Pub Date : 2024-07-01DOI: 10.1016/j.jcou.2024.102864
Audrey Waldvogel , Andrea Fasolini , Francesco Basile , Sebastien Thomas , Anne-Cecile Roger
The use of synthetic natural gas (SNG) as a plug-and-play fuel coming from renewables can help to overcome the limitations given by the intermittency of renewable energy. A way to implement the production of SNG pass through the co-electrolysis of CO2 to a mixture of hydrogen, carbon monoxide and carbon dioxide, steam and small amounts of methane, followed by CO and CO2 methanation. The presence of different reactants and processes requires the comprehension and quantification of the kinetics of the reactions involved with the aim of optimizing methanation. In this work a kinetic model that considers both the direct CO2 methanation and the indirect RWGS + CO methanation pathways has been developed over a Ni(10 %wt)/Ce0.33Zr0.63Pr0.04O2. The kinetic study made it possible to understand the influence of the reactants and products on the reactions through the calculation of reaction rates. This allowed to test, by linearization, the models found in the literature and their adjustment permitted to calculate sixteen kinetic parameters (activation energies, heats of adsorption and pre-exponential factors) present in the rate laws of methanation of CO2, CO and the Reverse Water Gas Shift reaction. The models then made it possible to simulate the evolution of partial flow rates in an isothermal plug flow reactor and were compared to experimental data.
使用合成天然气(SNG)作为可再生能源的即插即用燃料,有助于克服可再生能源间歇性带来的限制。生产合成天然气(SNG)的一种方法是通过二氧化碳共电解生成氢气、一氧化碳和二氧化碳、蒸汽和少量甲烷的混合物,然后进行一氧化碳和二氧化碳甲烷化。由于存在不同的反应物和过程,因此需要了解和量化相关反应的动力学,以优化甲烷化过程。在这项工作中,我们在 Ni(10 %wt)/Ce0.33Zr0.63Pr0.04O2 上建立了一个动力学模型,该模型同时考虑了直接 CO2 甲烷化和 RWGS + CO 间接甲烷化途径。动力学研究通过计算反应速率,了解了反应物和产物对反应的影响。这样就可以通过线性化对文献中的模型进行测试,并对其进行调整,从而计算出二氧化碳、一氧化碳和反向水气变换反应甲烷化速率定律中的 16 个动力学参数(活化能、吸附热和预指数)。这些模型可以模拟等温塞流反应器中部分流速的变化,并与实验数据进行比较。
{"title":"Investigation of the kinetics of methanation of a post-coelectrolysis mixture on a Ni/CZP oxide catalyst","authors":"Audrey Waldvogel , Andrea Fasolini , Francesco Basile , Sebastien Thomas , Anne-Cecile Roger","doi":"10.1016/j.jcou.2024.102864","DOIUrl":"https://doi.org/10.1016/j.jcou.2024.102864","url":null,"abstract":"<div><p>The use of synthetic natural gas (SNG) as a plug-and-play fuel coming from renewables can help to overcome the limitations given by the intermittency of renewable energy. A way to implement the production of SNG pass through the co-electrolysis of CO<sub>2</sub> to a mixture of hydrogen, carbon monoxide and carbon dioxide, steam and small amounts of methane, followed by CO and CO<sub>2</sub> methanation. The presence of different reactants and processes requires the comprehension and quantification of the kinetics of the reactions involved with the aim of optimizing methanation. In this work a kinetic model that considers both the direct CO<sub>2</sub> methanation and the indirect RWGS + CO methanation pathways has been developed over a Ni(10 %wt)/Ce<sub>0.33</sub>Zr<sub>0.63</sub>Pr<sub>0.04</sub>O<sub>2</sub>. The kinetic study made it possible to understand the influence of the reactants and products on the reactions through the calculation of reaction rates. This allowed to test, by linearization, the models found in the literature and their adjustment permitted to calculate sixteen kinetic parameters (activation energies, heats of adsorption and pre-exponential factors) present in the rate laws of methanation of CO<sub>2</sub>, CO and the Reverse Water Gas Shift reaction. The models then made it possible to simulate the evolution of partial flow rates in an isothermal plug flow reactor and were compared to experimental data.</p></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"85 ","pages":"Article 102864"},"PeriodicalIF":7.2,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212982024001999/pdfft?md5=d9356c31c2f65159fcc2ee927db08d85&pid=1-s2.0-S2212982024001999-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141596213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study introduces a three-dimensional, densely packed amide polyphthalocyaninezinc, supported by fibrous phosphosilicate (FPS), for the first time (referred to as Complex@Zn-IL/FPS). The XPS and EDX images confirmed that the Complex@Zn-IL nanosaramic was evenly distributed on the FPS’s surface. The cycloaddition reaction from CO2 and natural epoxide using Complex@Zn-IL/FPS nanosaramic as catalysts was reported. Furthermore, the catalyst’s structural heterogeneity was examined using various methods, including SEM, FT-IR, XPS, TEM, and TGA. There was no evidence of zinc leaching into the fluid. In addition, hot filtration provided a comprehensive understanding of the catalyst’s heterogeneous nature. The catalyst’s practical and straightforward reusability was noted after the reaction was completed.
