首页 > 最新文献

Cleaner Engineering and Technology最新文献

英文 中文
Exploring the synergistic effect of recycled glass fibres and agricultural waste ash on concrete strength and environmental sustainability 探索回收玻璃纤维和农业废灰对混凝土强度和环境可持续性的协同效应
Q2 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-05-10 DOI: 10.1016/j.clet.2024.100752
Timoth Mkilima , Yerlan Sabitov , Zhanbolat Shakhmov , Talgat Abilmazhenov , Askar Tlegenov , Atogali Jumabayev , Agzhaik Turashev , Zhanar Kaliyeva

In today's age, finding harmony between construction endeavors and safeguarding the environment is of utmost importance. Consequently, there is a substantial requirement to explore the feasibility of utilizing waste materials as a replacement for traditional construction substances. Unfortunately, there is a lack of information regarding the possibilities of incorporating recycled glass, rice husk, and sugarcane bagasse ash into concrete production. This study investigated the viability of integrating recycled glass fibres and agricultural waste ash into concrete to bolster its strength and sustainability. When evaluating mechanical and durability properties across five mixtures, the concrete formulations ranged in fibre content percentages from 1% to 3% and in ash content percentages from 10% to 20%. Specifically, Mixtures 1, 2, 3, 4, and 5 contained 1% fibre and 10% ash, 2% fibre and 15% ash, 2.5% fibre and 20% ash, 3% fibre and 12% ash, and 1.5% fibre and 18% ash respectively. Mixture 2 and Mixture 5, boasting heightened fibre and ash content, showcased outstanding compressive strength at 38.5 MPa and 37.2 MPa, respectively, indicating a positive correlation between these materials and concrete strength. Conversely, Mixture 3, burdened with excessive fibre and ash content, witnessed diminished strength, underscoring the necessity for meticulous optimization. In terms of tensile and flexural strength, Mixture 2 and Mixture 5 displayed commendable performance, while Mixture 3 suffered setbacks from excessive content. Durability assessments unveiled Mixture 1 and Mixture 4's superior freeze-thaw resistance, with minimal mass loss (1.5% and 1.8%, respectively) and no visible damage, rendering them favorable choices for sustainable construction. Contrastingly, Mixture 3 exhibited poorer freeze-thaw resistance and higher environmental impact, highlighting the need for careful consideration in material selection. Overall, this study underscores the importance of optimizing concrete formulations through the integration of recycled materials, paving the way for stronger, more durable, and environmentally friendly construction practices.

在当今时代,寻求建筑工程与环境保护之间的和谐至关重要。因此,探索利用废料替代传统建筑材料的可行性就显得尤为重要。遗憾的是,在混凝土生产中使用回收玻璃、稻壳和甘蔗渣灰的可能性方面缺乏相关信息。本研究调查了将回收玻璃纤维和农业废料灰渣融入混凝土以增强其强度和可持续性的可行性。在对五种混合物的机械和耐久性能进行评估时,混凝土配方中的纤维含量百分比从 1% 到 3%,灰分含量百分比从 10% 到 20%。具体来说,混合物 1、2、3、4 和 5 分别含有 1% 的纤维和 10% 的灰分、2% 的纤维和 15% 的灰分、2.5% 的纤维和 20% 的灰分、3% 的纤维和 12% 的灰分,以及 1.5% 的纤维和 18% 的灰分。混合料 2 和混合料 5 的纤维和灰分含量较高,抗压强度分别为 38.5 兆帕和 37.2 兆帕,表现突出,表明这些材料与混凝土强度之间存在正相关关系。相反,纤维和灰分含量过高的混合物 3 的强度却有所下降,这说明有必要进行细致的优化。在拉伸和弯曲强度方面,混合物 2 和混合物 5 的表现值得称赞,而混合物 3 则因纤维和灰分含量过高而受到影响。耐久性评估显示,混合物 1 和混合物 4 具有优异的抗冻融性,质量损失极小(分别为 1.5% 和 1.8%),且无明显损坏,是可持续建筑的理想选择。相比之下,混合物 3 的抗冻融性较差,对环境的影响较大,因此在选择材料时需要慎重考虑。总之,这项研究强调了通过整合回收材料优化混凝土配方的重要性,为实现更坚固、更耐用、更环保的建筑实践铺平了道路。
{"title":"Exploring the synergistic effect of recycled glass fibres and agricultural waste ash on concrete strength and environmental sustainability","authors":"Timoth Mkilima ,&nbsp;Yerlan Sabitov ,&nbsp;Zhanbolat Shakhmov ,&nbsp;Talgat Abilmazhenov ,&nbsp;Askar Tlegenov ,&nbsp;Atogali Jumabayev ,&nbsp;Agzhaik Turashev ,&nbsp;Zhanar Kaliyeva","doi":"10.1016/j.clet.2024.100752","DOIUrl":"https://doi.org/10.1016/j.clet.2024.100752","url":null,"abstract":"<div><p>In today's age, finding harmony between construction endeavors and safeguarding the environment is of utmost importance. Consequently, there is a substantial requirement to explore the feasibility of utilizing waste materials as a replacement for traditional construction substances. Unfortunately, there is a lack of information regarding the possibilities of incorporating recycled glass, rice husk, and sugarcane bagasse ash into concrete production. This study investigated the viability of integrating recycled glass fibres and agricultural waste ash into concrete to bolster its strength and sustainability. When evaluating mechanical and durability properties across five mixtures, the concrete formulations ranged in fibre content percentages from 1% to 3% and in ash content percentages from 10% to 20%. Specifically, Mixtures 1, 2, 3, 4, and 5 contained 1% fibre and 10% ash, 2% fibre and 15% ash, 2.5% fibre and 20% ash, 3% fibre and 12% ash, and 1.5% fibre and 18% ash respectively. Mixture 2 and Mixture 5, boasting heightened fibre and ash content, showcased outstanding compressive strength at 38.5 MPa and 37.2 MPa, respectively, indicating a positive correlation between these materials and concrete strength. Conversely, Mixture 3, burdened with excessive fibre and ash content, witnessed diminished strength, underscoring the necessity for meticulous optimization. In terms of tensile and flexural strength, Mixture 2 and Mixture 5 displayed commendable performance, while Mixture 3 suffered setbacks from excessive content. Durability assessments unveiled Mixture 1 and Mixture 4's superior freeze-thaw resistance, with minimal mass loss (1.5% and 1.8%, respectively) and no visible damage, rendering them favorable choices for sustainable construction. Contrastingly, Mixture 3 exhibited poorer freeze-thaw resistance and higher environmental impact, highlighting the need for careful consideration in material selection. Overall, this study underscores the importance of optimizing concrete formulations through the integration of recycled materials, paving the way for stronger, more durable, and environmentally friendly construction practices.</p></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"20 ","pages":"Article 100752"},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666790824000326/pdfft?md5=010e182f17cfd1d67758528835b56a41&pid=1-s2.0-S2666790824000326-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140950966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low tortuous permeable concrete pavement material: A new approach to improve physical properties 低曲折透水性混凝土路面材料:改善物理性能的新方法
Q2 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-05-04 DOI: 10.1016/j.clet.2024.100750
Goutom Barua , G.M. Sadiqul Islam

