首页 > 最新文献

Biology Methods and Protocols最新文献

英文 中文
Development of a new breath collection method for analyzing volatile organic compounds from intubated mouse models.
IF 2.5 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-11-14 eCollection Date: 2024-01-01 DOI: 10.1093/biomethods/bpae087
Alastair Taylor, Sylvia Blum, Madeleine Ball, Owen Birch, Hsuan Chou, Julia Greenwood, Shane Swann, Lara Pocock, Max Allsworth, Billy Boyle, Kerstin Geillinger-Kaestle

A new pre-clinical method for capturing breath samples from intubated mice is presented. This method significantly reduces background levels, allowing more accurate measurements of VOCs originating from the breath ("on-breath") as opposed to background contamination. The method was developed by integrating industry-standard volatile-capturing sorbent tubes with respiratory mechanics measurement equipment (flexiVent®), resulting in a mouse breath sample that can be transported and analyzed by TD-GC-MS and other central lab technologies. Using the methodology, the discrimination between on-breath VOCs from background compounds provides a cleaner dataset, which can accelerate the validation of VOCs identified from mouse models and their translation to clinical trials. Three metrics were developed to identify on-breath VOCs, with 22 identified using Type 1 (50% of the breath samples exceeding three standard deviations above the mean signal of the system blanks), 34 with Type 2 (P-value ≤ .05 between paired breath and blank samples), and 61 with Type 3 (ROC-AUC value ≥ 0.8 to differentiate between breath and blank samples). The number of compounds seen at elevated levels on mouse breath was quantified and compared to the levels seen on human breath samples to compare methodologies.

{"title":"Development of a new breath collection method for analyzing volatile organic compounds from intubated mouse models.","authors":"Alastair Taylor, Sylvia Blum, Madeleine Ball, Owen Birch, Hsuan Chou, Julia Greenwood, Shane Swann, Lara Pocock, Max Allsworth, Billy Boyle, Kerstin Geillinger-Kaestle","doi":"10.1093/biomethods/bpae087","DOIUrl":"10.1093/biomethods/bpae087","url":null,"abstract":"<p><p>A new pre-clinical method for capturing breath samples from intubated mice is presented. This method significantly reduces background levels, allowing more accurate measurements of VOCs originating from the breath (\"on-breath\") as opposed to background contamination. The method was developed by integrating industry-standard volatile-capturing sorbent tubes with respiratory mechanics measurement equipment (flexiVent<sup>®</sup>), resulting in a mouse breath sample that can be transported and analyzed by TD-GC-MS and other central lab technologies. Using the methodology, the discrimination between on-breath VOCs from background compounds provides a cleaner dataset, which can accelerate the validation of VOCs identified from mouse models and their translation to clinical trials. Three metrics were developed to identify on-breath VOCs, with 22 identified using Type 1 (50% of the breath samples exceeding three standard deviations above the mean signal of the system blanks), 34 with Type 2 (<i>P</i>-value ≤ .05 between paired breath and blank samples), and 61 with Type 3 (ROC-AUC value ≥ 0.8 to differentiate between breath and blank samples). The number of compounds seen at elevated levels on mouse breath was quantified and compared to the levels seen on human breath samples to compare methodologies.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":"9 1","pages":"bpae087"},"PeriodicalIF":2.5,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631442/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142808122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spontaneous breaking of symmetry in overlapping cell instance segmentation using diffusion models.
IF 2.5 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-11-09 eCollection Date: 2024-01-01 DOI: 10.1093/biomethods/bpae084
Julius B Kirkegaard

Instance segmentation is the task of assigning unique identifiers to individual objects in images. Solving this task requires breaking the inherent symmetry that semantically similar objects must result in distinct outputs. Deep learning algorithms bypass this break-of-symmetry by training specialized predictors or by utilizing intermediate label representations. However, many of these approaches break down when faced with overlapping labels that are ubiquitous in biomedical imaging, for instance for segmenting cell layers. Here, we discuss the reason for this failure and offer a novel approach for instance segmentation based on diffusion models that breaks this symmetry spontaneously. Our method outputs pixel-level instance segmentations matching the performance of models such as cellpose on the cellpose fluorescent cell dataset, while also permitting overlapping labels.

{"title":"Spontaneous breaking of symmetry in overlapping cell instance segmentation using diffusion models.","authors":"Julius B Kirkegaard","doi":"10.1093/biomethods/bpae084","DOIUrl":"10.1093/biomethods/bpae084","url":null,"abstract":"<p><p>Instance segmentation is the task of assigning unique identifiers to individual objects in images. Solving this task requires breaking the inherent symmetry that semantically similar objects must result in distinct outputs. Deep learning algorithms bypass this break-of-symmetry by training specialized predictors or by utilizing intermediate label representations. However, many of these approaches break down when faced with overlapping labels that are ubiquitous in biomedical imaging, for instance for segmenting cell layers. Here, we discuss the reason for this failure and offer a novel approach for instance segmentation based on diffusion models that breaks this symmetry spontaneously. Our method outputs pixel-level instance segmentations matching the performance of models such as cellpose on the cellpose fluorescent cell dataset, while also permitting overlapping labels.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":"9 1","pages":"bpae084"},"PeriodicalIF":2.5,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631529/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142808261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing negative control selection: A comparative analysis of random and targeted sampling techniques for obtaining High-Quality RNA from normal breast tissue.
IF 2.5 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-11-05 eCollection Date: 2024-01-01 DOI: 10.1093/biomethods/bpae083
Komal Mehta, Archana Sharma, Anurag Mehta, Juhi Tayal