{"title":"Cycloaddition of natural epoxide and CO2 with the help of multi-nuclear phthalocyanine complexes attached to FPS as a nanosaramic","authors":"Amin Fallah Koushki , Seyed Mojtaba Movahedifar , Amin Honarbakhsh , Mehdi Nobahari , Rahele Zhiani","doi":"10.1016/j.jcou.2024.102885","DOIUrl":"10.1016/j.jcou.2024.102885","url":null,"abstract":"<div><p>This study introduces a three-dimensional, densely packed amide polyphthalocyaninezinc, supported by fibrous phosphosilicate (FPS), for the first time (referred to as Complex@Zn-IL/FPS). The XPS and EDX images confirmed that the Complex@Zn-IL nanosaramic was evenly distributed on the FPS’s surface. The cycloaddition reaction from CO<sub>2</sub> and natural epoxide using Complex@Zn-IL/FPS nanosaramic as catalysts was reported. Furthermore, the catalyst’s structural heterogeneity was examined using various methods, including SEM, FT-IR, XPS, TEM, and TGA. There was no evidence of zinc leaching into the fluid. In addition, hot filtration provided a comprehensive understanding of the catalyst’s heterogeneous nature. The catalyst’s practical and straightforward reusability was noted after the reaction was completed.</p></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"85 ","pages":"Article 102885"},"PeriodicalIF":7.2,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212982024002208/pdfft?md5=5d7e1d1729d52cbd5378caaf323a7ffa&pid=1-s2.0-S2212982024002208-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141938831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.jcou.2024.102862
Yi Liu , Jiaoling Zhang , Suhui Zhang , Allen A. Zhang , Jianwei Peng , Qiang Yuan
Aggregate accounts for 60‐80% volume fraction of concrete, which has a great influence on the CO2 emission and performance of concrete. Apart from natural coarse aggregate (NCA), recycled coarse aggregate (RCA) and carbonation recycled coarse aggregate (CRCA) are becoming an important component. This study established a database containing 925 experimental samples of compressive strength (CS) and CO2 emission, which including NCA, RCA, and CRCA concrete respectively. Additionally, the CO2 intensity index was introduced to evaluate the CS and CO2 emission. Machine learning (ML) methods were utilized to establish prediction models for CS, CO2 emissions, and CO2 intensity. The significance of features was analyzed through SHAP and PDP. For the optimization of coarse aggregate mix proportion, the GA and MOPSO algorithms were employed for single and bi-objective optimization designs, respectively. The results indicated that the optimization of coarse aggregate mix proportion can effectively reduce CO2 emission and CO2 intensity of concrete. A CRCA content of 30% is optimal for achieving both enhanced CS and reduced CO2 emissions. The carbonation treatment of RCA presents a viable approach for mitigating CO2 footprint and enhancing the mechanical properties of RCA concrete. The proposed optimization frame can facilitate appropriate decision making for low-carbon concrete design.