Permeable pavement is an environmentally beneficial material that can ease urban problems and mitigate the effects of climate change, such as flooding, urban heat islands, and groundwater decrease. However, it is susceptible to clogging, has limited strength, and demands frequent maintenance. To overcome these problems, an untraditional fiber-reinforced permeable pavement with a low tortuosity pore structure that has an excellent infiltration rate and strength while being resistant to clogging has been studied in this research. Straight pore channels of various sizes and quantities were introduced into self-compacting concrete to create this permeable pavement. High-strength pervious pavement (HSP) samples with porosity ranging from 3.60 to 8.30% and 0–0.2% fiber content were tested. In all cases, HSP showed high infiltration rate (>1 cm/s), high compressive strength (>27 MPa) and tensile strength (1.5 MPa), low mass loss in potential resistance to degradation by impact and abrasion (>25%). However, it did not clog despite extensive cyclic exposure to flow containing sand, clay, and combined ‘sand & clay’. PP fiber content of 0.1%. The 3.60% porosity was found to be optimum considering all properties, whereas 8.30% porosity gave a higher infiltration rate with compromised properties. This permeable pavement can maintain sufficient porosity and permeability for stormwater infiltration without frequent maintenance. Adding polypropylene fiber reduces compressive strength marginally but increases split tensile strength, degradation and potential resistance. This novel fiber-reinforced HSP has the potential to expand the material's applicability. The results obtained from this research are expected to lead the way for a broader application of HSP in various contexts and initiatives that were not previously considered appropriate. This will eventually enhance the design and implementation of a new generation of flood-resistant infrastructure and significantly improve the ability to mitigate urban floods.

透水路面是一种有益于环境的材料,可以缓解城市问题,减轻气候变化的影响,如洪水、城市热岛和地下水减少。然而,这种材料容易堵塞,强度有限,而且需要经常维护。为了克服这些问题,本研究对一种非传统的纤维增强透水路面进行了研究,这种路面具有低迂回度的孔隙结构,具有出色的渗透率和强度,同时还能防止堵塞。在自密实混凝土中引入了不同大小和数量的直孔隙通道,从而形成了这种透水路面。测试了孔隙率为 3.60% 至 8.30%、纤维含量为 0-0.2% 的高强度透水路面 (HSP) 样品。在所有情况下,HSP 都表现出较高的渗透率(1 厘米/秒)、较高的抗压强度(27 兆帕)和抗拉强度(1.5 兆帕)、较低的抗冲击和磨损降解质量损失(25%)。然而,尽管在含有沙子、粘土和混合 "沙子&粘土 "的水流中进行了大量的循环暴露,它也没有堵塞。PP 纤维含量为 0.1%。考虑到所有特性,3.60% 的孔隙率被认为是最佳的,而 8.30% 的孔隙率则能提供更高的渗透率,但特性会受到影响。这种透水路面可以保持足够的孔隙率和渗透性,以利于雨水渗透,而无需经常维护。添加聚丙烯纤维会略微降低抗压强度,但会提高劈裂拉伸强度、抗降解性和抗电位性。这种新型纤维增强 HSP 有可能扩大材料的适用范围。这项研究取得的成果有望为 HSP 在各种环境和举措中更广泛的应用开辟道路,而这些环境和举措以前并不被认为是合适的。这最终将加强新一代抗洪基础设施的设计和实施,并显著提高缓解城市洪灾的能力。
{"title":"Low tortuous permeable concrete pavement material: A new approach to improve physical properties","authors":"Goutom Barua ,&nbsp;G.M. Sadiqul Islam","doi":"10.1016/j.clet.2024.100750","DOIUrl":"https://doi.org/10.1016/j.clet.2024.100750","url":null,"abstract":"<div><p>Permeable pavement is an environmentally beneficial material that can ease urban problems and mitigate the effects of climate change, such as flooding, urban heat islands, and groundwater decrease. However, it is susceptible to clogging, has limited strength, and demands frequent maintenance. To overcome these problems, an untraditional fiber-reinforced permeable pavement with a low tortuosity pore structure that has an excellent infiltration rate and strength while being resistant to clogging has been studied in this research. Straight pore channels of various sizes and quantities were introduced into self-compacting concrete to create this permeable pavement. High-strength pervious pavement (HSP) samples with porosity ranging from 3.60 to 8.30% and 0–0.2% fiber content were tested. In all cases, HSP showed high infiltration rate (&gt;1 cm/s), high compressive strength (&gt;27 MPa) and tensile strength (1.5 MPa), low mass loss in potential resistance to degradation by impact and abrasion (&gt;25%). However, it did not clog despite extensive cyclic exposure to flow containing sand, clay, and combined ‘sand &amp; clay’. PP fiber content of 0.1%. The 3.60% porosity was found to be optimum considering all properties, whereas 8.30% porosity gave a higher infiltration rate with compromised properties. This permeable pavement can maintain sufficient porosity and permeability for stormwater infiltration without frequent maintenance. Adding polypropylene fiber reduces compressive strength marginally but increases split tensile strength, degradation and potential resistance. This novel fiber-reinforced HSP has the potential to expand the material's applicability. The results obtained from this research are expected to lead the way for a broader application of HSP in various contexts and initiatives that were not previously considered appropriate. This will eventually enhance the design and implementation of a new generation of flood-resistant infrastructure and significantly improve the ability to mitigate urban floods.</p></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"20 ","pages":"Article 100750"},"PeriodicalIF":0.0,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666790824000302/pdfft?md5=a70fc06813cf288ee2a82fdcb4889495&pid=1-s2.0-S2666790824000302-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140844006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating sugarcane bagasse fly ash as a sustainable cement replacement for enhanced performance 评估甘蔗渣粉煤灰作为可持续水泥替代品对提高性能的作用
Q2 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-05-04 DOI: 10.1016/j.clet.2024.100751
Ketlynn Passos Alvarenga, Guilherme Chagas Cordeiro

