aliphatic components (13–28 % at 773 K and 16–36 % at 873 K) and low quantity of acidic groups (&lt;2 %) could be attributed to the catalytic deoxygenation promoted by alkali and alkaline earth metals. These findings are significant for future application of <em>Agave</em> in bio-oil production by pyrolysis, as commercial biomasses often yield a high content of oxygenated and acid groups. For the kinetic study, six decomposition profiles were identified in the pyrolysis, encompassing the decomposition of extractives, saponins, lignocellulose, and oxalate salts. The similarity in profiles resulted in approximately equivalent kinetic parameter values and mechanisms among the species. The average values of <em>E</em><sub><em>a</em></sub> ranged from 71 to 324 kJ mol<sup>−1</sup>, <em>k</em><sub>0</sub> values varied between 10<sup>7</sup>-10<sup>22</sup>, and the reaction mechanisms included n-order and Avrami-Erofeyev types. The validity of the parameters was verified through curve reconstruction. The inorganic composition was chosen as the parameter related to pyrolysis characteristics, as it was the only parameter that differed significantly among the species. Based on the data, normalization and the proposed model demonstrated satisfactory values of <em>R</em>² (&gt;0.9251), <em>QOF</em> (&gt;94 %), and MSE (&lt;2.73 ×10<sup>−3</sup>). This underscores the model's potential to describe decomposition profiles solely based on knowledge of inorganic composition, regardless of selected <em>Agave</em> species.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"188 ","pages":"Article 107053"},"PeriodicalIF":5.8,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143465035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of CaO addition on fast pyrolysis behavior of solid waste components using Py GC/MS
IF 5.8 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-02-20 DOI: 10.1016/j.jaap.2025.107055
Jun Dong , Yuanjun Tang , Yangqing Hu , Shifeng Wang , Zhaozhi Zhou , Yuxin Shi , Cunen Liu , Fei Wang
Pyrolysis is a promising approach for treating and recovering solid waste. Herein, we experimentally explored the fast pyrolysis of typical solid waste components, including wood biomass, food waste, and Polyvinyl Chloride (PVC) plastic, using the analytical Pyrolysis Gas Chromatography-Mass Spectrometry (Py GC/MS) technique. The chemical compositions of the volatile organic compounds in pyrolytic tar were detected and compared. The effect of the in-situ addition of calcium oxide (CaO) on the process was also validated. Results showed that different waste components yielded varied pyrolysis products. In-situ CaO addition influenced both the types and relative contents of pyrolysis tar species. The most common products from wood biomass pyrolysis were phenols (24.24 % and 34.87 % without and with CaO addition, respectively) and benzenes (15.77 % and 14.72 % without and with CaO addition, respectively). On the other hand, the most common products from food waste pyrolysis were aldehydes (18.09 % and 3.69 % without and with CaO addition, respectively) and ketones (14.45 % and 33.09 % without and with CaO addition, respectively). The most common products from PVC plastic pyrolysis were benzenes (31.87 % and 28.11 % without and with CaO addition, respectively) and naphthalenes (20.71 % and 25.58 % without and with CaO addition, respectively). During waste pyrolysis, the presence of CaO significantly reduced the formation of acidic compounds, ethers, and aldehydes through decarboxylation and decarbonylation reactions. Regarding the generation of valuable chemicals, the addition of CaO facilitated BTXN synthesis from wood and food waste pyrolytic tar. However, it slightly reduced the relative BTX content from PVC pyrolytic tar. These findings could form the basis for developing resource recovery strategies from solid waste using pyrolysis technology.
