首页 > 最新文献

IEEE Transactions on Molecular, Biological, and Multi-Scale Communications最新文献

英文 中文
2023 Index IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Vol.9 2023 索引 IEEE 分子、生物和多尺度通信论文集第 9 卷
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-12-22 DOI: 10.1109/TMBMC.2023.3345590
{"title":"2023 Index IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Vol.9","authors":"","doi":"10.1109/TMBMC.2023.3345590","DOIUrl":"https://doi.org/10.1109/TMBMC.2023.3345590","url":null,"abstract":"","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"9 4","pages":"499-510"},"PeriodicalIF":2.2,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10372180","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139034111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Received Signal and Channel Parameter Estimation in Molecular Communications 分子通信中的接收信号和信道参数估计
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-12-22 DOI: 10.1109/TMBMC.2023.3342731
O. Tansel Baydas;Ozgur B. Akan
Molecular communication (MC) is a paradigm that employs molecules as information carriers, hence, requiring unconventional transceivers and detection techniques for the Internet of Bio-Nano Things (IoBNT). In this study, we provide a novel MC model that incorporates a spherical transmitter and receiver with partial absorption. This model offers a more realistic representation than receiver architectures in literature, e.g., passive or entirely absorbing configurations. An optimization-based technique utilizing particle swarm optimization (PSO) is employed to accurately estimate the cumulative number of molecules received. This technique yields nearly constant correction parameters and demonstrates a significant improvement of 5 times in terms of root mean square error (RMSE) compared to the literature. The estimated channel model provides an approximate analytical impulse response; hence, it is used for estimating channel parameters such as distance, diffusion coefficient, or a combination of both. The iterative maximum likelihood estimation (MLE) is applied for the parameter estimation, which gives consistent errors compared to the estimated Cramer-Rao Lower Bound (CLRB).
分子通信(MC)是一种利用分子作为信息载体的范例,因此,生物纳米物联网(IoBNT)需要非常规的收发器和检测技术。在本研究中,我们提供了一种新颖的 MC 模型,该模型包含具有部分吸收功能的球形发射器和接收器。与文献中的接收器架构(如无源或完全吸收配置)相比,该模型提供了更真实的表示。利用粒子群优化(PSO)的优化技术,可以准确估计接收到的分子累积数量。该技术可获得几乎不变的校正参数,与文献相比,在均方根误差 (RMSE) 方面显著提高了 5 倍。估算出的信道模型提供了近似的分析脉冲响应,因此可用于估算距离、扩散系数或两者的组合等信道参数。参数估计采用迭代最大似然估计 (MLE),与估计的克拉默-拉奥下限 (CLRB) 相比,误差一致。
{"title":"Received Signal and Channel Parameter Estimation in Molecular Communications","authors":"O. Tansel Baydas;Ozgur B. Akan","doi":"10.1109/TMBMC.2023.3342731","DOIUrl":"https://doi.org/10.1109/TMBMC.2023.3342731","url":null,"abstract":"Molecular communication (MC) is a paradigm that employs molecules as information carriers, hence, requiring unconventional transceivers and detection techniques for the Internet of Bio-Nano Things (IoBNT). In this study, we provide a novel MC model that incorporates a spherical transmitter and receiver with partial absorption. This model offers a more realistic representation than receiver architectures in literature, e.g., passive or entirely absorbing configurations. An optimization-based technique utilizing particle swarm optimization (PSO) is employed to accurately estimate the cumulative number of molecules received. This technique yields nearly constant correction parameters and demonstrates a significant improvement of 5 times in terms of root mean square error (RMSE) compared to the literature. The estimated channel model provides an approximate analytical impulse response; hence, it is used for estimating channel parameters such as distance, diffusion coefficient, or a combination of both. The iterative maximum likelihood estimation (MLE) is applied for the parameter estimation, which gives consistent errors compared to the estimated Cramer-Rao Lower Bound (CLRB).","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 1","pages":"92-97"},"PeriodicalIF":2.2,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140161246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in Predicting Drug Functions: A Decade-Long Survey in Drug Discovery Research 预测药物功能的进展:药物发现研究十年调查
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-12-21 DOI: 10.1109/TMBMC.2023.3345145
Pranab Das;Dilwar Hussain Mazumder
Drug function study is vital in current drug discovery, design, and development. Determining the drug functions of a novel drug is time-consuming, complicated, expensive, and requires many experts and clinical testing phases. The computational-based drug function prediction activity has recently become more attractive due to its capability to reduce drug development design complexity, time, human resources, cost, chemical waste, and the risk of failure. The evolution of the computational model has advanced as an effective tool for predicting and analyzing drug functions, which are derived from Medical Subject Headings (MeSH). However, predicting drug functions still faces several difficulties. Therefore, an exhaustive literature survey was conducted that discusses the application of computational methods to predict drug functions in the past decade. Additionally, this paper discusses the utilization of drug functions as an input feature to predict adverse drug reactions and disease classification. This work also provides an overview of the computational models with their performance, multi-label problem transformation methods, drug properties, and their sources needed for the task of drug function prediction. Finally, unsolved issues, research gaps, and difficulties with the drug function prediction task have been summarized.