This study evaluated the potential of sugarcane bagasse fly ash, collected from boiler exhaust stacks via a bypass pipe, as a renewable supplementary cementitious material. The bagasse fly ash was ground into three different particle sizes (D50 of 10, 20, and 30 μm) and characterized in terms of morphology, porosity, specific surface area, and pozzolanic activity. The influence of the ashes on paste hydration was investigated using isothermal calorimetry. Mortars were then tested with 20% cement replacement by fly ash, analyzing packing density, compressive strength evolution, and durability against sulfuric acid. Results indicated the suitability of the fly ash as a supplementary cementitious material, with low contamination and greater pozzolanic activity at smaller particle sizes. This enhanced initial hydration and long-term strength, with finer ashes showing superior mechanical properties when compared to the reference mortar (an 8% increase). Mortars with fly ash exhibited higher packing density and reduced mass loss under sulfuric acid attack, but increased water absorption and capillarity, alongside decreased compressive strength compared to the reference. Briefly, the findings highlighted that the potential of bagasse fly ash as a promising low cost and eco-beneficial material for sustainable construction practices.

本研究评估了甘蔗渣飞灰作为一种可再生补充胶凝材料的潜力,甘蔗渣飞灰是通过旁路管道从锅炉排气烟囱中收集的。甘蔗渣粉煤灰被研磨成三种不同的颗粒大小(D50 分别为 10、20 和 30 μm),并在形态、孔隙率、比表面积和水胶活性方面进行了表征。使用等温量热法研究了灰烬对浆料水化的影响。然后测试了粉煤灰替代 20% 水泥的砂浆,分析了填料密度、抗压强度变化和耐硫酸的耐久性。结果表明,粉煤灰适合作为一种补充胶凝材料,在粒径较小的情况下,粉煤灰的污染程度低,且具有更强的热固性。这增强了初始水化和长期强度,与参考砂浆相比,较细的粉煤灰显示出更优越的机械性能(增加了 8%)。与参考灰泥相比,含有粉煤灰的灰泥表现出更高的堆积密度,并减少了硫酸侵蚀下的质量损失,但吸水率和毛细管增加,同时抗压强度降低。简而言之,研究结果凸显了甘蔗渣粉煤灰作为可持续建筑实践中一种低成本、有益生态的材料的潜力。
{"title":"Evaluating sugarcane bagasse fly ash as a sustainable cement replacement for enhanced performance","authors":"Ketlynn Passos Alvarenga,&nbsp;Guilherme Chagas Cordeiro","doi":"10.1016/j.clet.2024.100751","DOIUrl":"https://doi.org/10.1016/j.clet.2024.100751","url":null,"abstract":"<div><p>This study evaluated the potential of sugarcane bagasse fly ash, collected from boiler exhaust stacks via a bypass pipe, as a renewable supplementary cementitious material. The bagasse fly ash was ground into three different particle sizes (<em>D</em><sub>50</sub> of 10, 20, and 30 μm) and characterized in terms of morphology, porosity, specific surface area, and pozzolanic activity. The influence of the ashes on paste hydration was investigated using isothermal calorimetry. Mortars were then tested with 20% cement replacement by fly ash, analyzing packing density, compressive strength evolution, and durability against sulfuric acid. Results indicated the suitability of the fly ash as a supplementary cementitious material, with low contamination and greater pozzolanic activity at smaller particle sizes. This enhanced initial hydration and long-term strength, with finer ashes showing superior mechanical properties when compared to the reference mortar (an 8% increase). Mortars with fly ash exhibited higher packing density and reduced mass loss under sulfuric acid attack, but increased water absorption and capillarity, alongside decreased compressive strength compared to the reference. Briefly, the findings highlighted that the potential of bagasse fly ash as a promising low cost and eco-beneficial material for sustainable construction practices.</p></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"20 ","pages":"Article 100751"},"PeriodicalIF":0.0,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666790824000314/pdfft?md5=9cc1af36ed9a748cdf4d5fd99dd62c70&pid=1-s2.0-S2666790824000314-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140914500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From three-pillars to three-environments: Shifting the paradigm of sustainability in civil and construction engineering 从 "三支柱 "到 "三环境":转变土木与建筑工程的可持续性模式
Q2 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-05-04 DOI: 10.1016/j.clet.2024.100748
Xiaomei Wang , Andrew South , Clifton Farnsworth , Brett Hashimoto

This research explores the usage of sustainability in literature and presents ‘three environments’ for addressing sustainability in the Civil and Construction Engineering (CCE) disciplines. Scholars have increasingly studied sustainability and sustainable development across CCE disciplines as the importance of sustainability awareness and action in society has increased. However, the vastness of its conceptual breadth and depth in CCE research is difficult to holistically evaluate. As a result, CCE researchers often focus on specific aspects of sustainability applied to discrete contexts, or address sustainability in broad aspirational terms and guiding motivations. This research utilized a rigorous analytical corpus linguistics approach for investigating CCE-based research published between 1989 and 2021 to capture a full view of the academic discourse surrounding sustainability in CCE. The research employed collocational network analysis to enable an expansive and comprehensive study of the concept of sustainability and how it is addressed by CCE researchers. The authors created a 25,920,583-word corpus from papers published in top CCE journals related to sustainability. Significant collocates of the word sustainability were then identified using collocational analysis, and their relationships mapped through collocational network analysis to uncover dominant research areas in CCE. Observations from over 30 years of sustainability research suggests that the CCE disciplines have largely anchored to generalized notions of sustainability, such as ‘the three pillars of sustainability.’ However, deeper analysis provides a more nuanced view. We propose an alternate paradigm of three interconnected environments where CCE professionals operate, highlight criteria for decision-making, and identify primary actions for sustainability.