{"title":"Machine learning-guided optimization of coarse aggregate mix proportion based on CO2 intensity index","authors":"Yi Liu , Jiaoling Zhang , Suhui Zhang , Allen A. Zhang , Jianwei Peng , Qiang Yuan","doi":"10.1016/j.jcou.2024.102862","DOIUrl":"https://doi.org/10.1016/j.jcou.2024.102862","url":null,"abstract":"<div><p>Aggregate accounts for 60‐80% volume fraction of concrete, which has a great influence on the CO<sub>2</sub> emission and performance of concrete. Apart from natural coarse aggregate (NCA), recycled coarse aggregate (RCA) and carbonation recycled coarse aggregate (CRCA) are becoming an important component. This study established a database containing 925 experimental samples of compressive strength (CS) and CO<sub>2</sub> emission, which including NCA, RCA, and CRCA concrete respectively. Additionally, the CO<sub>2</sub> intensity index was introduced to evaluate the CS and CO<sub>2</sub> emission. Machine learning (ML) methods were utilized to establish prediction models for CS, CO<sub>2</sub> emissions, and CO<sub>2</sub> intensity. The significance of features was analyzed through SHAP and PDP. For the optimization of coarse aggregate mix proportion, the GA and MOPSO algorithms were employed for single and bi-objective optimization designs, respectively. The results indicated that the optimization of coarse aggregate mix proportion can effectively reduce CO<sub>2</sub> emission and CO<sub>2</sub> intensity of concrete. A CRCA content of 30% is optimal for achieving both enhanced CS and reduced CO<sub>2</sub> emissions. The carbonation treatment of RCA presents a viable approach for mitigating CO<sub>2</sub> footprint and enhancing the mechanical properties of RCA concrete. The proposed optimization frame can facilitate appropriate decision making for low-carbon concrete design.</p></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"85 ","pages":"Article 102862"},"PeriodicalIF":7.2,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212982024001975/pdfft?md5=69be841e3be07afb8a3d4db82e9f62da&pid=1-s2.0-S2212982024001975-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141540583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.jcou.2024.102863
Martina Kajabová , Tomáš Stryšovský , Arkadii Bikbashev , Zuzana Kovářová , Karolína Simkovičová , Robert Prucek , Aleš Panáček , Petr Novák , Josef Kopp , Josef Kašlík , Martin Petr , Angela Malara , Patrizia Frontera , Mai Takashima , Štefan Vajda , Bunsho Ohtani , Libor Kvítek
The main objective of the present study is to synthesize iron oxide catalysts with engineered crystal defects and to clarify their crucial impact on the final catalytic activity in the CO2 hydrogenation process. The method used to engineer the desired crystal defects is based on changing the precipitation reaction conditions, such as the addition rate and the order of the precipitant during the primary phase of the synthesis of iron oxide catalysts. The catalyst synthesis process is based on the formation of iron oxalates in the first step, followed by thermal decomposition into iron oxides in the second step, which were subsequently tested as catalysts in CO2 hydrogenation. The reversed double-beam photoacoustic spectroscopy used for advanced characterization of the prepared catalysts demonstrated that the observed change in catalytic activity is related to the energy and density of electron traps connected with the defects in the crystal lattice of the catalysts. These defects occur during the precipitation of oxalates, and their formation is significantly affected by changes in the precipitation conditions, i.e., the course of nucleation and growth of iron oxalate crystals. The results of the presented study thus affirmed the cardinal importance of defect engineering in heterogeneous catalysis.
{"title":"Electron traps as a valuable criterium of iron oxide catalysts' performance in CO2 hydrogenation","authors":"Martina Kajabová , Tomáš Stryšovský , Arkadii Bikbashev , Zuzana Kovářová , Karolína Simkovičová , Robert Prucek , Aleš Panáček , Petr Novák , Josef Kopp , Josef Kašlík , Martin Petr , Angela Malara , Patrizia Frontera , Mai Takashima , Štefan Vajda , Bunsho Ohtani , Libor Kvítek","doi":"10.1016/j.jcou.2024.102863","DOIUrl":"https://doi.org/10.1016/j.jcou.2024.102863","url":null,"abstract":"<div><p>The main objective of the present study is to synthesize iron oxide catalysts with engineered crystal defects and to clarify their crucial impact on the final catalytic activity in the CO2 hydrogenation process. The method used to engineer the desired crystal defects is based on changing the precipitation reaction conditions, such as the addition rate and the order of the precipitant during the primary phase of the synthesis of iron oxide catalysts. The catalyst synthesis process is based on the formation of iron oxalates in the first step, followed by thermal decomposition into iron oxides in the second step, which were subsequently tested as catalysts in CO<sub>2</sub> hydrogenation. The reversed double-beam photoacoustic spectroscopy used for advanced characterization of the prepared catalysts demonstrated that the observed change in catalytic activity is related to the energy and density of electron traps connected with the defects in the crystal lattice of the catalysts. These defects occur during the precipitation of oxalates, and their formation is significantly affected by changes in the precipitation conditions, i.e., the course of nucleation and growth of iron oxalate crystals. The results of the presented study thus affirmed the cardinal importance of defect engineering in heterogeneous catalysis.</p></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"85 ","pages":"Article 102863"},"PeriodicalIF":7.2,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212982024001987/pdfft?md5=7ad7faf321beeff880c03f1af6f47543&pid=1-s2.0-S2212982024001987-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141596212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.jcou.2024.102880
Asghar Ali , Sobin Mathew , Shahbaz Ahmad , Vadim Ialyshev , Faisal Mustafa , Ganjaboy Boltaev , Naveed A. Abbasi , Ali.S. Alnaser
In the quest to mitigate excessive CO2 emissions, the electrochemical reduction of CO2 (eCO2R) into multi-carbon fuels and vital chemical precursors emerges as a compelling strategy. Meticulous control of the C–C coupling on a catalyst surface is a grand challenge in the selective production of desired C2+ products. Ethane and propanol are among the most desirable C2+ products in the gas and liquid phase, respectively. Herein, we demonstrate facile femtosecond laser-enabled tuning of Cu selectivity towards ethane and propanol. The laser-enabled tailoring of the Cu surface induces a shift from C1 products to ethane and propanol. This shift in product composition is attributed to the concurrent creation of hierarchical porous structures, the stabilization of {111}, {200}, and {220} Cu2O facets, and the promotion of the Cu1+ oxidation state. These alterations collectively enhance the adsorption strength, leading to an increased propensity for C-C coupling and, consequently, an elevated selectivity toward C2+ products.