药物功能研究在当前的药物发现、设计和开发中至关重要。确定一种新药的药物功能耗时长、过程复杂、成本高,而且需要经过许多专家和临床试验阶段。基于计算的药物功能预测活动最近变得越来越有吸引力,因为它能够降低药物开发设计的复杂性、时间、人力资源、成本、化学废物和失败风险。计算模型的发展已成为预测和分析药物功能的有效工具,药物功能来源于医学主题词表(MeSH)。然而,预测药物功能仍面临一些困难。因此,本文进行了详尽的文献调查,讨论了过去十年中应用计算方法预测药物功能的情况。此外,本文还讨论了如何利用药物功能作为输入特征来预测药物不良反应和疾病分类。这项工作还概述了药物功能预测任务所需的计算模型及其性能、多标签问题转换方法、药物特性及其来源。最后,还总结了药物功能预测任务中尚未解决的问题、研究空白和难点。
{"title":"Advances in Predicting Drug Functions: A Decade-Long Survey in Drug Discovery Research","authors":"Pranab Das;Dilwar Hussain Mazumder","doi":"10.1109/TMBMC.2023.3345145","DOIUrl":"https://doi.org/10.1109/TMBMC.2023.3345145","url":null,"abstract":"Drug function study is vital in current drug discovery, design, and development. Determining the drug functions of a novel drug is time-consuming, complicated, expensive, and requires many experts and clinical testing phases. The computational-based drug function prediction activity has recently become more attractive due to its capability to reduce drug development design complexity, time, human resources, cost, chemical waste, and the risk of failure. The evolution of the computational model has advanced as an effective tool for predicting and analyzing drug functions, which are derived from Medical Subject Headings (MeSH). However, predicting drug functions still faces several difficulties. Therefore, an exhaustive literature survey was conducted that discusses the application of computational methods to predict drug functions in the past decade. Additionally, this paper discusses the utilization of drug functions as an input feature to predict adverse drug reactions and disease classification. This work also provides an overview of the computational models with their performance, multi-label problem transformation methods, drug properties, and their sources needed for the task of drug function prediction. Finally, unsolved issues, research gaps, and difficulties with the drug function prediction task have been summarized.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 1","pages":"75-91"},"PeriodicalIF":2.2,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140161170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Publication Information 电气和电子工程师学会《分子、生物和多尺度通信论文集》(IEEE Transactions on Molecular, Biological, and Multi-Scale Communications)出版信息
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-12-18 DOI: 10.1109/TMBMC.2023.3326009
{"title":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Publication Information","authors":"","doi":"10.1109/TMBMC.2023.3326009","DOIUrl":"https://doi.org/10.1109/TMBMC.2023.3326009","url":null,"abstract":"","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"9 4","pages":"C2-C2"},"PeriodicalIF":2.2,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10364886","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138739585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Communications Society Information IEEE 通信学会信息
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-12-18 DOI: 10.1109/TMBMC.2023.3326011
{"title":"IEEE Communications Society Information","authors":"","doi":"10.1109/TMBMC.2023.3326011","DOIUrl":"https://doi.org/10.1109/TMBMC.2023.3326011","url":null,"abstract":"","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"9 4","pages":"C3-C3"},"PeriodicalIF":2.2,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10364920","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138739584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What Really is “Molecule” in Molecular Communications? The Quest for Physics of Particle-Based Information Carriers 分子通讯中的 "分子 "究竟是什么?探索基于粒子的信息载体的物理学原理
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-12-04 DOI: 10.1109/TMBMC.2023.3338950
Hanlin Xiao;Kamela Dokaj;Ozgur B. Akan
Molecular communication, as implied by its name, uses molecules as information carriers for communication between objects. It has an advantage over traditional electromagnetic-wave-based communication in that molecule-based systems could be biocompatible, operable in challenging environments, and energetically undemanding. Consequently, they are envisioned to have a broad range of applications, such as in the Internet of Bio-Nano Things, targeted drug delivery, and agricultural monitoring. Despite the rapid development of the field, with an increasing number of theoretical models and experimental testbeds established by researchers, a fundamental aspect of the field has often been sidelined, namely, the nature of the molecule in molecular communication. The potential information molecules could exhibit a wide range of properties, making them require drastically different treatments when being modeled and experimented upon. Therefore, in this paper, we delve into the intricacies of commonly used information molecules, examining their fundamental physical characteristics, associated communication systems, and potential applications in a more realistic manner, focusing on the influence of their own properties. Through this comprehensive survey, we aim to offer a novel yet essential perspective on molecular communication, thereby bridging the current gap between theoretical research and real-world applications.