{"title":"Effect of CaO addition on fast pyrolysis behavior of solid waste components using Py GC/MS","authors":"Jun Dong ,&nbsp;Yuanjun Tang ,&nbsp;Yangqing Hu ,&nbsp;Shifeng Wang ,&nbsp;Zhaozhi Zhou ,&nbsp;Yuxin Shi ,&nbsp;Cunen Liu ,&nbsp;Fei Wang","doi":"10.1016/j.jaap.2025.107055","DOIUrl":"10.1016/j.jaap.2025.107055","url":null,"abstract":"<div><div>Pyrolysis is a promising approach for treating and recovering solid waste. Herein, we experimentally explored the fast pyrolysis of typical solid waste components, including wood biomass, food waste, and Polyvinyl Chloride (PVC) plastic, using the analytical Pyrolysis Gas Chromatography-Mass Spectrometry (Py GC/MS) technique. The chemical compositions of the volatile organic compounds in pyrolytic tar were detected and compared. The effect of the in-situ addition of calcium oxide (CaO) on the process was also validated. Results showed that different waste components yielded varied pyrolysis products. <em>In-situ</em> CaO addition influenced both the types and relative contents of pyrolysis tar species. The most common products from wood biomass pyrolysis were phenols (24.24 % and 34.87 % without and with CaO addition, respectively) and benzenes (15.77 % and 14.72 % without and with CaO addition, respectively). On the other hand, the most common products from food waste pyrolysis were aldehydes (18.09 % and 3.69 % without and with CaO addition, respectively) and ketones (14.45 % and 33.09 % without and with CaO addition, respectively). The most common products from PVC plastic pyrolysis were benzenes (31.87 % and 28.11 % without and with CaO addition, respectively) and naphthalenes (20.71 % and 25.58 % without and with CaO addition, respectively). During waste pyrolysis, the presence of CaO significantly reduced the formation of acidic compounds, ethers, and aldehydes through decarboxylation and decarbonylation reactions. Regarding the generation of valuable chemicals, the addition of CaO facilitated BTXN synthesis from wood and food waste pyrolytic tar. However, it slightly reduced the relative BTX content from PVC pyrolytic tar. These findings could form the basis for developing resource recovery strategies from solid waste using pyrolysis technology.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"188 ","pages":"Article 107055"},"PeriodicalIF":5.8,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143474964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the kinetics and mechanism of thermal decomposition of bisphenol A-type polyarylates
IF 5.8 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-02-19 DOI: 10.1016/j.jaap.2025.107040
Zhoufeng Wang , Xiubo Long , Wenlong Yao , Wenchi Zhang , Jinian Yang
Three BPA-type polyarylates (PARS, PARB and PARF) with the same feeding ratio were synthesized by interfacial polymerization by doping three bisphenol A (BPA) derivative monomers (4,4’-sulfobisphenol (BPS), 2,2-bis(4-hydroxy phenyl)butane (BPB) and 9,9-bis(4-hydroxyphenyl)fluorene (BHPF)). The kinetics of thermal decomposition of polyarylate was studied by three methods and the activation energies of PARS, PARB and PARF were 198.34, 218.12 and 234.96 kJ/mol, respectively. The thermal stability of the three polyarylates followed PARS < PARB < PARF. Fitted by the integral Master-Plots method, the random nucleation was the pyrolysis mechanism of BPA-type polyarylates. Further elucidation of the pyrolysis process was attained through the deployment of thermogravimetric analysis coupled with Fourier transform infrared spectrometry (TG/FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS). The study suggested that the pyrolysis pathways of polyarylates were significantly influenced by the properties of their backbone groups; specifically, the breaking weaker bonds (e.g., C–S, C–O) facilitated the initial cleavage of molecular chains. This preliminary disruption then catalyzed further decomposition, forming the reactive radicals that subsequently underwent self-association or isomerization, culminating in new compounds. The effect of BPA-derived monomers on the thermal properties and pyrolytic behaviour of polyarylate was clearly demonstrated in this study.
