首页 > 最新文献

IEEE Transactions on Molecular, Biological, and Multi-Scale Communications最新文献

英文 中文
Explainability of Neural Networks for Symbol Detection in Molecular Communication Channels 分子通信信道中符号检测的神经网络可解释性
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-07-20 DOI: 10.1109/TMBMC.2023.3297135
Jorge Torres Gómez;Pit Hofmann;Frank H. P. Fitzek;Falko Dressler
Recent molecular communication (MC) research suggests machine learning (ML) models for symbol detection, avoiding the unfeasibility of end-to-end channel models. However, ML models are applied as black boxes, lacking proof of correctness of the underlying neural networks (NNs) to detect incoming symbols. This paper studies approaches to the explainability of NNs for symbol detection in MC channels. Based on MC channel models and real testbed measurements, we generate synthesized data and train a NN model to detect of binary transmissions in MC channels. Using the local interpretable model-agnostic explanation (LIME) method and the individual conditional expectation (ICE), the findings in this paper demonstrate the analogy between the trained NN and the standard peak and slope detectors.
最近的分子通信(MC)研究提出了用于符号检测的机器学习(ML)模型,避免了端到端信道模型的不可行性。然而,ML模型被应用为黑匣子,缺乏底层神经网络(NN)检测传入符号的正确性证明。本文研究了用于MC信道中符号检测的神经网络的可解释性方法。基于MC信道模型和实际测试台测量,我们生成合成数据并训练NN模型来检测MC信道中的二进制传输。使用局部可解释模型不可知解释(LIME)方法和个体条件期望(ICE),本文的研究结果证明了训练的神经网络与标准峰值和斜率检测器之间的相似性。
{"title":"Explainability of Neural Networks for Symbol Detection in Molecular Communication Channels","authors":"Jorge Torres Gómez;Pit Hofmann;Frank H. P. Fitzek;Falko Dressler","doi":"10.1109/TMBMC.2023.3297135","DOIUrl":"https://doi.org/10.1109/TMBMC.2023.3297135","url":null,"abstract":"Recent molecular communication (MC) research suggests machine learning (ML) models for symbol detection, avoiding the unfeasibility of end-to-end channel models. However, ML models are applied as black boxes, lacking proof of correctness of the underlying neural networks (NNs) to detect incoming symbols. This paper studies approaches to the explainability of NNs for symbol detection in MC channels. Based on MC channel models and real testbed measurements, we generate synthesized data and train a NN model to detect of binary transmissions in MC channels. Using the local interpretable model-agnostic explanation (LIME) method and the individual conditional expectation (ICE), the findings in this paper demonstrate the analogy between the trained NN and the standard peak and slope detectors.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"9 3","pages":"323-328"},"PeriodicalIF":2.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67982989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Reducing Dispersion in Molecular Communications by Placing Decelerators in the Propagation Channel 通过在传播通道中放置减速器来减少分子通信中的色散
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-07-19 DOI: 10.1109/TMBMC.2023.3296828
Angelika S. Thalmayer;Alisa Ladebeck;Samuel Zeising;Georg Fischer
In molecular communications, magnetic nanoparticles, which are injected into a pipe flow, are used as information carriers. Due to the parabolic shape of the velocity profile in laminar flow regimes, the speed of one particle depends on its radial position in the tube. This results in an unwanted extension of a particle pulse over the propagation time. Potential overlapping of subsequent pulses induces intersymbol interference. Only few research of the current state of the art reduces velocity dispersion directly within the propagation channel. To the best of the authors’ knowledge, this is the first paper that numerically investigates different passive obstacles which are placed directly in the channel for non-turbulent flow regimes to address the dispersion effects. These obstacles serve as decelerators, as they decelerate the fastest particles while at the same time accelerating slower particles. The results reveal that a passive decelerator can reduce the velocity dispersion in molecular communications and, thus, guarantee a more packetized pulse shortly behind the decelerator but also after some distance. Compared with different decelerators, an elliptical-shaped one showed the best results, as it inverts the velocity profile.