Molecular profiling is a crucial aspect of cancer therapy selection, underscoring the necessity for representative sampling of both tumor and normal tissues. While much attention has been given to representative tumor sampling, there has been a notable lack of exploration into the issue of poor RNA quality in normal breast tissue processing. Normal breast tissue from the same patient is often used as a negative control for most "-omics" experiments. RNA extracted from normal breast tissues frequently contains nucleic acids from surrounding adipocytes, endothelial cells, and immune cells, leading to a low representation of ductal elements and skewed results. Therefore, ensuring a complete representation of breast glandular tissue is imperative. The study aimed to investigate the variations in RNA enrichment between a random sampling technique and a targeted sampling approach when visually selecting normal breast tissue sections as negative controls for "-omics" experiments. Fifteen female breast cancer subjects who underwent Modified Radical Mastectomy were selected for the study. Normal Breast tissue was visually examined, and samples were collected from random fat pockets (random sampling) and fibromuscular grey-white streak areas (targeted sampling). RNA was isolated, followed by spectrophotometric analysis, agarose gel electrophoresis and Agilent Tape station analysis. Histopathological assessments and a gene expression study for housekeeping genes were performed on both subsets. Tissues collected through targeted sampling exhibited significantly higher RNA quality than those obtained via random sampling. Histopathological analysis revealed cellular areas abundant in terminal ductular units within the targeted samples, and a final validation qPCR showed that the targeted samples were the most representative of normal breast glandular tissue. The comparative analysis of the two sampling methods clearly indicates that the targeted approach, with its superior accuracy and reliability, is the more practical choice for obtaining representative normal breast glandular tissue for "-omics" experiments.

{"title":"Enhancing negative control selection: A comparative analysis of random and targeted sampling techniques for obtaining High-Quality RNA from normal breast tissue.","authors":"Komal Mehta, Archana Sharma, Anurag Mehta, Juhi Tayal","doi":"10.1093/biomethods/bpae083","DOIUrl":"10.1093/biomethods/bpae083","url":null,"abstract":"<p><p>Molecular profiling is a crucial aspect of cancer therapy selection, underscoring the necessity for representative sampling of both tumor and normal tissues. While much attention has been given to representative tumor sampling, there has been a notable lack of exploration into the issue of poor RNA quality in normal breast tissue processing. Normal breast tissue from the same patient is often used as a negative control for most \"-omics\" experiments. RNA extracted from normal breast tissues frequently contains nucleic acids from surrounding adipocytes, endothelial cells, and immune cells, leading to a low representation of ductal elements and skewed results. Therefore, ensuring a complete representation of breast glandular tissue is imperative. The study aimed to investigate the variations in RNA enrichment between a random sampling technique and a targeted sampling approach when visually selecting normal breast tissue sections as negative controls for \"-omics\" experiments. Fifteen female breast cancer subjects who underwent Modified Radical Mastectomy were selected for the study. Normal Breast tissue was visually examined, and samples were collected from random fat pockets (random sampling) and fibromuscular grey-white streak areas (targeted sampling). RNA was isolated, followed by spectrophotometric analysis, agarose gel electrophoresis and Agilent Tape station analysis. Histopathological assessments and a gene expression study for housekeeping genes were performed on both subsets. Tissues collected through targeted sampling exhibited significantly higher RNA quality than those obtained via random sampling. Histopathological analysis revealed cellular areas abundant in terminal ductular units within the targeted samples, and a final validation qPCR showed that the targeted samples were the most representative of normal breast glandular tissue. The comparative analysis of the two sampling methods clearly indicates that the targeted approach, with its superior accuracy and reliability, is the more practical choice for obtaining representative normal breast glandular tissue for \"-omics\" experiments.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":"9 1","pages":"bpae083"},"PeriodicalIF":2.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631398/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142808215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient protocol for isolating human fibroblast from primary skin cell cultures: application to keloid, hypertrophic scar, and normal skin biopsies. 从原代皮肤细胞培养物中分离人类成纤维细胞的高效方案:应用于瘢痕疙瘩、增生性疤痕和正常皮肤活检。
IF 2.5 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-29 eCollection Date: 2024-01-01 DOI: 10.1093/biomethods/bpae082
Sri Suciati Ningsih, Sri Widia A Jusman, Rahimi Syaidah, Raisa Nauli, Fadilah Fadilah