通过掺杂三种双酚 A(BPA)衍生物单体(4,4'-磺基双酚(BPS)、2,2-双(4-羟基苯基)丁烷(BPB)和 9,9-双(4-羟基苯基)芴(BHPF)),采用界面聚合法合成了具有相同投料比的三种双酚 A 型聚芳基酸酯(PARS、PARB 和 PARF)。通过三种方法研究了聚芳酸酯的热分解动力学,PARS、PARB 和 PARF 的活化能分别为 198.34、218.12 和 234.96 kJ/mol。三种聚芳基化合物的热稳定性依次为 PARS、PARB 和 PARF。根据积分主图法拟合,随机成核是双酚 A 型聚芳基酸盐的热解机理。通过热重分析-傅立叶变换红外光谱法(TG/FTIR)和热解-气相色谱-质谱法(Py-GC/MS)进一步阐明了热解过程。研究表明,聚芳酸酯的热解途径受其骨架基团性质的显著影响;具体而言,较弱键(如 C-S、C-O)的断裂促进了分子链的初步裂解。这种初步的破坏催化了进一步的分解,形成了活性自由基,这些自由基随后发生自结合或异构化,最终形成新的化合物。本研究清楚地表明了双酚 A 衍生单体对聚芳酸酯热性能和热解行为的影响。
{"title":"Study on the kinetics and mechanism of thermal decomposition of bisphenol A-type polyarylates","authors":"Zhoufeng Wang ,&nbsp;Xiubo Long ,&nbsp;Wenlong Yao ,&nbsp;Wenchi Zhang ,&nbsp;Jinian Yang","doi":"10.1016/j.jaap.2025.107040","DOIUrl":"10.1016/j.jaap.2025.107040","url":null,"abstract":"<div><div>Three BPA-type polyarylates (PARS, PARB and PARF) with the same feeding ratio were synthesized by interfacial polymerization by doping three bisphenol A (BPA) derivative monomers (4,4’-sulfobisphenol (BPS), 2,2-bis(4-hydroxy phenyl)butane (BPB) and 9,9-bis(4-hydroxyphenyl)fluorene (BHPF)). The kinetics of thermal decomposition of polyarylate was studied by three methods and the activation energies of PARS, PARB and PARF were 198.34, 218.12 and 234.96 kJ/mol, respectively. The thermal stability of the three polyarylates followed PARS &lt; PARB &lt; PARF. Fitted by the integral Master-Plots method, the random nucleation was the pyrolysis mechanism of BPA-type polyarylates. Further elucidation of the pyrolysis process was attained through the deployment of thermogravimetric analysis coupled with Fourier transform infrared spectrometry (TG/FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS). The study suggested that the pyrolysis pathways of polyarylates were significantly influenced by the properties of their backbone groups; specifically, the breaking weaker bonds (e.g., C–S, C–O) facilitated the initial cleavage of molecular chains. This preliminary disruption then catalyzed further decomposition, forming the reactive radicals that subsequently underwent self-association or isomerization, culminating in new compounds. The effect of BPA-derived monomers on the thermal properties and pyrolytic behaviour of polyarylate was clearly demonstrated in this study.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"188 ","pages":"Article 107040"},"PeriodicalIF":5.8,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143454628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complete valorization of lignocellulosic biomass through integrated reductive catalytic fractionation and microwave-assisted pyrolysis
IF 5.8 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-02-19 DOI: 10.1016/j.jaap.2025.107049
Xu Yang, Jiajun Yu, Mingxun Zeng, Zhicheng Luo, Huiyan Zhang
Reductive catalytic fractionation (RCF) of lignocellulosic biomass produces phenolic-rich lignin oil and carbohydrate pulp, but catalyst separation is usually required for pulp utilization. This study introduces an integrated process combining RCF with microwave-assisted pyrolysis (RCF-MAP), enabling complete biomass valorization without catalyst separation. Using Ni/AC, RCF generates phenolic-rich lignin oil and high-quality carbohydrate pulp. The RCF-derived carbohydrate pulp can be directly subjected to microwave-assisted pyrolysis, producing syngas yields of 49.5 wt% with a high H2 to CO ratio of approximately 1:1, suitable for hydroformylation. The Ni/AC catalyst can be recycled back into the MAP process, preventing deactivation seen in conventional thermal pyrolysis. On-line gas analysis revealed that the microwave environment enhances secondary cracking of liquid products, contributing to the hydrogen formation. Mass flow analysis reveals that birch biomass yields approximately 18.9 wt% of lignin oil, 29.6 wt% of syngas (H2 and CO), 20.1 wt% of bio-oil, and 4.9 wt% of char. This integrated RCF-MAP approach efficiently produces both phenolic chemicals and high-quality syngas, supporting industrial-scale utilization of all biomass fractions.