分子通信,顾名思义,就是利用分子作为信息载体,在物体之间进行通信。与传统的电磁波通信相比,分子通信的优势在于分子系统具有生物兼容性,可在具有挑战性的环境中运行,而且对能量的要求不高。因此,分子系统被认为具有广泛的应用前景,如生物纳米物联网、靶向给药和农业监测等。尽管该领域发展迅速,研究人员建立了越来越多的理论模型和实验平台,但该领域的一个基本方面往往被忽视,即分子通信中分子的性质。潜在的信息分子可能表现出多种多样的特性,因此在建立模型和进行实验时需要采用截然不同的处理方法。因此,在本文中,我们将深入探讨常用信息分子的复杂性,以更现实的方式研究它们的基本物理特性、相关通信系统和潜在应用,重点关注它们自身特性的影响。通过这一全面调查,我们旨在为分子通讯提供一个新颖而又重要的视角,从而弥合当前理论研究与实际应用之间的差距。
{"title":"What Really is “Molecule” in Molecular Communications? The Quest for Physics of Particle-Based Information Carriers","authors":"Hanlin Xiao;Kamela Dokaj;Ozgur B. Akan","doi":"10.1109/TMBMC.2023.3338950","DOIUrl":"10.1109/TMBMC.2023.3338950","url":null,"abstract":"Molecular communication, as implied by its name, uses molecules as information carriers for communication between objects. It has an advantage over traditional electromagnetic-wave-based communication in that molecule-based systems could be biocompatible, operable in challenging environments, and energetically undemanding. Consequently, they are envisioned to have a broad range of applications, such as in the Internet of Bio-Nano Things, targeted drug delivery, and agricultural monitoring. Despite the rapid development of the field, with an increasing number of theoretical models and experimental testbeds established by researchers, a fundamental aspect of the field has often been sidelined, namely, the nature of the molecule in molecular communication. The potential information molecules could exhibit a wide range of properties, making them require drastically different treatments when being modeled and experimented upon. Therefore, in this paper, we delve into the intricacies of commonly used information molecules, examining their fundamental physical characteristics, associated communication systems, and potential applications in a more realistic manner, focusing on the influence of their own properties. Through this comprehensive survey, we aim to offer a novel yet essential perspective on molecular communication, thereby bridging the current gap between theoretical research and real-world applications.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 1","pages":"43-74"},"PeriodicalIF":2.2,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139234475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diffusion-Based Anti-Interference Joint Modulation in MIMO Molecular Communication 多输入多输出分子通信中基于扩散的抗干扰联合调制
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-11-29 DOI: 10.1109/TMBMC.2023.3336259
Guodong Yue;Guoying Lin;Qiang Liu;Kun Yang
Molecular communication (MC) is a significant technology in the field of nano-biology, which uses molecules as message carriers to transmit information. Diffusion channel model is the most common channel model base on Brownian motion in molecular communication since molecules can diffuse to the destination without the need of extra energy supply. However, the random Brownian motion brings high delay and uncertainty to the communication process and thus modulation methods are required to improve the communication performance. The molecular communication system in the SISO (Single Input Single Output) scenario will be seriously affected by ISI (Inter Symbol Interference). In MIMO (Multi-Input Multi-Output) scenario, since there are multiple transmitters and receivers, in addition to ISI, there will be ILI (Inter Link Interference) as well. At present, most modulations are based on the concentration, type, time and space of molecules and only focus on SISO scenario. In this study, inspired by the MoSK (Molecule Shift Keying) modulation method, we proposed a new joint modulation method for MIMO communication in order to minimize the effect of ISI and ILI. Numerical results show that compared with the current modulation scheme, the proposed scheme allows the MIMO system achieve better BER (Bit error rate) performance and transmission rate.