本研究探讨了可持续发展在文献中的用法,并提出了在土木与建筑工程(CCE)学科中解决可持续发展问题的 "三种环境"。随着可持续发展意识和行动在社会中的重要性不断提高,学者们对 CCE 各学科中的可持续发展和可持续发展的研究也日益增多。然而,在 CCE 的研究中,其概念的广度和深度很难进行整体评估。因此,幼儿保育和教育研究人员往往侧重于将可持续发展的特定方面应用于不同的环境,或者从广泛的愿望和指导动机的角度来探讨可持续发展。本研究采用严格的语料分析语言学方法,调查 1989 年至 2021 年间发表的基于 CCE 的研究成果,以全面了解 CCE 中围绕可持续发展的学术话语。研究采用了词组网络分析,对可持续发展的概念以及 CCE 研究人员如何处理这一概念进行了广泛而全面的研究。作者从发表在顶级幼教期刊上与可持续发展相关的论文中创建了一个 25,920,583 字的语料库。然后通过搭配分析确定了可持续性一词的重要搭配,并通过搭配网络分析绘制了它们之间的关系图,从而发现了 CCE 中的主导研究领域。从 30 多年的可持续发展研究中观察到,幼儿保育和教育学科在很大程度上遵循了可持续发展的一般概念,如 "可持续发展的三大支柱"。然而,更深入的分析提供了更细致入微的观点。我们提出了另一种范式,即由三个相互关联的环境组成,让幼儿保育专业人员在其中开展工作,强调决策标准,并确定促进可持续发展的主要行动。
{"title":"From three-pillars to three-environments: Shifting the paradigm of sustainability in civil and construction engineering","authors":"Xiaomei Wang ,&nbsp;Andrew South ,&nbsp;Clifton Farnsworth ,&nbsp;Brett Hashimoto","doi":"10.1016/j.clet.2024.100748","DOIUrl":"https://doi.org/10.1016/j.clet.2024.100748","url":null,"abstract":"<div><p>This research explores the usage of sustainability in literature and presents ‘three environments’ for addressing sustainability in the Civil and Construction Engineering (CCE) disciplines. Scholars have increasingly studied sustainability and sustainable development across CCE disciplines as the importance of sustainability awareness and action in society has increased. However, the vastness of its conceptual breadth and depth in CCE research is difficult to holistically evaluate. As a result, CCE researchers often focus on specific aspects of sustainability applied to discrete contexts, or address sustainability in broad aspirational terms and guiding motivations. This research utilized a rigorous analytical corpus linguistics approach for investigating CCE-based research published between 1989 and 2021 to capture a full view of the academic discourse surrounding sustainability in CCE. The research employed collocational network analysis to enable an expansive and comprehensive study of the concept of <em>sustainability</em> and how it is addressed by CCE researchers. The authors created a 25,920,583-word corpus from papers published in top CCE journals related to sustainability. Significant collocates of the word <em>sustainability</em> were then identified using collocational analysis, and their relationships mapped through collocational network analysis to uncover dominant research areas in CCE. Observations from over 30 years of sustainability research suggests that the CCE disciplines have largely anchored to generalized notions of sustainability, such as ‘the three pillars of sustainability.’ However, deeper analysis provides a more nuanced view. We propose an alternate paradigm of three interconnected environments where CCE professionals operate, highlight criteria for decision-making, and identify primary actions for sustainability.</p></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"20 ","pages":"Article 100748"},"PeriodicalIF":0.0,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666790824000284/pdfft?md5=de848da1eae6097aafd4a60312cba97f&pid=1-s2.0-S2666790824000284-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140894272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review of lithium extraction: From historical perspectives to emerging technologies, storage, and environmental considerations 全面回顾锂的提取:从历史视角到新兴技术、储存和环境因素
Q2 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-05-01 DOI: 10.1016/j.clet.2024.100749
Renjith Krishnan , Gokul Gopan

Lithium, a vital element in lithium-ion batteries, is pivotal in the global shift towards cleaner energy and electric mobility. The relentless demand for lithium-ion batteries necessitates an in-depth exploration of lithium extraction methods. This literature review delves into the historical evolution, contemporary practices, and emerging technologies of lithium extraction. It scrutinizes environmental and economic impacts, identifies research gaps, and underscores sustainable extraction’s imperative. It examines conventional methods like spodumene mining and brine extraction, highlighting their advantages and challenges. Emerging technologies, particularly Direct Lithium Extraction (DLE) and geothermal brine recovery, are evaluated for their potential to revolutionize the industry. Environmental considerations, including water usage, chemical disposal, and habitat disruption, are assessed alongside economic implications. The review also identifies critical research gaps, beckoning the scientific community to develop solutions that meet lithium’s surging demand while safeguarding the environment. In conclusion, this literature review emphasizes the need for sustainable lithium extraction to facilitate a future powered by cleaner energy sources and sustainable transportation.