木质纤维素生物质还原催化分馏(RCF)可产生富含酚类的木质素油和碳水化合物纸浆,但纸浆的利用通常需要催化剂分离。本研究介绍了一种将 RCF 与微波辅助热解(RCF-MAP)相结合的集成工艺,无需催化剂分离即可实现生物质的完全增值。利用 Ni/AC,RCF 可生成富含酚类的木质素油和高质量的碳水化合物浆。RCF 衍生的碳水化合物纸浆可直接进行微波辅助热解,产生的合成气产量为 49.5 wt%,H2 与 CO 的比例高达约 1:1,适合进行加氢甲酰化。Ni/AC 催化剂可回收到 MAP 工艺中,避免了传统热解工艺中出现的失活现象。在线气体分析表明,微波环境增强了液体产品的二次裂解,促进了氢的形成。质量流量分析表明,桦木生物质可产生约 18.9 wt% 的木质素油、29.6 wt% 的合成气(H2 和 CO)、20.1 wt% 的生物油和 4.9 wt% 的焦炭。这种 RCF-MAP 集成方法可高效生产酚类化学品和优质合成气,支持对所有生物质馏分进行工业规模的利用。
{"title":"Complete valorization of lignocellulosic biomass through integrated reductive catalytic fractionation and microwave-assisted pyrolysis","authors":"Xu Yang,&nbsp;Jiajun Yu,&nbsp;Mingxun Zeng,&nbsp;Zhicheng Luo,&nbsp;Huiyan Zhang","doi":"10.1016/j.jaap.2025.107049","DOIUrl":"10.1016/j.jaap.2025.107049","url":null,"abstract":"<div><div>Reductive catalytic fractionation (RCF) of lignocellulosic biomass produces phenolic-rich lignin oil and carbohydrate pulp, but catalyst separation is usually required for pulp utilization. This study introduces an integrated process combining RCF with microwave-assisted pyrolysis (RCF-MAP), enabling complete biomass valorization without catalyst separation. Using Ni/AC, RCF generates phenolic-rich lignin oil and high-quality carbohydrate pulp. The RCF-derived carbohydrate pulp can be directly subjected to microwave-assisted pyrolysis, producing syngas yields of 49.5 wt% with a high H<sub>2</sub> to CO ratio of approximately 1:1, suitable for hydroformylation. The Ni/AC catalyst can be recycled back into the MAP process, preventing deactivation seen in conventional thermal pyrolysis. On-line gas analysis revealed that the microwave environment enhances secondary cracking of liquid products, contributing to the hydrogen formation. Mass flow analysis reveals that birch biomass yields approximately 18.9 wt% of lignin oil, 29.6 wt% of syngas (H<sub>2</sub> and CO), 20.1 wt% of bio-oil, and 4.9 wt% of char. This integrated RCF-MAP approach efficiently produces both phenolic chemicals and high-quality syngas, supporting industrial-scale utilization of all biomass fractions.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"188 ","pages":"Article 107049"},"PeriodicalIF":5.8,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143465036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Converting biomass tar into N-doped biochar: A promising anode material for enhanced sodium-ion batteries
IF 5.8 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-02-19 DOI: 10.1016/j.jaap.2025.107051
Guangxing Wu , Huan Zhang , Xiuqiang Zhang , Qian Guan , Weiwei Zhang , Jia Lu , Weijuan Lan , Zaifeng Li , Shuhua Yang , Hongying Shi
Intensifying fossil fuel crisis has raised significant attention to the utilization of biomass energy, particularly biomass gasification technology, which is pivotal for its large-scale application. However, the generation of biomass tar during gasification remains a major obstacle. Due to the high carbon content of biomass tar and its compositional and property similarities to coal tar and pitch, this study explores the synthesis of nitrogen-doped biochar by combining urea with biomass tar, and evaluates its potential use as an anode material in sodium-ion batteries. The synthesized material, denoted as NT2–1000 (with a urea-to-biomass tar mass ratio of 2:1 and a carbonization temperature of 1000 °C), exhibited a reversible capacity of 257.49 mAh g−1 at a current density of 25 mA g−1, achieving an initial coulombic efficiency of 59.34 %. After 50 cycles at 50 mA g−1, the capacity almost unchanged. At a higher current density of 1000 mA g−1, the material retained 70.33 % of its initial capacity of over 200 cycles (122.6 mAh g−1), demonstrating excellent rate capability and cycling stability, which is desirable for sodium-ion battery anodes. This research presents a novel method for valorizing carbon from biomass tar, thus promoting the high-value use of waste products generated in energy production processes.