在分子通信中,注入管道流中的磁性纳米颗粒被用作信息载体。由于层流状态下速度分布的抛物线形状,一个粒子的速度取决于其在管中的径向位置。这导致粒子脉冲在传播时间上的不希望的扩展。后续脉冲的潜在重叠会引起符号间干扰。只有很少的现有技术的研究直接降低了传播通道内的速度色散。据作者所知,这是第一篇数值研究非湍流状态下直接放置在通道中的不同被动障碍物的论文,以解决分散效应。这些障碍物起到减速器的作用,因为它们使最快的粒子减速,同时使较慢的粒子加速。结果表明,被动减速器可以减少分子通信中的速度色散,从而保证在减速器后面不久,但也在一定距离后,脉冲更加打包。与不同的减速器相比,椭圆形减速器表现出最好的效果,因为它颠倒了速度剖面。
{"title":"Reducing Dispersion in Molecular Communications by Placing Decelerators in the Propagation Channel","authors":"Angelika S. Thalmayer;Alisa Ladebeck;Samuel Zeising;Georg Fischer","doi":"10.1109/TMBMC.2023.3296828","DOIUrl":"https://doi.org/10.1109/TMBMC.2023.3296828","url":null,"abstract":"In molecular communications, magnetic nanoparticles, which are injected into a pipe flow, are used as information carriers. Due to the parabolic shape of the velocity profile in laminar flow regimes, the speed of one particle depends on its radial position in the tube. This results in an unwanted extension of a particle pulse over the propagation time. Potential overlapping of subsequent pulses induces intersymbol interference. Only few research of the current state of the art reduces velocity dispersion directly within the propagation channel. To the best of the authors’ knowledge, this is the first paper that numerically investigates different passive obstacles which are placed directly in the channel for non-turbulent flow regimes to address the dispersion effects. These obstacles serve as decelerators, as they decelerate the fastest particles while at the same time accelerating slower particles. The results reveal that a passive decelerator can reduce the velocity dispersion in molecular communications and, thus, guarantee a more packetized pulse shortly behind the decelerator but also after some distance. Compared with different decelerators, an elliptical-shaped one showed the best results, as it inverts the velocity profile.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"9 3","pages":"334-339"},"PeriodicalIF":2.2,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67982991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
m-MSC: Molecular Communication-Based Analysis for Controlled MSC Treatment of Cytokine Storm m-MSC:基于分子通讯的细胞因子风暴MSC控制治疗分析
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-07-18 DOI: 10.1109/TMBMC.2023.3296430
Saswati Pal;Sudip Misra;Nabiul Islam
COVID-19-induced cytokine storm, which is formed due to the excessive secretion of cytokine molecules, causes multi-organ damage and subsequently, the death of COVID-19 patients. Mesenchymal Stem Cells (MSCs) are regarded as cellular vaccines to combat the hyper-inflammatory response to cytokine storms. However, determining the required dose of MSCs to be infused within a certain time period is challenging due to the complex vascular networks and varying individual immune responses. In this work, we propose a molecular communication-based system to model the transmission, propagation, and immuno-modulatory response of MSCs to the cytokine storm. The proposed analytical model provides valuable insights into the behavior of the system and can be used as a framework for further experimental-based studies to estimate the required dose of MSCs. We analyze the varying shapes and geometries of the vascular channel on the propagation of the MSCs. We observe that the higher shear stress hinders MSC signal propagation, while lower shear stress induces propagation along the channel. Simulation results show that the MSC signal peaks in four simulation days upon administering the MSCs. Further, the results reveal that repeating the MSC infusion on alternate days is required to maintain a prolonged immuno-modulating effect on the cytokine storm.