锂是锂离子电池中的重要元素,在全球向清洁能源和电动汽车的转变中起着举足轻重的作用。对锂离子电池的持续需求要求对锂提取方法进行深入探讨。本文献综述深入探讨了锂提取的历史演变、当代实践和新兴技术。它仔细研究了对环境和经济的影响,找出了研究空白,并强调了可持续提取的必要性。报告研究了传统方法,如锂辉石开采和卤水提取,强调了它们的优势和挑战。对新兴技术,特别是直接锂提取(DLE)和地热卤水回收进行了评估,以了解其对该行业带来变革的潜力。在评估经济影响的同时,还评估了环境因素,包括用水、化学品处理和栖息地破坏。综述还指出了关键的研究缺口,呼吁科学界开发既能满足锂需求激增,又能保护环境的解决方案。总之,这篇文献综述强调了可持续锂提取的必要性,以促进未来由更清洁的能源和可持续交通提供动力。
{"title":"A comprehensive review of lithium extraction: From historical perspectives to emerging technologies, storage, and environmental considerations","authors":"Renjith Krishnan ,&nbsp;Gokul Gopan","doi":"10.1016/j.clet.2024.100749","DOIUrl":"https://doi.org/10.1016/j.clet.2024.100749","url":null,"abstract":"<div><p>Lithium, a vital element in lithium-ion batteries, is pivotal in the global shift towards cleaner energy and electric mobility. The relentless demand for lithium-ion batteries necessitates an in-depth exploration of lithium extraction methods. This literature review delves into the historical evolution, contemporary practices, and emerging technologies of lithium extraction. It scrutinizes environmental and economic impacts, identifies research gaps, and underscores sustainable extraction’s imperative. It examines conventional methods like spodumene mining and brine extraction, highlighting their advantages and challenges. Emerging technologies, particularly Direct Lithium Extraction (DLE) and geothermal brine recovery, are evaluated for their potential to revolutionize the industry. Environmental considerations, including water usage, chemical disposal, and habitat disruption, are assessed alongside economic implications. The review also identifies critical research gaps, beckoning the scientific community to develop solutions that meet lithium’s surging demand while safeguarding the environment. In conclusion, this literature review emphasizes the need for sustainable lithium extraction to facilitate a future powered by cleaner energy sources and sustainable transportation.</p></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"20 ","pages":"Article 100749"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666790824000296/pdfft?md5=f72b730aec9ec4dd543238661485e13b&pid=1-s2.0-S2666790824000296-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140844060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Techno-economic evaluation of an environmental-friendly processing route to extract rare earth elements from monazite 从独居石中提取稀土元素的环境友好型加工路线的技术经济评估
Q2 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-04-08 DOI: 10.1016/j.clet.2024.100742
Reiza Z. Mukhlis , Jin-Young Lee , Hee Nam Kang , Nawshad Haque , Mark I. Pownceby , Warren J. Bruckard , M. Akbar Rhamdhani , Rajesh Kumar Jyothi

The relatively high concentration of thorium and uranium in monazite poses significant environmental issues in the extraction process of rare earth elements from monazite if left untreated. A new process route that recovers both thorium and uranium as oxides has been proposed, and an analysis of its economic feasibility is presented in the current paper, based on analysis and processing of a Korean monazite sample. Comparative evaluations with existing acidic and alkaline routes have also been carried out. It was estimated that the largest proportion of the operational cost for the new process related to the materials and reagent costs. Sensitivity analysis predicted that the value of neodymium oxide followed by Heavy Rare Earth Oxides (HREO) and praseodymium oxide affect the revenue significantly. Increasing the average basket price of the total rare earths oxide by 1.5 times would result in revenues of US$158.8 million/year for the proposed route, compared to US$161.5 and US$156.3 million/year for the alkaline and acidic routes, respectively. The discounted cash flow analysis and the resulted Net Present Value (NPV) suggested that the proposed processing route was in fact the only process estimated to be economically feasible with the payback period expected to be around 4.5 years. The sale of thorium oxide and uranium oxide by-products of the proposed route contributed to the positive discounted NPV. It was also estimated that a minimum sale price of US$20/kg total rare earth oxide is required to ensure all the processes generate a positive discounted NPV. These results shown that the proposed new processing route is estimated to be economically feasible.

在从独居石中提取稀土元素的过程中,如果不加处理,独居石中相对较高的钍和铀浓度会造成严重的环境问题。本文根据对韩国独居石样品的分析和处理,提出了一种以氧化物形式回收钍和铀的新工艺路线,并对其经济可行性进行了分析。此外,还与现有的酸性和碱性路线进行了比较评估。据估计,新工艺运营成本的最大部分与材料和试剂成本有关。敏感性分析预测,氧化钕的价值对收入的影响很大,其次是重稀土氧化物(HREO)和氧化镨。将全部稀土氧化物的平均篮子价格提高 1.5 倍,将使拟议路线的收入达到 1.588 亿美元/年,而碱性和酸性路线的收入分别为 1.615 亿美元/年和 1.563 亿美元/年。贴现现金流分析和得出的净现值(NPV)表明,拟议的加工路线实际上是唯一经济上可行的工艺,投资回收期预计约为 4.5 年。拟议路线的氧化钍和氧化铀副产品的销售为正贴现净现值做出了贡献。另据估计,要确保所有工艺都能产生正贴现净现值,最低销售价格必须达到 20 美元/千克稀土氧化物总量。这些结果表明,拟议的新加工路线估计在经济上是可行的。
{"title":"Techno-economic evaluation of an environmental-friendly processing route to extract rare earth elements from monazite","authors":"Reiza Z. Mukhlis ,&nbsp;Jin-Young Lee ,&nbsp;Hee Nam Kang ,&nbsp;Nawshad Haque ,&nbsp;Mark I. Pownceby ,&nbsp;Warren J. Bruckard ,&nbsp;M. Akbar Rhamdhani ,&nbsp;Rajesh Kumar Jyothi","doi":"10.1016/j.clet.2024.100742","DOIUrl":"https://doi.org/10.1016/j.clet.2024.100742","url":null,"abstract":"<div><p>The relatively high concentration of thorium and uranium in monazite poses significant environmental issues in the extraction process of rare earth elements from monazite if left untreated. A new process route that recovers both thorium and uranium as oxides has been proposed, and an analysis of its economic feasibility is presented in the current paper, based on analysis and processing of a Korean monazite sample. Comparative evaluations with existing acidic and alkaline routes have also been carried out. It was estimated that the largest proportion of the operational cost for the new process related to the materials and reagent costs. Sensitivity analysis predicted that the value of neodymium oxide followed by Heavy Rare Earth Oxides (HREO) and praseodymium oxide affect the revenue significantly. Increasing the average basket price of the total rare earths oxide by 1.5 times would result in revenues of US$158.8 million/year for the proposed route, compared to US$161.5 and US$156.3 million/year for the alkaline and acidic routes, respectively. The discounted cash flow analysis and the resulted Net Present Value (NPV) suggested that the proposed processing route was in fact the only process estimated to be economically feasible with the payback period expected to be around 4.5 years. The sale of thorium oxide and uranium oxide by-products of the proposed route contributed to the positive discounted NPV. It was also estimated that a minimum sale price of US$20/kg total rare earth oxide is required to ensure all the processes generate a positive discounted NPV. These results shown that the proposed new processing route is estimated to be economically feasible.</p></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"20 ","pages":"Article 100742"},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666790824000223/pdfft?md5=5bcdfa73fc1fc03b5a3024ddd344a196&pid=1-s2.0-S2666790824000223-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140554000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Indoor CO2 direct air capture and utilization: Key strategies towards carbon neutrality 室内二氧化碳直接空气捕获和利用:实现碳中和的关键战略
Q2 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-04-06 DOI: 10.1016/j.clet.2024.100746
L.R. López , P. Dessì , A. Cabrera-Codony , L. Rocha-Melogno , N.J.R. Kraakman , M.D. Balaguer , S. Puig