分子通讯(MC)是纳米生物学领域的一项重要技术,它利用分子作为信息载体来传输信息。扩散信道模型是分子通讯中最常见的基于布朗运动的信道模型,因为分子可以扩散到目的地而不需要额外的能量供应。然而,随机布朗运动会给通信过程带来高延迟和不确定性,因此需要采用调制方法来提高通信性能。在 SISO(单输入单输出)情况下,分子通信系统会受到 ISI(符号间干扰)的严重影响。在 MIMO(多输入多输出)情况下,由于有多个发射器和接收器,除了 ISI 外,还会出现 ILI(链路间干扰)。目前,大多数调制都是基于分子的浓度、类型、时间和空间,并且只关注 SISO 场景。本研究受 MoSK(分子移频键控)调制方法的启发,提出了一种用于 MIMO 通信的新型联合调制方法,以最大限度地降低 ISI 和 ILI 的影响。数值结果表明,与当前的调制方案相比,所提出的方案能使多输入多输出系统获得更好的误码率(BER)性能和传输速率。
{"title":"Diffusion-Based Anti-Interference Joint Modulation in MIMO Molecular Communication","authors":"Guodong Yue;Guoying Lin;Qiang Liu;Kun Yang","doi":"10.1109/TMBMC.2023.3336259","DOIUrl":"https://doi.org/10.1109/TMBMC.2023.3336259","url":null,"abstract":"Molecular communication (MC) is a significant technology in the field of nano-biology, which uses molecules as message carriers to transmit information. Diffusion channel model is the most common channel model base on Brownian motion in molecular communication since molecules can diffuse to the destination without the need of extra energy supply. However, the random Brownian motion brings high delay and uncertainty to the communication process and thus modulation methods are required to improve the communication performance. The molecular communication system in the SISO (Single Input Single Output) scenario will be seriously affected by ISI (Inter Symbol Interference). In MIMO (Multi-Input Multi-Output) scenario, since there are multiple transmitters and receivers, in addition to ISI, there will be ILI (Inter Link Interference) as well. At present, most modulations are based on the concentration, type, time and space of molecules and only focus on SISO scenario. In this study, inspired by the MoSK (Molecule Shift Keying) modulation method, we proposed a new joint modulation method for MIMO communication in order to minimize the effect of ISI and ILI. Numerical results show that compared with the current modulation scheme, the proposed scheme allows the MIMO system achieve better BER (Bit error rate) performance and transmission rate.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 1","pages":"112-121"},"PeriodicalIF":2.2,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140161241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intercellular Chemical Communication Through EV Exchange: Evaluation of the EV Fusion Process Parameters at the Receiving Cell 通过 EV 交换进行细胞间化学交流:评估接收细胞的电动汽车融合过程参数
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-11-28 DOI: 10.1109/TMBMC.2023.3336322
Alfio Lombardo;Giacomo Morabito;Carla Panarello;Fabrizio Pappalardo
Cells communicate with each other exploiting a variety of chemical signals. Among them, Extracellular Vesicles (EVs) have attracted large interest by the scientific community. In fact, thanks to the advances in bio-nano-technology and the possibility of engineering EVs, they are envisioned as a perfect means for distributing biological information among receiving cells. However, deciphering the molecular mechanisms that regulate the delivery of EV cargo is, today, a necessary, yet challenging, step toward the exploitation of EV signaling to support innovative and efficient therapeutic protocols, alternative to current drug delivery technologies. In particular, very little information is currently available on the processes of EV fusion, which is the EV internalization process occurring when the EV membrane dissolves into the plasma membrane of the target cell, and the EV content is released into the cytosol. In order to understand the dynamics of this process, this paper introduces an analytical model of the evolution of the fusion process. Moreover, since the measurement of the biological parameters driving the fusion process is far to be achieved, in this paper we use the model as a tool to infer likely values of such parameters from parameters that are measurable with current technology.