This protocol introduces a streamlined and efficient method for isolating human fibroblast from skin primary cell culture with a specific focus on its application to keloid, hypertrophic scar, and normal skin biopsies. Additionally, the absence of suitable animal models for keloid and hypertrophic scar has led preclinical research to rely on in vitro studies using primary cell cultures. This approach addresses the challenges of existing protocols in terms of time, cost, equipment, and technical expertise required. The method involves derivation, culture, and characterization analysis including cell proliferation, migration, and fibroblastic marker (Vimentin, CD90, CD73, and CD105) expression. Our study yielded high amounts of fibroblast from tested skin explants while maintaining their in vivo-like characteristics and behaviour. Immunostaining assay confirmed that the cultivated fibroblast was positively expressed Vimentin. Flowcytometry results showed high expression of CD90 and CD73 while relatively showing lower expression of CD105. Fibroblast derived from keloid tissue showed the highest rate of proliferation and migration ability compared to the other samples. These findings suggest an efficient and reproducible technique to cultivate high qualified fibroblast from human skin in normal or pathological condition, particularly for keloid and hypertrophic scar. The application of this protocol provides a foundation for further studies to investigate the progression and potential intervention of aberrant fibrotic dermatological disorder, in vitro.

本方案介绍了一种从皮肤原代细胞培养物中分离人类成纤维细胞的简化高效方法,重点是将其应用于瘢痕疙瘩、增生性瘢痕和正常皮肤活检。此外,由于缺乏瘢痕疙瘩和增生性瘢痕的合适动物模型,临床前研究只能依赖使用原代细胞培养物进行体外研究。这种方法解决了现有方案在时间、成本、设备和所需专业技术方面的难题。该方法涉及衍生、培养和特征分析,包括细胞增殖、迁移和成纤维标志物(Vimentin、CD90、CD73 和 CD105)表达。我们的研究从测试的皮肤外植体中获得了大量成纤维细胞,同时保持了它们的活体特征和行为。免疫染色试验证实,培养的成纤维细胞正表达波形蛋白。流式细胞术结果显示,CD90 和 CD73 的表达量较高,而 CD105 的表达量相对较低。与其他样本相比,来自瘢痕组织的成纤维细胞显示出最高的增殖率和迁移能力。这些研究结果表明,从正常或病理状态下的人体皮肤中培养优质成纤维细胞,特别是瘢痕疙瘩和增生性瘢痕,是一种高效且可重复的技术。该方案的应用为进一步研究异常纤维化皮肤病的进展和潜在干预措施奠定了基础。
{"title":"Efficient protocol for isolating human fibroblast from primary skin cell cultures: application to keloid, hypertrophic scar, and normal skin biopsies.","authors":"Sri Suciati Ningsih, Sri Widia A Jusman, Rahimi Syaidah, Raisa Nauli, Fadilah Fadilah","doi":"10.1093/biomethods/bpae082","DOIUrl":"10.1093/biomethods/bpae082","url":null,"abstract":"<p><p>This protocol introduces a streamlined and efficient method for isolating human fibroblast from skin primary cell culture with a specific focus on its application to keloid, hypertrophic scar, and normal skin biopsies. Additionally, the absence of suitable animal models for keloid and hypertrophic scar has led preclinical research to rely on in vitro studies using primary cell cultures. This approach addresses the challenges of existing protocols in terms of time, cost, equipment, and technical expertise required. The method involves derivation, culture, and characterization analysis including cell proliferation, migration, and fibroblastic marker (Vimentin, CD90, CD73, and CD105) expression. Our study yielded high amounts of fibroblast from tested skin explants while maintaining their in vivo-like characteristics and behaviour. Immunostaining assay confirmed that the cultivated fibroblast was positively expressed Vimentin. Flowcytometry results showed high expression of CD90 and CD73 while relatively showing lower expression of CD105. Fibroblast derived from keloid tissue showed the highest rate of proliferation and migration ability compared to the other samples. These findings suggest an efficient and reproducible technique to cultivate high qualified fibroblast from human skin in normal or pathological condition, particularly for keloid and hypertrophic scar. The application of this protocol provides a foundation for further studies to investigate the progression and potential intervention of aberrant fibrotic dermatological disorder, in vitro.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":"9 1","pages":"bpae082"},"PeriodicalIF":2.5,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565194/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A rapid and inexpensive 96-well DNA-extraction method from blood using silicon dioxide powder (Glassmilk).
IF 2.5 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-26 eCollection Date: 2024-01-01 DOI: 10.1093/biomethods/bpae079
Maria Mercedes Vásquez Bonilla, Mónica Salome Guerrero-Freire, Yanua Ledesma, Juan Carlos Laglaguano, Jacobus H de Waard