Direct air capture (DAC) is a promising technology that can help to remove carbon dioxide (CO2) from the air. One application of DAC is indoor CO2 direct air capture (iCO2-DAC). A wide range of materials with unique properties for CO2 capture have been investigated, including porous materials, zeolites, and metal-organic frameworks. The selection of suitable materials for iCO2-DAC depends on several factors, such as cost, CO2 adsorption capacity, and stability. The development of new materials with improved properties for iCO2-DAC is an active research area. The captured CO2 can serve as a renewable carbon source to produce biofuels for internal use (e.g., for heating purposes), decreasing the environmental impact of buildings. This review article highlights the importance of iCO2-DAC to improve indoor air quality in buildings and boost the circular economy. We discuss the available carbon capture technologies and materials, discussing their properties and focusing on those potentially applicable to indoor environments. We also provide a hypothetic scenario where CO2 is captured from different indoor environments and transformed into sustainable fuels by using an emerging carbon capture and utilization technology (microbial electrosynthesis). Finally, we evaluate the economic feasibility of such an innovative approach in comparison to the use of traditional, fossil-based fuels.

直接空气捕集(DAC)是一项前景广阔的技术,有助于去除空气中的二氧化碳(CO2)。室内二氧化碳直接空气捕集(iCO2-DAC)是 DAC 的一项应用。目前已对多种具有独特性能的二氧化碳捕集材料进行了研究,包括多孔材料、沸石和金属有机框架。为 iCO2-DAC 选择合适的材料取决于多个因素,如成本、二氧化碳吸附能力和稳定性。为 iCO2-DAC 开发性能更好的新材料是一个活跃的研究领域。捕获的二氧化碳可作为一种可再生碳源,用于生产内部使用的生物燃料(如供暖),从而减少建筑物对环境的影响。这篇综述文章强调了 iCO2-DAC 对改善建筑物室内空气质量和促进循环经济的重要性。我们讨论了现有的碳捕集技术和材料,讨论了它们的特性,并重点介绍了可能适用于室内环境的技术和材料。我们还提供了一种假设情景,即利用一种新兴的碳捕获和利用技术(微生物电合成)从不同的室内环境中捕获二氧化碳,并将其转化为可持续燃料。最后,与使用传统的化石燃料相比,我们对这种创新方法的经济可行性进行了评估。
{"title":"Indoor CO2 direct air capture and utilization: Key strategies towards carbon neutrality","authors":"L.R. López ,&nbsp;P. Dessì ,&nbsp;A. Cabrera-Codony ,&nbsp;L. Rocha-Melogno ,&nbsp;N.J.R. Kraakman ,&nbsp;M.D. Balaguer ,&nbsp;S. Puig","doi":"10.1016/j.clet.2024.100746","DOIUrl":"https://doi.org/10.1016/j.clet.2024.100746","url":null,"abstract":"<div><p>Direct air capture (DAC) is a promising technology that can help to remove carbon dioxide (CO<sub>2</sub>) from the air. One application of DAC is indoor CO<sub>2</sub> direct air capture (iCO<sub>2</sub>-DAC). A wide range of materials with unique properties for CO<sub>2</sub> capture have been investigated, including porous materials, zeolites, and metal-organic frameworks. The selection of suitable materials for iCO<sub>2</sub>-DAC depends on several factors, such as cost, CO<sub>2</sub> adsorption capacity, and stability. The development of new materials with improved properties for iCO<sub>2</sub>-DAC is an active research area. The captured CO<sub>2</sub> can serve as a renewable carbon source to produce biofuels for internal use (e.g., for heating purposes), decreasing the environmental impact of buildings. This review article highlights the importance of iCO<sub>2</sub>-DAC to improve indoor air quality in buildings and boost the circular economy. We discuss the available carbon capture technologies and materials, discussing their properties and focusing on those potentially applicable to indoor environments. We also provide a hypothetic scenario where CO<sub>2</sub> is captured from different indoor environments and transformed into sustainable fuels by using an emerging carbon capture and utilization technology (microbial electrosynthesis). Finally, we evaluate the economic feasibility of such an innovative approach in comparison to the use of traditional, fossil-based fuels.</p></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"20 ","pages":"Article 100746"},"PeriodicalIF":0.0,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666790824000260/pdfft?md5=315c923a4c80c3fe39361dbb58bd9d96&pid=1-s2.0-S2666790824000260-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140535373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biochar from cashew nut shells: A sustainable reinforcement for enhanced mechanical performance in hemp fibre composites 腰果壳生物炭:提高麻纤维复合材料机械性能的可持续增强材料
Q2 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-04-04 DOI: 10.1016/j.clet.2024.100745
Sundarakannan Rajendran , Geetha Palani , Arumugaprabu Veerasimman , Uthayakumar Marimuthu , Karthick Kannan , Vigneshwaran Shanmugam