COVID-19诱导的细胞因子风暴是由于细胞因子分子的过度分泌而形成的,会导致多器官损伤,随后导致COVID-19]患者死亡。间充质干细胞(MSCs)被认为是对抗细胞因子风暴的超炎症反应的细胞疫苗。然而,由于复杂的血管网络和不同的个体免疫反应,确定在一定时间内输注MSC的所需剂量是具有挑战性的。在这项工作中,我们提出了一个基于分子通讯的系统来模拟MSC对细胞因子风暴的传播、繁殖和免疫调节反应。所提出的分析模型为系统的行为提供了有价值的见解,并可作为进一步基于实验的研究的框架,以估计MSC的所需剂量。我们分析了MSCs传播过程中血管通道的不同形状和几何形状。我们观察到,较高的剪切应力阻碍了MSC信号的传播,而较低的剪应力诱导了沿着通道的传播。模拟结果显示MSC信号在施用MSC后的四个模拟日内达到峰值。此外,结果表明,需要每隔几天重复MSC输注,以维持对细胞因子风暴的长期免疫调节作用。
{"title":"m-MSC: Molecular Communication-Based Analysis for Controlled MSC Treatment of Cytokine Storm","authors":"Saswati Pal;Sudip Misra;Nabiul Islam","doi":"10.1109/TMBMC.2023.3296430","DOIUrl":"https://doi.org/10.1109/TMBMC.2023.3296430","url":null,"abstract":"COVID-19-induced cytokine storm, which is formed due to the excessive secretion of cytokine molecules, causes multi-organ damage and subsequently, the death of COVID-19 patients. Mesenchymal Stem Cells (MSCs) are regarded as cellular vaccines to combat the hyper-inflammatory response to cytokine storms. However, determining the required dose of MSCs to be infused within a certain time period is challenging due to the complex vascular networks and varying individual immune responses. In this work, we propose a molecular communication-based system to model the transmission, propagation, and immuno-modulatory response of MSCs to the cytokine storm. The proposed analytical model provides valuable insights into the behavior of the system and can be used as a framework for further experimental-based studies to estimate the required dose of MSCs. We analyze the varying shapes and geometries of the vascular channel on the propagation of the MSCs. We observe that the higher shear stress hinders MSC signal propagation, while lower shear stress induces propagation along the channel. Simulation results show that the MSC signal peaks in four simulation days upon administering the MSCs. Further, the results reveal that repeating the MSC infusion on alternate days is required to maintain a prolonged immuno-modulating effect on the cytokine storm.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"9 3","pages":"286-294"},"PeriodicalIF":2.2,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67982984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Affinity-Division Multiplexing for Molecular Communications With Promiscuous Ligand Receptors 与混杂配体受体进行分子通讯的亲和分裂复用
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-07-13 DOI: 10.1109/TMBMC.2023.3295338
Ahmet R. Emirdagi;M. Serkan Kopuzlu;M. Okan Araz;Murat Kuscu
A key challenge in Molecular Communications (MC) is low data transmission rates, which can be addressed by channel multiplexing techniques. One way to achieve channel multiplexing in MC is to leverage the diversity of different molecule types with respect to their receptor binding characteristics, such as affinity and kinetic binding/unbinding rates. In this study, we propose a practical multiplexing scheme for MC, which is based on the diversity of ligand-receptor binding affinities. This method requires only a single type of promiscuous receptor on the receiver side, capable of interacting with multiple ligand types. We analytically derive the mean Bit Error Probability (BEP) over all multiplexed MC channels as a function of similarity among ligands in terms of their receptor affinities, the number of receptors, the number of multiplexed channels, and the ratio of concentrations encoding bit-1 and bit-0. We investigate the impact of each design parameter on the performance of multiplexed MC system.