化石燃料危机的加剧使生物质能源的利用备受关注,尤其是生物质气化技术,这对于生物质能源的大规模应用至关重要。然而,气化过程中产生的生物质焦油仍然是一个主要障碍。由于生物质焦油含碳量高,且其成分和性质与煤焦油和沥青相似,本研究探讨了通过将尿素与生物质焦油结合合成掺氮生物炭,并评估了其作为钠离子电池阳极材料的潜在用途。合成的材料被命名为 NT2-1000(尿素与生物质焦油的质量比为 2:1,碳化温度为 1000 °C),在电流密度为 25 mA g-1 时显示出 257.49 mAh g-1 的可逆容量,初始库仑效率为 59.34 %。在 50 mA g-1 下循环 50 次后,容量几乎保持不变。在 1000 mA g-1 的较高电流密度下,该材料在超过 200 次循环(122.6 mAh g-1)后仍保持了 70.33% 的初始容量,显示出卓越的速率能力和循环稳定性,这正是钠离子电池阳极所需要的。这项研究提出了一种生物质焦油碳增值的新方法,从而促进了能源生产过程中产生的废品的高值化利用。
{"title":"Converting biomass tar into N-doped biochar: A promising anode material for enhanced sodium-ion batteries","authors":"Guangxing Wu ,&nbsp;Huan Zhang ,&nbsp;Xiuqiang Zhang ,&nbsp;Qian Guan ,&nbsp;Weiwei Zhang ,&nbsp;Jia Lu ,&nbsp;Weijuan Lan ,&nbsp;Zaifeng Li ,&nbsp;Shuhua Yang ,&nbsp;Hongying Shi","doi":"10.1016/j.jaap.2025.107051","DOIUrl":"10.1016/j.jaap.2025.107051","url":null,"abstract":"<div><div>Intensifying fossil fuel crisis has raised significant attention to the utilization of biomass energy, particularly biomass gasification technology, which is pivotal for its large-scale application. However, the generation of biomass tar during gasification remains a major obstacle. Due to the high carbon content of biomass tar and its compositional and property similarities to coal tar and pitch, this study explores the synthesis of nitrogen-doped biochar by combining urea with biomass tar, and evaluates its potential use as an anode material in sodium-ion batteries. The synthesized material, denoted as NT2–1000 (with a urea-to-biomass tar mass ratio of 2:1 and a carbonization temperature of 1000 °C), exhibited a reversible capacity of 257.49 mAh g<sup>−1</sup> at a current density of 25 mA g<sup>−1</sup>, achieving an initial coulombic efficiency of 59.34 %. After 50 cycles at 50 mA g<sup>−1</sup>, the capacity almost unchanged. At a higher current density of 1000 mA g<sup>−1</sup>, the material retained 70.33 % of its initial capacity of over 200 cycles (122.6 mAh g<sup>−1</sup>), demonstrating excellent rate capability and cycling stability, which is desirable for sodium-ion battery anodes. This research presents a novel method for valorizing carbon from biomass tar, thus promoting the high-value use of waste products generated in energy production processes.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"188 ","pages":"Article 107051"},"PeriodicalIF":5.8,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143465037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of hydrothermal and hydrothermal oxidation pretreatment on the physicochemical properties of biochar pellet and activated carbon prepared from biomass wastes
IF 5.8 2区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2025-02-19 DOI: 10.1016/j.jaap.2025.107007
Sen Lang, Shouyu Zhang, Jifan Yang, Yi Zhou, Zihang Xu, Xiuyuan Han, Jiantian Huang
Hydrothermal (HT) pretreatment and hydrothermal oxidation (HTO) pretreatment can change the internal chemical components of biomass wastes to effectively promote the diversified utilization of the biomass resource and upgrade the quality of terminal productions. In this paper, cotton stalk (CS) and Fir wood sawdust (FS) were pretreated firstly at 160–260 °C to prepare the biochar pellets and activated carbon respectively. The effect of evolution behavior of the three components in CS/FS during HT/HTO process on the physicochemical properties of biochar pellets and activated carbon is explored. The results indicate that HT and HTO pretreatment are beneficial to the quality of biochar pellets and activated carbon. Compared with HT pretreatment, HTO process can effectively alleviate the pretreatment intensity of the preparation of high-quality biochar pellets and activated carbon. HTO pretreatment can promotes the significantly decompositions of cellulose and hemicellulose and aromatization growth of CS/FS. The biochar pellets with higher physical properties can be prepared at the HT temperature of 230 °C and at the HTO temperature of 200 °C respectively, and the physical properties of the samples prepared from FS basically higher than CS. Crystalline cellulose is the main contributor to the physical property of biochar pellets. The HHV of biochar pellets prepared from pretreated FS is basically higher than CS, and the cellulose is responsible for the increasing HHV. HT and HTO pretreatment can significantly improve