The pursuit of sustainable and eco-friendly materials has fuelled research into enhancing composite materials using bio fillers derived from renewable sources. This study investigates the incorporation of bio filler - biochar produced from cashew nut shell, in hemp fibre composite to achieve a balance between performance and environmental sustainability. Hemp fibre composites were fabricated with four different weight percentages of biochar such as 5, 10, 15, and 20 wt%. Hemp fibre composites with biochar showed enhanced mechanical strength and water resistance when compared to composite without biochar. The composites containing 10 wt% biochar added showed the maximum tensile, impact, and hardness, ca. 94%, ca. 38%, and ca. 7% increase compared to composite without biochar, respectively. The highest flexural strength (ca. 71 MPa) was observed at a biochar addition of 15 wt%. The integration of biochar improved the filler-matrix interaction by enhancing adhesion, creating effective stress transfer within the vinyl ester matrix, thereby reinforcing the composite's structural integrity. In the water absorption test, the biochar acted as barrier to the water molecules and reduced the water absorption by ca. 32–63%. These findings highlight the potential of biochar-based fillers in advancing the field of composite materials, providing a more nuanced understanding of their applications in addressing both environmental concerns and bio waste accumulation.

对可持续和生态友好材料的追求推动了利用可再生来源的生物填料增强复合材料的研究。本研究探讨了在麻纤维复合材料中加入生物填料--腰果壳制成的生物炭,以实现性能与环境可持续性之间的平衡。麻纤维复合材料采用了四种不同重量百分比的生物炭,如 5%、10%、15% 和 20%。与不含生物炭的复合材料相比,含生物炭的大麻纤维复合材料显示出更高的机械强度和耐水性。与未添加生物炭的复合材料相比,添加了 10 wt% 生物炭的复合材料显示出最大的拉伸强度、冲击强度和硬度,分别增加了约 94%、约 38% 和约 7%。生物炭添加量为 15 wt%时,弯曲强度最高(约 71 兆帕)。生物炭的加入通过增强粘附力改善了填料与基体之间的相互作用,在乙烯基酯基体内产生了有效的应力传递,从而加强了复合材料的结构完整性。在吸水测试中,生物炭起到了阻挡水分子的作用,吸水率降低了约 32-63%。这些发现凸显了生物炭基填料在推动复合材料领域发展方面的潜力,使人们对其在解决环境问题和生物废物积累方面的应用有了更细致的了解。
{"title":"Biochar from cashew nut shells: A sustainable reinforcement for enhanced mechanical performance in hemp fibre composites","authors":"Sundarakannan Rajendran ,&nbsp;Geetha Palani ,&nbsp;Arumugaprabu Veerasimman ,&nbsp;Uthayakumar Marimuthu ,&nbsp;Karthick Kannan ,&nbsp;Vigneshwaran Shanmugam","doi":"10.1016/j.clet.2024.100745","DOIUrl":"https://doi.org/10.1016/j.clet.2024.100745","url":null,"abstract":"<div><p>The pursuit of sustainable and eco-friendly materials has fuelled research into enhancing composite materials using bio fillers derived from renewable sources. This study investigates the incorporation of bio filler - biochar produced from cashew nut shell, in hemp fibre composite to achieve a balance between performance and environmental sustainability. Hemp fibre composites were fabricated with four different weight percentages of biochar such as 5, 10, 15, and 20 wt%. Hemp fibre composites with biochar showed enhanced mechanical strength and water resistance when compared to composite without biochar. The composites containing 10 wt% biochar added showed the maximum tensile, impact, and hardness, ca. 94%, ca. 38%, and ca. 7% increase compared to composite without biochar, respectively. The highest flexural strength (ca. 71 MPa) was observed at a biochar addition of 15 wt%. The integration of biochar improved the filler-matrix interaction by enhancing adhesion, creating effective stress transfer within the vinyl ester matrix, thereby reinforcing the composite's structural integrity. In the water absorption test, the biochar acted as barrier to the water molecules and reduced the water absorption by ca. 32–63%. These findings highlight the potential of biochar-based fillers in advancing the field of composite materials, providing a more nuanced understanding of their applications in addressing both environmental concerns and bio waste accumulation.</p></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"20 ","pages":"Article 100745"},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666790824000259/pdfft?md5=389bcfd5109622a919725602a05bf0a5&pid=1-s2.0-S2666790824000259-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140535372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preliminary study on the application of waste bivalve shells as biofiller for the production of asphalt concrete 将废弃双壳贝作为生物填料用于生产沥青混凝土的初步研究
Q2 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-04-04 DOI: 10.1016/j.clet.2024.100743
L. Caroscio , B. De Pascale , P. Tataranni , C. Chiavetta , C. Lantieri , A. Bonoli

The shells of molluscs are a common by-product of the aquaculture industry, and their management represents a significant environmental challenge. Although mollusc farming is considered a low-impact food production, improper shell management could make bivalve farming less environmentally efficient. To address this issue, research is exploring new approaches to reduce waste accumulation and convert shell waste into a valuable resource. The shells of bivalves are functional materials from biological waste, composed mainly of CaCO3, and can be used as secondary raw materials in various applications. In order to meet the demanding environmental target, the road sector is increasing the use of recycled materials in new construction or maintenance of old ones. The present work illustrates the results of several laboratory tests carried out to determine the physical and chemical properties of three different crushed bivalve shells waste for the application as filler in asphalt concretes. The present study highlighted the similarity of these materials with the limestone filler since no significant discrepancy between the mechanical (or technical) performance of the biofiller and the traditional limestone filler are detected through the test carried out, promoting their use in new asphalt concrete mixtures.