We present a rapid high-throughput DNA extraction method for use with EDTA-anticoagulated blood using silicon dioxide (SiO2) powder in a guanidine-HCl solution, hereinafter referred to as "Glassmilk." The method utilizes a 96-well deep-well plate, enabling DNA extraction from 96 samples in under 3 h. The method integrates cell lysis, washing, elution, and DNA storage within the same well, eliminating the need for DNA transfer. The Glassmilk extraction method is cost-effective and fast, and it avoids expensive or toxic reagents by using only basic lab equipment. The method yielded approximately 40 μg of high-quality DNA from 200 μl of blood. The DNA yield of the Glassmilk method was about 50% higher, and the purity of the DNA was comparable to those obtained using two commercial column-based extraction kits that were used for comparison. The cost per sample was around $1, with the most expensive item being the filter pipette tips, which account for about $0.80 per sample. As we show, the extracted DNA is suitable for downstream applications such as polymerase chain reaction (PCR), PCR-restriction fragment length polymorphism analysis, and qPCR. The method can be adapted for various sample types, including biopsies, fecal samples, cultured cells, and bacteria (see "subprotocols" section), and can also be applied in individual Eppendorf tubes. Our protocol may be useful for basic molecular research in laboratories having limited funds.

{"title":"A rapid and inexpensive 96-well DNA-extraction method from blood using silicon dioxide powder (Glassmilk).","authors":"Maria Mercedes Vásquez Bonilla, Mónica Salome Guerrero-Freire, Yanua Ledesma, Juan Carlos Laglaguano, Jacobus H de Waard","doi":"10.1093/biomethods/bpae079","DOIUrl":"10.1093/biomethods/bpae079","url":null,"abstract":"<p><p>We present a rapid high-throughput DNA extraction method for use with EDTA-anticoagulated blood using silicon dioxide (SiO<sub>2</sub>) powder in a guanidine-HCl solution, hereinafter referred to as \"Glassmilk.\" The method utilizes a 96-well deep-well plate, enabling DNA extraction from 96 samples in under 3 h. The method integrates cell lysis, washing, elution, and DNA storage within the same well, eliminating the need for DNA transfer. The Glassmilk extraction method is cost-effective and fast, and it avoids expensive or toxic reagents by using only basic lab equipment. The method yielded approximately 40 μg of high-quality DNA from 200 μl of blood. The DNA yield of the Glassmilk method was about 50% higher, and the purity of the DNA was comparable to those obtained using two commercial column-based extraction kits that were used for comparison. The cost per sample was around $1, with the most expensive item being the filter pipette tips, which account for about $0.80 per sample. As we show, the extracted DNA is suitable for downstream applications such as polymerase chain reaction (PCR), PCR-restriction fragment length polymorphism analysis, and qPCR. The method can be adapted for various sample types, including biopsies, fecal samples, cultured cells, and bacteria (see \"subprotocols\" section), and can also be applied in individual Eppendorf tubes. Our protocol may be useful for basic molecular research in laboratories having limited funds.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":"9 1","pages":"bpae079"},"PeriodicalIF":2.5,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631390/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142808174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modified throughput ninhydrin method for the qualitative assessment of dietary protein absorption in pig plasma. 用于定性评估猪血浆中日粮蛋白质吸收的改良吞吐量茚三酮法。
IF 2.5 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-25 eCollection Date: 2024-01-01 DOI: 10.1093/biomethods/bpae078
Kateryna Pierzynowska, Kamil Zaworski, Piotr Wychowański, Janine Donaldson, Jarosław Woliński, Drucy Borowitz, Robert Gallotto, Stefan Pierzynowski

Protein maldigestion and malabsorption lead to malnutrition and are a feature of exocrine pancreatic insufficiency (EPI). Although it is the current standard, measurement of nitrogen in stool to assess protease activity is indirect. Up to 80% of hydrolysed proteins appear in blood in the form of peptides, so we developed a method to measure peptide-derived amino acids in plasma as a relevant measure of proteolysis, verified its accuracy, precision, and linearity, and validated it in a porcine model. We modified a ninhydrin method. Large proteins were eliminated from plasma with 10 kDa-cut-off centrifugal filters. Free and total amino acids were measured in permeate before and after its hydrolysis. Peptide-derived amino acids were quantified by subtracting free amino acids from total amino acids. We verified the method in vitro and by comparing results in healthy and EPI pigs. The accuracy of the analysis was close to 100%, with excellent precision (mean relative standard deviation for low, medium, and high amino acid levels = 0.88%) and with stringent linearity (r2  = 0.986, %RE = 5.23). The high-throughput ninhydrin method detected levels of peptide-derived amino acids in vivo with maximal changes seen approximately 2 hours postprandially in young pigs. The AUC and Cmax were significantly higher in healthy compared to EPI pigs (P = .0026 and P = .0037, respectively). The high-throughput ninhydrin method is a sensitive, reliable, and practical method for the estimation of dietary peptide-derived amino acids. This assay endpoint could serve as a direct biomarker of protein digestion and absorption.