细胞之间利用各种化学信号进行交流。其中,细胞外囊泡(EVs)引起了科学界的极大兴趣。事实上,得益于生物纳米技术的进步以及对 EVs 进行工程化的可能性,EVs 被认为是在接收细胞间传播生物信息的完美手段。然而,破译调控 EV 货物递送的分子机制是当今利用 EV 信号支持创新和高效治疗方案、替代当前药物递送技术的一个必要但极具挑战性的步骤。特别是,目前有关 EV 融合过程的信息非常少,而 EV 融合是指 EV 膜溶解到靶细胞的质膜上,EV 内容释放到细胞质中的 EV 内化过程。为了了解这一过程的动态,本文介绍了融合过程演变的分析模型。此外,由于对驱动融合过程的生物参数的测量远未实现,我们在本文中将该模型作为一种工具,从现有技术可测量的参数中推断出这些参数的可能值。
{"title":"Intercellular Chemical Communication Through EV Exchange: Evaluation of the EV Fusion Process Parameters at the Receiving Cell","authors":"Alfio Lombardo;Giacomo Morabito;Carla Panarello;Fabrizio Pappalardo","doi":"10.1109/TMBMC.2023.3336322","DOIUrl":"https://doi.org/10.1109/TMBMC.2023.3336322","url":null,"abstract":"Cells communicate with each other exploiting a variety of chemical signals. Among them, Extracellular Vesicles (EVs) have attracted large interest by the scientific community. In fact, thanks to the advances in bio-nano-technology and the possibility of engineering EVs, they are envisioned as a perfect means for distributing biological information among receiving cells. However, deciphering the molecular mechanisms that regulate the delivery of EV cargo is, today, a necessary, yet challenging, step toward the exploitation of EV signaling to support innovative and efficient therapeutic protocols, alternative to current drug delivery technologies. In particular, very little information is currently available on the processes of EV fusion, which is the EV internalization process occurring when the EV membrane dissolves into the plasma membrane of the target cell, and the EV content is released into the cytosol. In order to understand the dynamics of this process, this paper introduces an analytical model of the evolution of the fusion process. Moreover, since the measurement of the biological parameters driving the fusion process is far to be achieved, in this paper we use the model as a tool to infer likely values of such parameters from parameters that are measurable with current technology.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 1","pages":"21-31"},"PeriodicalIF":2.2,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10330635","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140161171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Metagenomic Binning Problem: Clustering Markov Sequences 元基因组分选问题:马尔可夫序列聚类
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-11-28 DOI: 10.1109/TMBMC.2023.3336254
Grant Greenberg;Ilan Shomorony
The goal of metagenomics is to study the composition of microbial communities, typically using high-throughput shotgun sequencing. In the metagenomic binning problem, we observe random substrings (called contigs) from a mixture of genomes and aim to cluster them according to their genome of origin. Based on the empirical observation that genomes of different bacterial species can be distinguished based on their tetranucleotide frequencies, we model this task as the problem of clustering ${N}$ sequences generated by ${M}$ distinct Markov processes, where $M ll N$ . Utilizing the large-deviation principle for Markov processes, we establish the information-theoretic limit for perfect binning. Specifically, we show that the length of the contigs must scale with the inverse of the Chernoff divergence rate between the two most similar species. Furthermore, our result implies that contigs should be binned using the KL divergence rate as a measure of distance, as opposed to the Euclidean distance often used in practice.
元基因组学的目标是研究微生物群落的组成,通常采用高通量枪式测序法。在元基因组分选问题中,我们从混合基因组中观察随机子串(称为等位基因),并根据它们的起源基因组对它们进行聚类。根据经验观察,不同细菌物种的基因组可以根据它们的四核苷酸频率来区分,因此我们将这项任务建模为聚类由 ${M}$ 不同马尔可夫过程(其中 $M ll N$ )产生的 ${N}$ 序列的问题。利用马尔可夫过程的大偏差原理,我们建立了完美分选的信息论极限。具体来说,我们证明等位基因的长度必须与两个最相似物种之间的切尔诺夫分歧率的倒数成比例。此外,我们的结果还暗示,应该用 KL 分歧率来衡量等位基因的距离,而不是实践中常用的欧氏距离。
{"title":"The Metagenomic Binning Problem: Clustering Markov Sequences","authors":"Grant Greenberg;Ilan Shomorony","doi":"10.1109/TMBMC.2023.3336254","DOIUrl":"https://doi.org/10.1109/TMBMC.2023.3336254","url":null,"abstract":"The goal of metagenomics is to study the composition of microbial communities, typically using high-throughput shotgun sequencing. In the metagenomic binning problem, we observe random substrings (called contigs) from a mixture of genomes and aim to cluster them according to their genome of origin. Based on the empirical observation that genomes of different bacterial species can be distinguished based on their tetranucleotide frequencies, we model this task as the problem of clustering \u0000<inline-formula> <tex-math>${N}$ </tex-math></inline-formula>\u0000 sequences generated by \u0000<inline-formula> <tex-math>${M}$ </tex-math></inline-formula>\u0000 distinct Markov processes, where \u0000<inline-formula> <tex-math>$M ll N$ </tex-math></inline-formula>\u0000. Utilizing the large-deviation principle for Markov processes, we establish the information-theoretic limit for perfect binning. Specifically, we show that the length of the contigs must scale with the inverse of the Chernoff divergence rate between the two most similar species. Furthermore, our result implies that contigs should be binned using the KL divergence rate as a measure of distance, as opposed to the Euclidean distance often used in practice.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 1","pages":"32-42"},"PeriodicalIF":2.2,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140161172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Joint Source-Channel Coding for DNA Image Storage: A Novel Approach With Enhanced Error Resilience and Biological Constraint Optimization 用于 DNA 图像存储的深度源-信道联合编码:增强抗错能力和生物约束优化的新方法
IF 2.2 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-11-09 DOI: 10.1109/TMBMC.2023.3331579
Wenfeng Wu;Luping Xiang;Qiang Liu;Kun Yang
In the current era, DeoxyriboNucleic Acid (DNA) based data storage emerges as an intriguing approach, garnering substantial academic interest and investigation. This paper introduces a novel deep joint source-channel coding (DJSCC) scheme for DNA image storage, designated as DJSCC-DNA. This paradigm distinguishes itself from conventional DNA storage techniques through three key modifications: 1) it employs advanced deep learning methodologies, employing convolutional neural networks for DNA encoding and decoding processes; 2) it seamlessly integrates DNA polymerase chain reaction (PCR) amplification into the network architecture, thereby augmenting data recovery precision; and 3) it restructures the loss function by targeting biological constraints for optimization. The performance of the proposed model is demonstrated via numerical results from specific channel testing, suggesting that it surpasses conventional deep learning methodologies in terms of peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). Additionally, the model effectively ensures positive constraints on both homopolymer run-length and GC content.
当今时代,基于脱氧核糖核酸(DNA)的数据存储成为一种引人入胜的方法,引起了学术界的极大兴趣和研究。本文介绍了一种用于 DNA 图像存储的新型深度联合源信道编码(DJSCC)方案,命名为 DJSCC-DNA。该范例通过三个关键修改将自己与传统的 DNA 存储技术区分开来:1)它采用了先进的深度学习方法,在 DNA 编码和解码过程中使用卷积神经网络;2)它将 DNA 聚合酶链式反应(PCR)扩增无缝集成到网络架构中,从而提高了数据恢复精度;3)它通过针对生物约束进行优化来重组损失函数。通过特定信道测试的数值结果证明了所提模型的性能,表明它在峰值信噪比(PSNR)和结构相似性指数(SSIM)方面超越了传统的深度学习方法。此外,该模型还有效地确保了对均聚物运行长度和 GC 含量的正向约束。
{"title":"Deep Joint Source-Channel Coding for DNA Image Storage: A Novel Approach With Enhanced Error Resilience and Biological Constraint Optimization","authors":"Wenfeng Wu;Luping Xiang;Qiang Liu;Kun Yang","doi":"10.1109/TMBMC.2023.3331579","DOIUrl":"10.1109/TMBMC.2023.3331579","url":null,"abstract":"In the current era, DeoxyriboNucleic Acid (DNA) based data storage emerges as an intriguing approach, garnering substantial academic interest and investigation. This paper introduces a novel deep joint source-channel coding (DJSCC) scheme for DNA image storage, designated as DJSCC-DNA. This paradigm distinguishes itself from conventional DNA storage techniques through three key modifications: 1) it employs advanced deep learning methodologies, employing convolutional neural networks for DNA encoding and decoding processes; 2) it seamlessly integrates DNA polymerase chain reaction (PCR) amplification into the network architecture, thereby augmenting data recovery precision; and 3) it restructures the loss function by targeting biological constraints for optimization. The performance of the proposed model is demonstrated via numerical results from specific channel testing, suggesting that it surpasses conventional deep learning methodologies in terms of peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). Additionally, the model effectively ensures positive constraints on both homopolymer run-length and GC content.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"9 4","pages":"461-471"},"PeriodicalIF":2.2,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135562109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Molecular, Biological, and Multi-Scale Communications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1