分子通信(MC)的一个关键挑战是低数据传输速率,这可以通过信道复用技术来解决。在MC中实现通道复用的一种方法是利用不同分子类型在受体结合特性方面的多样性,如亲和力和动力学结合/解结合率。在这项研究中,我们提出了一种实用的MC多路复用方案,该方案基于配体-受体结合亲和力的多样性。这种方法只需要受体侧的单一类型的混杂受体,能够与多种配体类型相互作用。我们分析推导了所有多路复用MC通道的平均误比特概率(BEP),作为配体之间相似性的函数,包括它们的受体亲和力、受体数量、多路复用通道数量以及编码比特-1和比特-0的浓度比。研究了各设计参数对多路复用MC系统性能的影响。
{"title":"Affinity-Division Multiplexing for Molecular Communications With Promiscuous Ligand Receptors","authors":"Ahmet R. Emirdagi;M. Serkan Kopuzlu;M. Okan Araz;Murat Kuscu","doi":"10.1109/TMBMC.2023.3295338","DOIUrl":"https://doi.org/10.1109/TMBMC.2023.3295338","url":null,"abstract":"A key challenge in Molecular Communications (MC) is low data transmission rates, which can be addressed by channel multiplexing techniques. One way to achieve channel multiplexing in MC is to leverage the diversity of different molecule types with respect to their receptor binding characteristics, such as affinity and kinetic binding/unbinding rates. In this study, we propose a practical multiplexing scheme for MC, which is based on the diversity of ligand-receptor binding affinities. This method requires only a single type of promiscuous receptor on the receiver side, capable of interacting with multiple ligand types. We analytically derive the mean Bit Error Probability (BEP) over all multiplexed MC channels as a function of similarity among ligands in terms of their receptor affinities, the number of receptors, the number of multiplexed channels, and the ratio of concentrations encoding bit-1 and bit-0. We investigate the impact of each design parameter on the performance of multiplexed MC system.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"9 3","pages":"318-322"},"PeriodicalIF":2.2,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67982988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Stochastic Biofilm Disruption Model Based on Quorum Sensing Mimickers 基于群体感应模拟的随机生物膜破坏模型
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-07-05 DOI: 10.1109/TMBMC.2023.3292321
Fatih Gulec;Andrew W. Eckford
Quorum sensing (QS) mimickers can be used as an effective tool to disrupt biofilms which consist of communicating bacteria and extracellular polymeric substances (EPS). In this paper, a stochastic biofilm disruption model based on the usage of QS mimickers is proposed. A chemical reaction network (CRN) involving four different states is employed to model the biological processes during the biofilm formation and its disruption via QS mimickers. In addition, a state-based stochastic simulation algorithm is proposed to simulate this CRN. The proposed model is validated by the in vitro experimental results of Pseudomonas aeruginosa biofilm and its disruption by rosmarinic acid as the QS mimicker. Our results show that there is an uncertainty in state transitions due to the effect of the randomness in the CRN. In addition to the QS activation threshold, the presented work demonstrates that there are underlying two more thresholds for the disruption of EPS and bacteria, which provides a realistic modeling for biofilm disruption with QS mimickers.
群体感应(QS)模拟物可以作为一种有效的工具来破坏由通讯细菌和细胞外聚合物(EPS)组成的生物膜。本文提出了一种基于QS拟态器的随机生物膜破坏模型。采用涉及四种不同状态的化学反应网络(CRN),通过QS拟态器对生物膜形成及其破坏过程进行建模。此外,还提出了一种基于状态的随机模拟算法来模拟这种CRN。通过铜绿假单胞菌生物膜的体外实验结果以及迷迭香酸作为QS拟态物对其的破坏,验证了所提出的模型。我们的结果表明,由于CRN中随机性的影响,状态转换存在不确定性。除了QS激活阈值外,所提出的工作表明,EPS和细菌的破坏还有另外两个阈值,这为QS拟态物破坏生物膜提供了一个现实的模型。
{"title":"A Stochastic Biofilm Disruption Model Based on Quorum Sensing Mimickers","authors":"Fatih Gulec;Andrew W. Eckford","doi":"10.1109/TMBMC.2023.3292321","DOIUrl":"https://doi.org/10.1109/TMBMC.2023.3292321","url":null,"abstract":"Quorum sensing (QS) mimickers can be used as an effective tool to disrupt biofilms which consist of communicating bacteria and extracellular polymeric substances (EPS). In this paper, a stochastic biofilm disruption model based on the usage of QS mimickers is proposed. A chemical reaction network (CRN) involving four different states is employed to model the biological processes during the biofilm formation and its disruption via QS mimickers. In addition, a state-based stochastic simulation algorithm is proposed to simulate this CRN. The proposed model is validated by the in vitro experimental results of Pseudomonas aeruginosa biofilm and its disruption by rosmarinic acid as the QS mimicker. Our results show that there is an uncertainty in state transitions due to the effect of the randomness in the CRN. In addition to the QS activation threshold, the presented work demonstrates that there are underlying two more thresholds for the disruption of EPS and bacteria, which provides a realistic modeling for biofilm disruption with QS mimickers.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"9 3","pages":"346-350"},"PeriodicalIF":2.2,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67982994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Interfacial Shift Keying Allows a High Information Rate in Molecular Communication: Methods and Data 界面移位键控在分子通信中实现高信息率:方法和数据
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-06-27 DOI: 10.1109/TMBMC.2023.3290076
Federico Calì;Giovanni Li-Destri;Nunzio Tuccitto
This study reports a method for molecular communication in fluids and provides a detailed description of the testbed and numerous experimental data. The prototype involves information being carried by fluorescent carbon nanoparticles. The details of the synthesis and fluorescence properties are also described. Signal modulation was achieved by exploiting the instability effect of an interfacial phenomenon known as viscosity fingering, which occurs when two miscible liquids with different viscosities or strong density variations contact one another. This modulation is called interfacial shift keying. The data confirm the reproducibility of the method. A new approach based on the deliberate superposition of two consecutive close releases is described in detail, and data from several experimental replicas are provided.