蛋白质消化不良和吸收不良会导致营养不良,是胰腺外分泌功能不全(EPI)的一个特征。测量粪便中的氮来评估蛋白酶活性虽然是目前的标准,但却是间接的。高达 80% 的水解蛋白以肽的形式出现在血液中,因此我们开发了一种测量血浆中肽衍生氨基酸的方法,作为蛋白水解的相关测量指标,验证了该方法的准确性、精确性和线性,并在猪模型中进行了验证。我们改进了茚三酮法。用 10 kDa 截断离心过滤器去除血浆中的大分子蛋白质。在水解前后测量渗透液中的游离氨基酸和总氨基酸。通过从氨基酸总量中减去游离氨基酸来量化肽衍生氨基酸。我们在体外验证了这种方法,并比较了健康猪和 EPI 猪的结果。分析的准确度接近 100%,具有极高的精确度(低、中、高氨基酸水平的平均相对标准偏差 = 0.88%)和严格的线性度(r2 = 0.986,%RE = 5.23)。高通量茚三酮法检测体内肽源氨基酸水平,幼猪餐后约 2 小时变化最大。健康猪的 AUC 和 Cmax 明显高于 EPI 猪(P = .0026 和 P = .0037)。高通量茚三酮法是一种灵敏、可靠、实用的膳食肽源氨基酸测定方法。该检测终点可作为蛋白质消化和吸收的直接生物标志物。
{"title":"Modified throughput ninhydrin method for the qualitative assessment of dietary protein absorption in pig plasma.","authors":"Kateryna Pierzynowska, Kamil Zaworski, Piotr Wychowański, Janine Donaldson, Jarosław Woliński, Drucy Borowitz, Robert Gallotto, Stefan Pierzynowski","doi":"10.1093/biomethods/bpae078","DOIUrl":"https://doi.org/10.1093/biomethods/bpae078","url":null,"abstract":"<p><p>Protein maldigestion and malabsorption lead to malnutrition and are a feature of exocrine pancreatic insufficiency (EPI). Although it is the current standard, measurement of nitrogen in stool to assess protease activity is indirect. Up to 80% of hydrolysed proteins appear in blood in the form of peptides, so we developed a method to measure peptide-derived amino acids in plasma as a relevant measure of proteolysis, verified its accuracy, precision, and linearity, and validated it in a porcine model. We modified a ninhydrin method. Large proteins were eliminated from plasma with 10 kDa-cut-off centrifugal filters. Free and total amino acids were measured in permeate before and after its hydrolysis. Peptide-derived amino acids were quantified by subtracting free amino acids from total amino acids. We verified the method <i>in vitro</i> and by comparing results in healthy and EPI pigs. The accuracy of the analysis was close to 100%, with excellent precision (mean relative standard deviation for low, medium, and high amino acid levels = 0.88%) and with stringent linearity (<i>r<sup>2</sup></i>  = 0.986, %RE = 5.23). The high-throughput ninhydrin method detected levels of peptide-derived amino acids <i>in vivo</i> with maximal changes seen approximately 2 hours postprandially in young pigs. The AUC and Cmax were significantly higher in healthy compared to EPI pigs (<i>P</i> = .0026 and <i>P</i> = .0037, respectively). The high-throughput ninhydrin method is a sensitive, reliable, and practical method for the estimation of dietary peptide-derived amino acids. This assay endpoint could serve as a direct biomarker of protein digestion and absorption.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":"9 1","pages":"bpae078"},"PeriodicalIF":2.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11543343/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing Western blotting immunodetection: Streamlining antibody cocktails for reduced protocol time and enhanced multiplexing applications. 优化 Western 印迹免疫检测:精简鸡尾酒抗体,缩短方案时间,增强多重应用。
IF 2.5 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-15 eCollection Date: 2024-01-01 DOI: 10.1093/biomethods/bpae077
L Z Yamani, Khaldoon Alsamman, Omar S El-Masry

Adaptive, rather than innate, immunity relies mainly on antigen-antibody recognition. This recognition is driven by the binding of specific antibody paratopes to distinct epitopes found on antigens. This interaction is pivotal for immune responses that have been re-purposed for diagnostic and therapeutic purposes. This article focuses on Western blotting, an in vitro technique performed for protein immunodetection. Traditionally, this technique requires separate incubations of both primary and secondary antibodies, for which these antibodies recognize different antigen epitopes (conventional method). We propose a modified protocol combining both antibodies, involving a single incubation step that reduces time and conserves reagents (non-conventional/improved method). This improved protocol will enhance efficiency without compromising detection accuracy. It will support multiplexing, enabling the simultaneous detection of multiple proteins. Despite the positive results found by applying available antibodies, further optimization is required for a more thorough evaluation, to ensure that all antibodies consistently yield successful results in every detection attempt for broader use. Our findings indicate that the tested antibody cocktails remained stable over time, which suggests potential for commercialization of this modified Western blot protocol with a wide scope towards multiplex diagnostic application.