{"title":"Femtosecond laser-enabled facile tuning of Cu selectivity towards long-chain products in CO2 electroreduction","authors":"Asghar Ali , Sobin Mathew , Shahbaz Ahmad , Vadim Ialyshev , Faisal Mustafa , Ganjaboy Boltaev , Naveed A. Abbasi , Ali.S. Alnaser","doi":"10.1016/j.jcou.2024.102880","DOIUrl":"10.1016/j.jcou.2024.102880","url":null,"abstract":"<div><p>In the quest to mitigate excessive CO<sub>2</sub> emissions, the electrochemical reduction of CO<sub>2</sub> (eCO<sub>2</sub>R) into multi-carbon fuels and vital chemical precursors emerges as a compelling strategy. Meticulous control of the C–C coupling on a catalyst surface is a grand challenge in the selective production of desired C<sub>2+</sub> products. Ethane and propanol are among the most desirable C<sub>2+</sub> products in the gas and liquid phase, respectively. Herein, we demonstrate facile femtosecond laser-enabled tuning of Cu selectivity towards ethane and propanol. The laser-enabled tailoring of the Cu surface induces a shift from C<sub>1</sub> products to ethane and propanol. This shift in product composition is attributed to the concurrent creation of hierarchical porous structures, the stabilization of {111}, {200}, and {220} Cu<sub>2</sub>O facets, and the promotion of the Cu<sup>1+</sup> oxidation state. These alterations collectively enhance the adsorption strength, leading to an increased propensity for C-C coupling and, consequently, an elevated selectivity toward C<sub>2+</sub> products.</p></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"85 ","pages":"Article 102880"},"PeriodicalIF":7.2,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212982024002154/pdfft?md5=70f8e22d139f78b238ba712fa1462495&pid=1-s2.0-S2212982024002154-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141736404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.jcou.2024.102890
Laura Jūrienė, Vita Morkūnienė, Petras Rimantas Venskutonis
Valorisation of fruit processing by-products and waste is an important task for increasing the sustainability of agro-food sector. In this study, pitted sour cherry pomace was mechanically pre-fractionated into the 6 different particle size (>10, 4−10, 3−4, 1−3, 0.8−1, <0.8 mm) fractions (9.71−16.41 % proteins, 5.68−12.16 % fat, 62.55−78.39 % carbohydrates) and subjected to supercritical fluid extraction with CO2 for the recovery of lipophilic constituents. Extract yield depended on fat content and was from 3.38 % to 8.69 %. Linoleic (38.52−47.11 %) and oleic (21.85−39.03 %) were major fatty acids, while triacylglycerols composed of these acids were major in the extracted oils. The concentrations of tocopherols, carotenoids and phytosterols in the extracts were 116.3−432.0, 1218−2564 and 4294−8449 μg/g. Antioxidant activity values were determined for the extracts and solids of initial dry pomace and its residue after extraction. Folin-Ciocalteu Index (basically similar to total phenolic content, TPC), ABTS•+-scavenging and oxygen radical absorbance (ORAC) values of extracts were 7.86−8.75 mg of gallic acid equivalents/g, 1.72−6.37 and 35.12−95.49 of mg trolox equivalents/g, respectively. It is the first report on comprehensive characterisation of sour cherry pomace fractions extracted by supercritical CO2.