the energy density of CS/FS samples, and the apparent density has the crucial effect on the energy density than HHV. The increasing of cellulose content is conductive to the improvement of combustion performance of biochar pellets, while recondensed lignin in FS prepared by HTO process also has the higher HHV and combustion performance. The total yield of resulted samples was affected by the combination of pretreatment yield and activation yield. Compared with the direct activation, the total yield of pretreated CS activated carbon prepared by HT and HTO pretreatment could up to 166.6 % and 118.4 % respectively, and 189.8 % and 118.9 % for FS samples. CS is the more excellent precursor to prepare high-quality activated carbon than FS. Compared with HT pretreatment, the higher specific surface area and adsorption capacity of resulted activated carbon can be obtained by HTO process, in which the iodine adsorption value of CS-HTO180-A and CS-HTO200-A meet the China standard of activated carbon for water purification (GB/T 13803.2–1999).
{"title":"Effect of hydrothermal and hydrothermal oxidation pretreatment on the physicochemical properties of biochar pellet and activated carbon prepared from biomass wastes","authors":"Sen Lang,&nbsp;Shouyu Zhang,&nbsp;Jifan Yang,&nbsp;Yi Zhou,&nbsp;Zihang Xu,&nbsp;Xiuyuan Han,&nbsp;Jiantian Huang","doi":"10.1016/j.jaap.2025.107007","DOIUrl":"10.1016/j.jaap.2025.107007","url":null,"abstract":"<div><div>Hydrothermal (HT) pretreatment and hydrothermal oxidation (HTO) pretreatment can change the internal chemical components of biomass wastes to effectively promote the diversified utilization of the biomass resource and upgrade the quality of terminal productions. In this paper, cotton stalk (CS) and Fir wood sawdust (FS) were pretreated firstly at 160–260 °C to prepare the biochar pellets and activated carbon respectively. The effect of evolution behavior of the three components in CS/FS during HT/HTO process on the physicochemical properties of biochar pellets and activated carbon is explored. The results indicate that HT and HTO pretreatment are beneficial to the quality of biochar pellets and activated carbon. Compared with HT pretreatment, HTO process can effectively alleviate the pretreatment intensity of the preparation of high-quality biochar pellets and activated carbon. HTO pretreatment can promotes the significantly decompositions of cellulose and hemicellulose and aromatization growth of CS/FS. The biochar pellets with higher physical properties can be prepared at the HT temperature of 230 °C and at the HTO temperature of 200 °C respectively, and the physical properties of the samples prepared from FS basically higher than CS. Crystalline cellulose is the main contributor to the physical property of biochar pellets. The HHV of biochar pellets prepared from pretreated FS is basically higher than CS, and the cellulose is responsible for the increasing HHV. HT and HTO pretreatment can significantly improve the energy density of CS/FS samples, and the apparent density has the crucial effect on the energy density than HHV. The increasing of cellulose content is conductive to the improvement of combustion performance of biochar pellets, while recondensed lignin in FS prepared by HTO process also has the higher HHV and combustion performance. The total yield of resulted samples was affected by the combination of pretreatment yield and activation yield. Compared with the direct activation, the total yield of pretreated CS activated carbon prepared by HT and HTO pretreatment could up to 166.6 % and 118.4 % respectively, and 189.8 % and 118.9 % for FS samples. CS is the more excellent precursor to prepare high-quality activated carbon than FS. Compared with HT pretreatment, the higher specific surface area and adsorption capacity of resulted activated carbon can be obtained by HTO process, in which the iodine adsorption value of CS-HTO180-A and CS-HTO200-A meet the China standard of activated carbon for water purification (GB/T 13803.2–1999).</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"188 ","pages":"Article 107007"},"PeriodicalIF":5.8,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143479589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Analytical and Applied Pyrolysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1