适应性免疫而非先天性免疫主要依靠抗原-抗体识别。这种识别是由特异性抗体副位点与抗原上的不同表位结合驱动的。这种相互作用是免疫反应的关键,已被重新用于诊断和治疗目的。本文重点介绍 Western 印迹技术,这是一种用于蛋白质免疫检测的体外技术。传统上,这种技术需要一抗和二抗分别孵育,而这些抗体能识别不同的抗原表位(传统方法)。我们提出了一种结合两种抗体的改进方案,只需一个孵育步骤,既缩短了时间,又节省了试剂(非常规/改进方法)。这一改进方案将在不影响检测准确性的前提下提高效率。它还支持多重检测,可同时检测多种蛋白质。尽管应用现有抗体取得了积极的结果,但还需要进一步优化,进行更全面的评估,以确保所有抗体在每次检测中都能取得一致的成功结果,从而得到更广泛的应用。我们的研究结果表明,经过测试的抗体鸡尾酒在一段时间内保持稳定,这表明这种改良的 Western 印迹方案具有商业化的潜力,可广泛应用于多重诊断。
{"title":"Optimizing Western blotting immunodetection: Streamlining antibody cocktails for reduced protocol time and enhanced multiplexing applications.","authors":"L Z Yamani, Khaldoon Alsamman, Omar S El-Masry","doi":"10.1093/biomethods/bpae077","DOIUrl":"10.1093/biomethods/bpae077","url":null,"abstract":"<p><p>Adaptive, rather than innate, immunity relies mainly on antigen-antibody recognition. This recognition is driven by the binding of specific antibody paratopes to distinct epitopes found on antigens. This interaction is pivotal for immune responses that have been re-purposed for diagnostic and therapeutic purposes. This article focuses on Western blotting, an <i>in vitro</i> technique performed for protein immunodetection. Traditionally, this technique requires separate incubations of both primary and secondary antibodies, for which these antibodies recognize different antigen epitopes (conventional method). We propose a modified protocol combining both antibodies, involving a single incubation step that reduces time and conserves reagents (non-conventional/improved method). This improved protocol will enhance efficiency without compromising detection accuracy. It will support multiplexing, enabling the simultaneous detection of multiple proteins. Despite the positive results found by applying available antibodies, further optimization is required for a more thorough evaluation, to ensure that all antibodies consistently yield successful results in every detection attempt for broader use. Our findings indicate that the tested antibody cocktails remained stable over time, which suggests potential for commercialization of this modified Western blot protocol with a wide scope towards multiplex diagnostic application.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":"9 1","pages":"bpae077"},"PeriodicalIF":2.5,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513134/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Live cell fluorescence microscopy-an end-to-end workflow for high-throughput image and data analysis. 活细胞荧光显微镜--用于高通量图像和数据分析的端到端工作流程。
IF 2.5 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-11 eCollection Date: 2024-01-01 DOI: 10.1093/biomethods/bpae075
Jakub Zahumensky, Jan Malinsky

Fluorescence microscopy images of biological samples contain valuable information but require rigorous analysis for accurate and reliable determination of changes in protein localization, fluorescence intensity, and morphology of the studied objects. Traditionally, cells for microscopy are immobilized using chemicals, which can introduce stress. Analysis often focuses only on colocalization and involves manual segmentation and measurement, which are time-consuming and can introduce bias. Our new workflow addresses these issues by gently immobilizing cells using a small agarose block on a microscope coverslip. This approach is suitable for cell-walled cells (yeast, fungi, plants, bacteria), facilitates their live imaging under conditions close to their natural environment and enables the addition of chemicals during time-lapse experiments. The primary focus of the protocol is on the presented analysis workflow, which is applicable to virtually any cell type-we describe cell segmentation using the Cellpose software followed by automated analysis of a multitude of parameters using custom-written Fiji (ImageJ) macros. The results can be easily processed using the provided R markdown scripts or available graphing software. Our method facilitates unbiased batch analysis of large datasets, improving the efficiency and accuracy of fluorescence microscopy research. The reported sample preparation protocol and Fiji macros were used in our recent publications: Microbiol Spectr (2022), DOI: 10.1128/spectrum.01961-22; Microbiol Spectr (2022), DOI: 10.1128/spectrum.02489-22; J Cell Sci (2023), DOI: 10.1242/jcs.260554.