本研究报告了一种在流体中进行分子通讯的方法,并提供了试验台的详细描述和大量实验数据。原型包括由荧光碳纳米颗粒携带的信息。还描述了合成和荧光性质的细节。信号调制是通过利用被称为粘度指进的界面现象的不稳定性效应来实现的,当具有不同粘度或强密度变化的两种可混溶液体相互接触时,就会发生这种现象。这种调制称为界面移位键控。数据证实了该方法的再现性。详细描述了一种基于两个连续闭合释放的有意叠加的新方法,并提供了几个实验复制品的数据。
{"title":"Interfacial Shift Keying Allows a High Information Rate in Molecular Communication: Methods and Data","authors":"Federico Calì;Giovanni Li-Destri;Nunzio Tuccitto","doi":"10.1109/TMBMC.2023.3290076","DOIUrl":"https://doi.org/10.1109/TMBMC.2023.3290076","url":null,"abstract":"This study reports a method for molecular communication in fluids and provides a detailed description of the testbed and numerous experimental data. The prototype involves information being carried by fluorescent carbon nanoparticles. The details of the synthesis and fluorescence properties are also described. Signal modulation was achieved by exploiting the instability effect of an interfacial phenomenon known as viscosity fingering, which occurs when two miscible liquids with different viscosities or strong density variations contact one another. This modulation is called interfacial shift keying. The data confirm the reproducibility of the method. A new approach based on the deliberate superposition of two consecutive close releases is described in detail, and data from several experimental replicas are provided.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"9 3","pages":"300-307"},"PeriodicalIF":2.2,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67823226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Control-Theoretic Model for Bidirectional Molecular Communication Systems 双向分子通信系统的控制理论模型
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-06-27 DOI: 10.1109/TMBMC.2023.3290077
Taishi Kotsuka;Yutaka Hori
Molecular communication (MC) enables cooperation of spatially dispersed molecular robots through the feedback control mediated by diffusing signal molecules. However, conventional analysis frameworks for the MC channels mostly consider the dynamics of unidirectional communication, lacking the effect of feedback interactions. In this paper, we propose a general control-theoretic modeling framework for bidirectional MC systems capable of capturing the dynamics of feedback control via MC in a systematic manner. The proposed framework considers not only the dynamics of molecular diffusion but also the boundary dynamics at the molecular robots that captures the lag due to the molecular transmission/reception process affecting the performance of the entire feedback system. Thus, methods in control theory can be applied to systematically analyze various dynamical properties of the feedback system. We perform a frequency response analysis based on the proposed framework to show a general design guideline for MC channels to transfer signal with desired control bandwidth. Finally, these results are demonstrated by showing the step-by-step design procedure of a specific MC channel satisfying a given specification.