软体动物的外壳是水产养殖业的常见副产品,其管理是一项重大的环境挑战。虽然软体动物养殖被认为是一种低影响的食品生产,但不当的贝壳管理可能会降低双壳贝类养殖的环境效益。为了解决这个问题,研究人员正在探索新的方法,以减少废物的积累,并将贝壳废物转化为有价值的资源。双壳贝类的贝壳是生物废弃物中的功能性材料,主要由 CaCO3 组成,可作为二次原材料用于各种用途。为了达到苛刻的环保目标,公路部门在新建筑或旧建筑维护中越来越多地使用再生材料。本研究说明了为确定三种不同的双壳贝壳碎屑作为沥青混凝土填料的物理和化学特性而进行的几项实验室测试的结果。本研究强调了这些材料与石灰石填料的相似性,因为通过所进行的测试,没有发现生物填料与传统的石灰石填料在机械(或技术)性能上存在明显差异,这促进了它们在新型沥青混凝土混合物中的应用。
{"title":"Preliminary study on the application of waste bivalve shells as biofiller for the production of asphalt concrete","authors":"L. Caroscio ,&nbsp;B. De Pascale ,&nbsp;P. Tataranni ,&nbsp;C. Chiavetta ,&nbsp;C. Lantieri ,&nbsp;A. Bonoli","doi":"10.1016/j.clet.2024.100743","DOIUrl":"https://doi.org/10.1016/j.clet.2024.100743","url":null,"abstract":"<div><p>The shells of molluscs are a common by-product of the aquaculture industry, and their management represents a significant environmental challenge. Although mollusc farming is considered a low-impact food production, improper shell management could make bivalve farming less environmentally efficient. To address this issue, research is exploring new approaches to reduce waste accumulation and convert shell waste into a valuable resource. The shells of bivalves are functional materials from biological waste, composed mainly of CaCO<sub>3</sub>, and can be used as secondary raw materials in various applications. In order to meet the demanding environmental target, the road sector is increasing the use of recycled materials in new construction or maintenance of old ones. The present work illustrates the results of several laboratory tests carried out to determine the physical and chemical properties of three different crushed bivalve shells waste for the application as filler in asphalt concretes. The present study highlighted the similarity of these materials with the limestone filler since no significant discrepancy between the mechanical (or technical) performance of the biofiller and the traditional limestone filler are detected through the test carried out, promoting their use in new asphalt concrete mixtures.</p></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"20 ","pages":"Article 100743"},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666790824000235/pdfft?md5=b776b9135251069500e3c6482f237548&pid=1-s2.0-S2666790824000235-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140533469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conceptualization and antecedents of productive use of electricity: A systematic literature review 生产性用电的概念和前因后果:系统文献综述
Q2 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-04-03 DOI: 10.1016/j.clet.2024.100747
Sylvia M. Aarakit , Joseph M. Ntayi , Francis Wasswa , Faisal Buyinza , Muyiwa S. Adaramola

Productive use of energy is recognized as a pathway to economic and sustainable development. Indeed, there has been deliberate effort to promote productive use of energy, particularly, electricity by policy makers and international organizations. However, limited understanding of what constitutes productive use and factors that potentially influence uptake of productive uses at micro level continue to undermine existing efforts to promote productive use of energy in developing countries. Using a systematic literature review approach, a total of 54 out of 997 articles were selected following the criteria for inclusion and exclusion for further analysis. We find that majority of studies define productive use of electricity as application of electricity energy services to activities that generate income or enhance productivity. Regarding conceptualization, we found that productive use of electricity is conceptualized along three dimensions, which are (1) improved performance of existing income generating activities, (2) use of modern electrical productive use appliances and (3) creation of new enterprises and job opportunities after electrification. Furthermore, the review found that majority of studies identify electricity related factors as important drivers of productive use of electricity. However, these should be bundled with other non-electricity related variables including financial, technological, human capabilities, institutional, infrastructural, social, demographic characteristics. The paper has also identified various research gaps that may inform future studies in productive use of electricity.

能源的生产性利用被认为是经济和可持续发展的必由之路。事实上,政策制定者和国际组织一直在有意识地努力促进能源的生产性利用,特别是电力的生产性利用。然而,由于对什么是生产性利用以及在微观层面可能影响生产性利用的因素了解有限,发展中国家促进能源生产性利用的现有努力继续受到削弱。我们采用系统性文献综述方法,按照纳入和排除标准,从 997 篇文章中选出 54 篇进行进一步分析。我们发现,大多数研究将电力的生产性利用定义为将电力能源服务应用于创收或提高生产力的活动。在概念化方面,我们发现生产性用电的概念有三个方面,即(1)改善现有创收活动的绩效;(2)使用现代生产性用电设备;(3)电气化后创造新的企业和就业机会。此外,审查还发现,大多数研究将与电力相关的因素视为生产性用电的重要驱动因素。然而,这些因素应与其他非电力相关变量捆绑在一起,包括金融、技术、人的能力、机构、基础设施、社会和人口特征。本文还确定了各种研究缺口,可为今后的生产性用电研究提供参考。
{"title":"Conceptualization and antecedents of productive use of electricity: A systematic literature review","authors":"Sylvia M. Aarakit ,&nbsp;Joseph M. Ntayi ,&nbsp;Francis Wasswa ,&nbsp;Faisal Buyinza ,&nbsp;Muyiwa S. Adaramola","doi":"10.1016/j.clet.2024.100747","DOIUrl":"https://doi.org/10.1016/j.clet.2024.100747","url":null,"abstract":"<div><p>Productive use of energy is recognized as a pathway to economic and sustainable development. Indeed, there has been deliberate effort to promote productive use of energy, particularly, electricity by policy makers and international organizations. However, limited understanding of what constitutes productive use and factors that potentially influence uptake of productive uses at micro level continue to undermine existing efforts to promote productive use of energy in developing countries. Using a systematic literature review approach, a total of 54 out of 997 articles were selected following the criteria for inclusion and exclusion for further analysis. We find that majority of studies define productive use of electricity as application of electricity energy services to activities that generate income or enhance productivity. Regarding conceptualization, we found that productive use of electricity is conceptualized along three dimensions, which are (1) improved performance of existing income generating activities, (2) use of modern electrical productive use appliances and (3) creation of new enterprises and job opportunities after electrification. Furthermore, the review found that majority of studies identify electricity related factors as important drivers of productive use of electricity. However, these should be bundled with other non-electricity related variables including financial, technological, human capabilities, institutional, infrastructural, social, demographic characteristics. The paper has also identified various research gaps that may inform future studies in productive use of electricity.</p></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"20 ","pages":"Article 100747"},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666790824000272/pdfft?md5=54c1ed020ff60a6383797170b6f6b673&pid=1-s2.0-S2666790824000272-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140540684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cleaner Engineering and Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1