{"title":"Supercritical CO2 extraction of valuable lipophilic compounds from pre-fractionated sour cherry pomace and evaluation of their composition and properties","authors":"Laura Jūrienė, Vita Morkūnienė, Petras Rimantas Venskutonis","doi":"10.1016/j.jcou.2024.102890","DOIUrl":"10.1016/j.jcou.2024.102890","url":null,"abstract":"<div><p>Valorisation of fruit processing by-products and waste is an important task for increasing the sustainability of agro-food sector. In this study, pitted sour cherry pomace was mechanically pre-fractionated into the 6 different particle size (>10, 4−10, 3−4, 1−3, 0.8−1, <0.8 mm) fractions (9.71−16.41 % proteins, 5.68−12.16 % fat, 62.55−78.39 % carbohydrates) and subjected to supercritical fluid extraction with CO<sub>2</sub> for the recovery of lipophilic constituents. Extract yield depended on fat content and was from 3.38 % to 8.69 %. Linoleic (38.52−47.11 %) and oleic (21.85−39.03 %) were major fatty acids, while triacylglycerols composed of these acids were major in the extracted oils. The concentrations of tocopherols, carotenoids and phytosterols in the extracts were 116.3−432.0, 1218−2564 and 4294−8449 μg/g. Antioxidant activity values were determined for the extracts and solids of initial dry pomace and its residue after extraction. Folin-Ciocalteu Index (basically similar to total phenolic content, TPC), ABTS<sup>•+</sup>-scavenging and oxygen radical absorbance (ORAC) values of extracts were 7.86−8.75 mg of gallic acid equivalents/g, 1.72−6.37 and 35.12−95.49 of mg trolox equivalents/g, respectively. It is the first report on comprehensive characterisation of sour cherry pomace fractions extracted by supercritical CO<sub>2</sub>.</p></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"85 ","pages":"Article 102890"},"PeriodicalIF":7.2,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212982024002257/pdfft?md5=7af63135c5d36fdeba13c3d651a15ed9&pid=1-s2.0-S2212982024002257-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141938718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.jcou.2024.102888
Thiyagarajan Natarajan , Sankar Arumugam , Yi-Fang Tsai , Asia Abou-taleb , Steve S.-F. Yu
A 3D flower-like structure composed of porous bismuth oxychloride (p-BiOCl) nanosheets was synthesized through a hydrothermal process utilizing Bi(NO3)3・5 H2O, cetyltrimethylammonium bromide (CTAB) and LiCl. Powder X-ray diffraction (PXRD) studies confirmed the successful formation of the p-BiOCl. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were exploited to identify the nanosheet structure. The catalyst appeared as reduced Bi0 nanosheets at an applied cathodic potential of − 0.92 V (vs. RHE (reversible hydrogen electrode)). The maintenance of Bi nanosheet structures, controlled by the cationic surfactant of CTAB, resulted in enhanced electrochemical activity with a favorable Tafel slope and lower charge resistance. Defects of under-coordinated Bi sites and oxygen vacancy with interconnected 3D structures possess abundant active sites that further assist the activity. In 1.0 and 2.0 M KHCO3 electrolytes, the catalyst achieved a maximum current density of − 80 and 100 mA/cm2, respectively, at − 0.92 V (vs. RHE) with Faradaic efficiency > 99 % for converting CO2 to formate in H-cell electrolyzers. The substantial H/D kinetic isotope effect revealed from H2O versus D2O electrolytes, and the feature of bicarbonate concentration-dependent performance provided the mechanistic insights that bicarbonate intermediates are in equilibrium with CO2, activated by water, in the aqueous environment, together with the effects of electrode surface modulated by CTAB, are essential for the efficient electrochemical CO2 reduction reaction to formate.