生物样本的荧光显微图像包含宝贵的信息,但需要进行严格的分析,才能准确可靠地确定所研究对象的蛋白质定位、荧光强度和形态的变化。传统上,用于显微镜观察的细胞是用化学物质固定的,这会带来应力。分析通常只关注共定位,涉及手动分割和测量,既费时又可能产生偏差。我们的新工作流程通过在显微镜盖玻片上使用小型琼脂糖块轻轻固定细胞来解决这些问题。这种方法适用于细胞壁细胞(酵母、真菌、植物、细菌),便于在接近其自然环境的条件下对其进行活体成像,并能在延时实验中添加化学试剂。该方案的主要重点是所介绍的分析工作流程,它几乎适用于任何细胞类型--我们介绍了使用 Cellpose 软件进行细胞分割,然后使用定制的 Fiji(ImageJ)宏对多种参数进行自动分析。使用所提供的 R 标记脚本或可用的绘图软件可以轻松处理结果。我们的方法有助于对大型数据集进行无偏批量分析,提高荧光显微镜研究的效率和准确性。所报告的样品制备方案和 Fiji 宏被用于我们最近发表的文章中:Microbiol Spectr (2022),DOI: 10.1128/spectrum.01961-22;Microbiol Spectr (2022),DOI: 10.1128/spectrum.02489-22;J Cell Sci (2023),DOI: 10.1242/jcs.260554。
{"title":"Live cell fluorescence microscopy-an end-to-end workflow for high-throughput image and data analysis.","authors":"Jakub Zahumensky, Jan Malinsky","doi":"10.1093/biomethods/bpae075","DOIUrl":"10.1093/biomethods/bpae075","url":null,"abstract":"<p><p>Fluorescence microscopy images of biological samples contain valuable information but require rigorous analysis for accurate and reliable determination of changes in protein localization, fluorescence intensity, and morphology of the studied objects. Traditionally, cells for microscopy are immobilized using chemicals, which can introduce stress. Analysis often focuses only on colocalization and involves manual segmentation and measurement, which are time-consuming and can introduce bias. Our new workflow addresses these issues by gently immobilizing cells using a small agarose block on a microscope coverslip. This approach is suitable for cell-walled cells (yeast, fungi, plants, bacteria), facilitates their live imaging under conditions close to their natural environment and enables the addition of chemicals during time-lapse experiments. The primary focus of the protocol is on the presented analysis workflow, which is applicable to virtually any cell type-we describe cell segmentation using the Cellpose software followed by automated analysis of a multitude of parameters using custom-written Fiji (ImageJ) macros. The results can be easily processed using the provided R markdown scripts or available graphing software. Our method facilitates unbiased batch analysis of large datasets, improving the efficiency and accuracy of fluorescence microscopy research. The reported sample preparation protocol and Fiji macros were used in our recent publications: <i>Microbiol Spectr</i> (2022), DOI: 10.1128/spectrum.01961-22; <i>Microbiol Spectr</i> (2022), DOI: 10.1128/spectrum.02489-22; <i>J Cell Sci</i> (2023), DOI: 10.1242/jcs.260554.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":"9 1","pages":"bpae075"},"PeriodicalIF":2.5,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525050/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A reproducible method to study traumatic injury-induced zebrafish brain regeneration. 研究创伤诱导斑马鱼脑再生的可重复方法。
IF 2.5 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-10 eCollection Date: 2024-01-01 DOI: 10.1093/biomethods/bpae073
Priyanka P Srivastava, Sidharth Bhasin, Sunita S Shankaran, Catherine Roger, Rajesh Ramachandran, Shilpi Minocha

Traumatic brain injury (TBI) can be caused by a sudden blow or jolt to the head, causing irreversible brain damage leading to cellular and functional loss. Mammals cannot repair such damage, which may increase the risk of progressive neurodegeneration. Unlike mammals, lower vertebrates such as zebrafish have the astounding capability to regenerate their brains. A model system would be of great value to study zebrafish brain regeneration. Here, we describe a physical method to induce traumatic injury in the zebrafish brain and outline a pipeline to utilize this model system to explore various aspects of brain regeneration. This will significantly advance the fields of regenerative biology and neuroscience. The method includes inducing TBI and validating this through histological assays, immunohistochemistry, and gene expression analysis. By using this model system, researchers will be able to gain valuable insights into the cellular and molecular mechanisms underlying brain regeneration. Understanding these mechanisms could lead to the identification of potential strategies to address neurodegenerative conditions in higher vertebrates.