分子通信(MC)通过扩散信号分子介导的反馈控制,实现了空间分散分子机器人的协作。然而,传统的MC通道分析框架大多考虑单向通信的动力学,缺乏反馈交互的影响。在本文中,我们为双向MC系统提出了一个通用的控制理论建模框架,该框架能够通过MC系统地捕捉反馈控制的动力学。所提出的框架不仅考虑了分子扩散的动力学,还考虑了分子机器人的边界动力学,该动力学捕捉了由于分子传输/接收过程影响整个反馈系统性能而产生的滞后。因此,控制理论中的方法可以用于系统地分析反馈系统的各种动力学特性。我们在所提出的框架的基础上进行了频率响应分析,以展示MC信道以所需控制带宽传输信号的通用设计指南。最后,通过展示满足给定规范的特定MC信道的逐步设计过程来证明这些结果。
{"title":"A Control-Theoretic Model for Bidirectional Molecular Communication Systems","authors":"Taishi Kotsuka;Yutaka Hori","doi":"10.1109/TMBMC.2023.3290077","DOIUrl":"https://doi.org/10.1109/TMBMC.2023.3290077","url":null,"abstract":"Molecular communication (MC) enables cooperation of spatially dispersed molecular robots through the feedback control mediated by diffusing signal molecules. However, conventional analysis frameworks for the MC channels mostly consider the dynamics of unidirectional communication, lacking the effect of feedback interactions. In this paper, we propose a general control-theoretic modeling framework for bidirectional MC systems capable of capturing the dynamics of feedback control via MC in a systematic manner. The proposed framework considers not only the dynamics of molecular diffusion but also the boundary dynamics at the molecular robots that captures the lag due to the molecular transmission/reception process affecting the performance of the entire feedback system. Thus, methods in control theory can be applied to systematically analyze various dynamical properties of the feedback system. We perform a frequency response analysis based on the proposed framework to show a general design guideline for MC channels to transfer signal with desired control bandwidth. Finally, these results are demonstrated by showing the step-by-step design procedure of a specific MC channel satisfying a given specification.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"9 3","pages":"274-285"},"PeriodicalIF":2.2,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67982996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Publication Information IEEE分子、生物学和多尺度通信出版信息汇刊
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-06-20 DOI: 10.1109/TMBMC.2023.3274026
{"title":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Publication Information","authors":"","doi":"10.1109/TMBMC.2023.3274026","DOIUrl":"https://doi.org/10.1109/TMBMC.2023.3274026","url":null,"abstract":"","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"9 2","pages":"C2-C2"},"PeriodicalIF":2.2,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6687308/10157988/10158296.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68020453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Communications Society Information IEEE通信协会信息
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-06-20 DOI: 10.1109/TMBMC.2023.3274028
{"title":"IEEE Communications Society Information","authors":"","doi":"10.1109/TMBMC.2023.3274028","DOIUrl":"https://doi.org/10.1109/TMBMC.2023.3274028","url":null,"abstract":"","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"9 2","pages":"C3-C3"},"PeriodicalIF":2.2,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6687308/10157988/10157989.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68018593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guest Editorial Special Feature on Quantum Biology 量子生物学客座编辑特辑
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-06-20 DOI: 10.1109/TMBMC.2023.3278539
Harun Šiljak
Quantum biology is not a new field of study: as the physicists’ work on foundations of quantum theory matured, the question of linking it with the secrets of living organisms drew more and more attention. It was posed as a natural philosophy question as well, exploring the link of quantum randomness with the competing perceptions of the world, idealist and materialist. It also posed a question to what will later become known as systems theory: is reductionism ever warranted in complex systems? These first thoughts on quantum effects as underlying mechanisms of living organisms predate the modern molecular biology revolution.
量子生物学并不是一个新的研究领域:随着物理学家对量子理论基础的研究逐渐成熟,将其与生物体秘密联系起来的问题越来越受到关注。它也被提出为一个自然哲学问题,探索量子随机性与唯心主义者和唯物主义者对世界的相互竞争的看法之间的联系。它还对后来被称为系统论的东西提出了一个问题:还原论在复杂系统中有必要吗?这些关于量子效应作为生物体潜在机制的最初想法早于现代分子生物学革命。
{"title":"Guest Editorial Special Feature on Quantum Biology","authors":"Harun Šiljak","doi":"10.1109/TMBMC.2023.3278539","DOIUrl":"https://doi.org/10.1109/TMBMC.2023.3278539","url":null,"abstract":"Quantum biology is not a new field of study: as the physicists’ work on foundations of quantum theory matured, the question of linking it with the secrets of living organisms drew more and more attention. It was posed as a natural philosophy question as well, exploring the link of quantum randomness with the competing perceptions of the world, idealist and materialist. It also posed a question to what will later become known as systems theory: is reductionism ever warranted in complex systems? These first thoughts on quantum effects as underlying mechanisms of living organisms predate the modern molecular biology revolution.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"9 2","pages":"233-234"},"PeriodicalIF":2.2,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6687308/10157988/10158274.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68018597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Molecular, Biological, and Multi-Scale Communications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1