利用 Bi(NO)・5 HO、十六烷基三甲基溴化铵(CTAB)和氯化锂,通过水热法合成了由多孔氧氯化铋(p-BiOCl)纳米片组成的三维花状结构。粉末 X 射线衍射 (PXRD) 研究证实了对 BiOCl 的成功形成。利用扫描电子显微镜(SEM)和透射电子显微镜(TEM)确定了纳米片结构。在施加 - 0.92 V 的阴极电位(相对于 RHE(可逆氢电极))时,催化剂呈现为还原的 Bi 纳米片。在 CTAB 阳离子表面活性剂的控制下,Bi 纳米片结构得以保持,从而提高了电化学活性,并具有良好的塔菲尔斜率和较低的电荷电阻。三维结构相互连接的欠配位 Bi 位点和氧空位缺陷具有丰富的活性位点,进一步提高了活性。在 1.0 和 2.0 M KHCO 电解质中,催化剂在 - 0.92 V(相对于 RHE)电压下的最大电流密度分别为 - 80 和 100 mA/cm,在 H 细胞电解槽中将 CO 转化为甲酸盐的法拉第效率大于 99%。从 HO 与 DO 电解质中揭示出的巨大 H/D 动力同位素效应,以及碳酸氢盐浓度依赖性能的特点提供了一种机理启示,即在水环境中,碳酸氢盐中间体与 CO 处于平衡状态,并被水激活,再加上 CTAB 对电极表面的调节作用,对于高效的 CO 还原成甲酸盐的电化学反应至关重要。
{"title":"Unveiling the enhanced electrochemical CO2 conversion: The role of 3D porous BiOCl with defects and CTAB-mediated nanosheets","authors":"Thiyagarajan Natarajan , Sankar Arumugam , Yi-Fang Tsai , Asia Abou-taleb , Steve S.-F. Yu","doi":"10.1016/j.jcou.2024.102888","DOIUrl":"10.1016/j.jcou.2024.102888","url":null,"abstract":"<div><p>A 3D flower-like structure composed of porous bismuth oxychloride (p-BiOCl) nanosheets was synthesized through a hydrothermal process utilizing Bi(NO<sub>3</sub>)<sub>3</sub>・5 H<sub>2</sub>O, cetyltrimethylammonium bromide (CTAB) and LiCl. Powder X-ray diffraction (PXRD) studies confirmed the successful formation of the p-BiOCl. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were exploited to identify the nanosheet structure. The catalyst appeared as reduced Bi<sup>0</sup> nanosheets at an applied cathodic potential of − 0.92 V (vs. RHE (reversible hydrogen electrode)). The maintenance of Bi nanosheet structures, controlled by the cationic surfactant of CTAB, resulted in enhanced electrochemical activity with a favorable Tafel slope and lower charge resistance. Defects of under-coordinated Bi sites and oxygen vacancy with interconnected 3D structures possess abundant active sites that further assist the activity. In 1.0 and 2.0 M KHCO<sub>3</sub> electrolytes, the catalyst achieved a maximum current density of − 80 and 100 mA/cm<sup>2</sup>, respectively, at − 0.92 V (vs. RHE) with Faradaic efficiency > 99 % for converting CO<sub>2</sub> to formate in H-cell electrolyzers. The substantial H/D kinetic isotope effect revealed from H<sub>2</sub>O versus D<sub>2</sub>O electrolytes, and the feature of bicarbonate concentration-dependent performance provided the mechanistic insights that bicarbonate intermediates are in equilibrium with CO<sub>2</sub>, activated by water, in the aqueous environment, together with the effects of electrode surface modulated by CTAB, are essential for the efficient electrochemical CO<sub>2</sub> reduction reaction to formate.</p></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"85 ","pages":"Article 102888"},"PeriodicalIF":7.2,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212982024002233/pdfft?md5=bf021c0a1f32dfc81287b4edf9ca6320&pid=1-s2.0-S2212982024002233-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141938714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.jcou.2024.102884
Justin Z. Lian , Yasmina Dimitrova , Matteo Fasano , Indraneel Sen , Stefano Cucurachi
While the use of carbonated water in enhanced oil recovery (EOR) within the petroleum sector is well-documented, its applications in other fields remain relatively unexplored. This review aims to shed light on the versatile utility of carbonated water across various sectors, with the objective of stimulating further research to address sustainability challenges. Carbonated water can benefit industrial, agricultural, and domestic contexts by offering a sustainable method for utilizing waste CO2. This review examines the diverse applications of carbonated water, including its role in enhancing oil recovery, aiding medical and healthcare research, reducing carbon footprint in construction, influencing biofuel production and green chemistry, and contributing to the agricultural sector, household, and cleaning domains. The findings suggest that carbonated water could serve as a viable source for CO2 utilization, presenting significant advantages across various fields. Despite initial costs and infrastructure requirements, integrating carbonated water into existing practices - especially in agriculture and food production - offers clear benefits for offsetting carbon emissions. Continued research and development are essential to advance these technologies and promote sustainable and environmentally responsible practices. We assert that ongoing research and innovation are crucial to unlocking the full potential of carbonated water in various emerging applications.