创伤性脑损伤(TBI)可由头部突然受到撞击或颠簸引起,造成不可逆转的脑损伤,导致细胞和功能丧失。哺乳动物无法修复这种损伤,这可能会增加渐进性神经变性的风险。与哺乳动物不同,斑马鱼等低等脊椎动物具有惊人的大脑再生能力。建立一个模型系统对研究斑马鱼大脑再生具有重要价值。在此,我们描述了诱导斑马鱼大脑创伤的物理方法,并概述了利用这一模型系统探索大脑再生各方面问题的流程。这将极大地推动再生生物学和神经科学领域的发展。该方法包括诱导创伤性脑损伤,并通过组织学检测、免疫组化和基因表达分析进行验证。通过使用这一模型系统,研究人员将能够获得有关脑再生的细胞和分子机制的宝贵见解。了解了这些机制,就能找到解决高等脊椎动物神经退行性疾病的潜在策略。
{"title":"A reproducible method to study traumatic injury-induced zebrafish brain regeneration.","authors":"Priyanka P Srivastava, Sidharth Bhasin, Sunita S Shankaran, Catherine Roger, Rajesh Ramachandran, Shilpi Minocha","doi":"10.1093/biomethods/bpae073","DOIUrl":"10.1093/biomethods/bpae073","url":null,"abstract":"<p><p>Traumatic brain injury (TBI) can be caused by a sudden blow or jolt to the head, causing irreversible brain damage leading to cellular and functional loss. Mammals cannot repair such damage, which may increase the risk of progressive neurodegeneration. Unlike mammals, lower vertebrates such as zebrafish have the astounding capability to regenerate their brains. A model system would be of great value to study zebrafish brain regeneration. Here, we describe a physical method to induce traumatic injury in the zebrafish brain and outline a pipeline to utilize this model system to explore various aspects of brain regeneration. This will significantly advance the fields of regenerative biology and neuroscience. The method includes inducing TBI and validating this through histological assays, immunohistochemistry, and gene expression analysis. By using this model system, researchers will be able to gain valuable insights into the cellular and molecular mechanisms underlying brain regeneration. Understanding these mechanisms could lead to the identification of potential strategies to address neurodegenerative conditions in higher vertebrates.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":"9 1","pages":"bpae073"},"PeriodicalIF":2.5,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502497/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cluster analysis identifies long COVID subtypes in Belgian patients. 聚类分析确定了比利时患者的长 COVID 亚型。
IF 2.5 Q3 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-09 eCollection Date: 2024-01-01 DOI: 10.1093/biomethods/bpae076
Pamela Mfouth Kemajou, Tatiana Besse-Hammer, Claire Lebouc, Yves Coppieters

Severe acute respiratory syndrome coronavirus infection presents complications known as long COVID, a multisystemic organ disease which allows multidimensional analysis. This study aims to uncover clusters of long COVID cases and establish their correlation with the clinical classification developed at the Clinical Research Unit of Brugmann University Hospital, Brussels. Such an endeavour is instrumental in customizing patient management strategies tailored to the unique needs of each distinct group. A two-stage multidimensional exploratory analysis was performed on a retrospective cohort of 205 long COVID patients, involving a factorial analysis of mixed data, and then hierarchical clustering post component analysis. The study's sample comprised 76% women, with an average age of 44.5 years. Three clinical forms were identified: long, persistent, and post-viral syndrome. Multidimensional analysis using demographic, clinical, and biological variables identified three clusters of patients. Biological data did not provide sufficient differentiation between clusters. This emphasizes the importance of identifying or classifying long COVID patients according to their predominant clinical syndrome. Long COVID phenotypes, as well as clinical forms, appear to be associated with distinct pathophysiological mechanisms or genetic predispositions. This underscores the need for further research.

严重急性呼吸系统综合征冠状病毒感染引起的并发症被称为长COVID,这是一种多系统器官疾病,可进行多维分析。本研究旨在发现长COVID病例群,并确定其与布鲁塞尔布鲁曼大学医院临床研究室制定的临床分类的相关性。这项工作有助于根据每个不同群体的独特需求定制患者管理策略。我们对 205 名长期慢性阻塞性肺病患者的回顾性队列进行了两阶段多维探索性分析,包括混合数据的因子分析和分层聚类后成分分析。研究样本中有 76% 为女性,平均年龄为 44.5 岁。确定了三种临床形式:长期、持续和病毒后综合征。利用人口统计学、临床和生物学变量进行的多维分析确定了三组患者。生物数据并不能充分区分不同群组。这强调了根据主要临床综合征对长COVID患者进行识别或分类的重要性。长 COVID 表型和临床形式似乎与不同的病理生理机制或遗传倾向有关。这凸显了进一步研究的必要性。
{"title":"Cluster analysis identifies long COVID subtypes in Belgian patients.","authors":"Pamela Mfouth Kemajou, Tatiana Besse-Hammer, Claire Lebouc, Yves Coppieters","doi":"10.1093/biomethods/bpae076","DOIUrl":"10.1093/biomethods/bpae076","url":null,"abstract":"<p><p>Severe acute respiratory syndrome coronavirus infection presents complications known as long COVID, a multisystemic organ disease which allows multidimensional analysis. This study aims to uncover clusters of long COVID cases and establish their correlation with the clinical classification developed at the Clinical Research Unit of Brugmann University Hospital, Brussels. Such an endeavour is instrumental in customizing patient management strategies tailored to the unique needs of each distinct group. A two-stage multidimensional exploratory analysis was performed on a retrospective cohort of 205 long COVID patients, involving a factorial analysis of mixed data, and then hierarchical clustering post component analysis. The study's sample comprised 76% women, with an average age of 44.5 years. Three clinical forms were identified: long, persistent, and post-viral syndrome. Multidimensional analysis using demographic, clinical, and biological variables identified three clusters of patients. Biological data did not provide sufficient differentiation between clusters. This emphasizes the importance of identifying or classifying long COVID patients according to their predominant clinical syndrome. Long COVID phenotypes, as well as clinical forms, appear to be associated with distinct pathophysiological mechanisms or genetic predispositions. This underscores the need for further research.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":"9 1","pages":"bpae076"},"PeriodicalIF":2.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522879/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142548094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biology Methods and Protocols
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1