{"title":"Valorization of large-scale supply of carbonated water: A review","authors":"Justin Z. Lian , Yasmina Dimitrova , Matteo Fasano , Indraneel Sen , Stefano Cucurachi","doi":"10.1016/j.jcou.2024.102884","DOIUrl":"10.1016/j.jcou.2024.102884","url":null,"abstract":"<div><p>While the use of carbonated water in enhanced oil recovery (EOR) within the petroleum sector is well-documented, its applications in other fields remain relatively unexplored. This review aims to shed light on the versatile utility of carbonated water across various sectors, with the objective of stimulating further research to address sustainability challenges. Carbonated water can benefit industrial, agricultural, and domestic contexts by offering a sustainable method for utilizing waste CO<sub>2</sub>. This review examines the diverse applications of carbonated water, including its role in enhancing oil recovery, aiding medical and healthcare research, reducing carbon footprint in construction, influencing biofuel production and green chemistry, and contributing to the agricultural sector, household, and cleaning domains. The findings suggest that carbonated water could serve as a viable source for CO<sub>2</sub> utilization, presenting significant advantages across various fields. Despite initial costs and infrastructure requirements, integrating carbonated water into existing practices - especially in agriculture and food production - offers clear benefits for offsetting carbon emissions. Continued research and development are essential to advance these technologies and promote sustainable and environmentally responsible practices. We assert that ongoing research and innovation are crucial to unlocking the full potential of carbonated water in various emerging applications.</p></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"85 ","pages":"Article 102884"},"PeriodicalIF":7.2,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212982024002191/pdfft?md5=b9cd47d704d2209d9b0dcff6cf6ede3d&pid=1-s2.0-S2212982024002191-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141961893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.jcou.2024.102879
Rania Djettene , Lionel Dubois , Marie-Eve Duprez , Guy De Weireld , Diane Thomas
Using carbon dioxide (CO2) as a raw-material to produce value-added chemicals has a strategic role to play in the decarbonization of energy resources and the transition to a climate-neutral economy. E-methanol, Synthetic Natural Gas (SNG) and e-kerosene are one of the most promising pathways to convert CO2. In this context, the aim of this work is to propose an optimized and integrated CO2 to methanol process and then to compare it to the CO2 to SNG process from economic and environmental points of views. An optimized reactor configuration in the CO2 to methanol conversion unit has been successfully implemented in Aspen Plus® and leads to a thermal energy self-sufficiency of this unit. A heat integration with an advanced capture unit has been performed where 5 % of the heat requirement could be provided from the conversion unit while 95 % come from external steam source. Techno-economic assessment of the optimized process showed that methanol is more profitable when it is used as a raw material to synthetize other chemicals. As an energy carrier, SNG is more interesting. Compared to the reference scenario, a net CO2 emission reduction of 70 % in the CO2 to SNG route and of 60 % in the CO2 to methanol route were obtained. Concerning the fossil depletion impact, in both cases, a reduction of more than 60 % was noticed (ca. 75 % in CO2 to SNG route and 61 % in CO2 to methanol case).
{"title":"Integrated CO2 capture and conversion into methanol units: Assessing techno-economic and environmental aspects compared to CO2 into SNG alternative","authors":"Rania Djettene , Lionel Dubois , Marie-Eve Duprez , Guy De Weireld , Diane Thomas","doi":"10.1016/j.jcou.2024.102879","DOIUrl":"10.1016/j.jcou.2024.102879","url":null,"abstract":"<div><p>Using carbon dioxide (CO<sub>2</sub>) as a raw-material to produce value-added chemicals has a strategic role to play in the decarbonization of energy resources and the transition to a climate-neutral economy. E-methanol, Synthetic Natural Gas (SNG) and e-kerosene are one of the most promising pathways to convert CO<sub>2</sub>. In this context, the aim of this work is to propose an optimized and integrated CO<sub>2</sub> to methanol process and then to compare it to the CO<sub>2</sub> to SNG process from economic and environmental points of views. An optimized reactor configuration in the CO<sub>2</sub> to methanol conversion unit has been successfully implemented in Aspen Plus® and leads to a thermal energy self-sufficiency of this unit. A heat integration with an advanced capture unit has been performed where 5 % of the heat requirement could be provided from the conversion unit while 95 % come from external steam source. Techno-economic assessment of the optimized process showed that methanol is more profitable when it is used as a raw material to synthetize other chemicals. As an energy carrier, SNG is more interesting. Compared to the reference scenario, a net CO<sub>2</sub> emission reduction of 70 % in the CO<sub>2</sub> to SNG route and of 60 % in the CO<sub>2</sub> to methanol route were obtained. Concerning the fossil depletion impact, in both cases, a reduction of more than 60 % was noticed (ca. 75 % in CO<sub>2</sub> to SNG route and 61 % in CO<sub>2</sub> to methanol case).</p></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"85 ","pages":"Article 102879"},"PeriodicalIF":7.2,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212982024002142/pdfft?md5=06f86077df8c4db546bc60ddd44b7c34&pid=1-s2.0-S2212982024002142-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141630098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.jcou.2024.102878
Maria Chiara Iannaco, Stefania Mottola, Vincenzo Vaiano, Giuseppina Iervolino, Iolanda De Marco
The global increase in energy demand requires a continuous search for renewable and clean alternative resources to fossil fuels. Hydrogen is emerging as a promising energy carrier for the future; its production via photocatalysis, driven by sunlight, can directly convert solar energy into a usable or storable energy resource. However, water splitting requires sacrificial agents or electron donors/hole scavengers, such as short-chain organic acids. This research explores the use of lactic acid as a source for photocatalytic hydrogen production, offering valuable alternatives for wastewater management and renewable energy production. This study employed the innovative supercritical antisolvent (SAS) technique to micronize the precursors of both the active phase (CeO2) and co-catalyst (CuO), ensuring rapid and complete solvent removal and size reduction of photocatalyst precursors. The prepared samples were characterized by field emission scanning electron microscopy (FESEM), Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS) analysis, Brunauer-Emmett-Teller (BET) analysis and thermogravimetric analysis (TGA). This study has shown that the micronization process resulted in a notable improvement in CeO2 photocatalytic activity, attributed to the reduction of the dimensions of the powders. Hydrogen production was equal to 3989 μmol L−1 for the SAS-produced photocatalyst while using a commercial CeO2 sample resulted in H2 production of 2519 μmol L−1. The enhanced photoactivity of CeO2-CuO composites was found to be related to the presence of CuO. The optimal CuO amount was equal to 0.5 wt%, determining a hydrogen production of 9313 μmol L−1 after 4 h of UV irradiation time. A photocatalytic test carried out with deuterated water (D2O) instead of distilled H2O demonstrated that hydrogen was preferentially produced from water splitting reaction, whereas lactic acid acted as a sacrificial agent being oxidized from positive holes photogenerated in the valence band of CuO.
{"title":"CeO2-CuO composites prepared via supercritical antisolvent precipitation for photocatalytic hydrogen production from lactic acid aqueous solution","authors":"Maria Chiara Iannaco, Stefania Mottola, Vincenzo Vaiano, Giuseppina Iervolino, Iolanda De Marco","doi":"10.1016/j.jcou.2024.102878","DOIUrl":"10.1016/j.jcou.2024.102878","url":null,"abstract":"<div><p>The global increase in energy demand requires a continuous search for renewable and clean alternative resources to fossil fuels. Hydrogen is emerging as a promising energy carrier for the future; its production via photocatalysis, driven by sunlight, can directly convert solar energy into a usable or storable energy resource. However, water splitting requires sacrificial agents or electron donors/hole scavengers, such as short-chain organic acids. This research explores the use of lactic acid as a source for photocatalytic hydrogen production, offering valuable alternatives for wastewater management and renewable energy production. This study employed the innovative supercritical antisolvent (SAS) technique to micronize the precursors of both the active phase (CeO<sub>2</sub>) and co-catalyst (CuO), ensuring rapid and complete solvent removal and size reduction of photocatalyst precursors. The prepared samples were characterized by field emission scanning electron microscopy (FESEM), Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS) analysis, Brunauer-Emmett-Teller (BET) analysis and thermogravimetric analysis (TGA). This study has shown that the micronization process resulted in a notable improvement in CeO<sub>2</sub> photocatalytic activity, attributed to the reduction of the dimensions of the powders. Hydrogen production was equal to 3989 μmol L<sup>−1</sup> for the SAS-produced photocatalyst while using a commercial CeO<sub>2</sub> sample resulted in H<sub>2</sub> production of 2519 μmol L<sup>−1</sup>. The enhanced photoactivity of CeO<sub>2</sub>-CuO composites was found to be related to the presence of CuO. The optimal CuO amount was equal to 0.5 wt%, determining a hydrogen production of 9313 μmol L<sup>−1</sup> after 4 h of UV irradiation time. A photocatalytic test carried out with deuterated water (D<sub>2</sub>O) instead of distilled H<sub>2</sub>O demonstrated that hydrogen was preferentially produced from water splitting reaction, whereas lactic acid acted as a sacrificial agent being oxidized from positive holes photogenerated in the valence band of CuO.</p></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"85 ","pages":"Article 102878"},"PeriodicalIF":7.2,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212982024002130/pdfft?md5=f8517d35f2594593aaeaf17d0f64acdb&pid=1-s2.0-S2212982024002130-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141637297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}