Pub Date : 2024-04-02DOI: 10.1080/23328940.2024.2321066
Frank Yeh
{"title":"Temperature gating in thermoTRPs may depend on temperature-dependent heat capacity differences","authors":"Frank Yeh","doi":"10.1080/23328940.2024.2321066","DOIUrl":"https://doi.org/10.1080/23328940.2024.2321066","url":null,"abstract":"","PeriodicalId":36837,"journal":{"name":"Temperature","volume":"410 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140751459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-09eCollection Date: 2024-01-01DOI: 10.1080/23328940.2024.2322920
Paul Rosbrook, Daniel Sweet, JianBo Qiao, David P Looney, Lee M Margolis, David Hostler, Riana R Pryor, J Luke Pryor
Military missions are conducted in a multitude of environments including heat and may involve walking under load following severe exertion, the metabolic demands of which may have nutritional implications for fueling and recovery planning. Ten males equipped a military pack loaded to 30% of their body mass and walked in 20°C/40% relative humidity (RH) (TEMP) or 37°C/20% RH (HOT) either continuously (CW) for 90 min at the first ventilatory threshold or mixed walking (MW) with unloaded running intervals above the second ventilatory threshold between min 35 and 55 of the 90 min bout. Pulmonary gas, thermoregulatory, and cardiovascular variables were analyzed following running intervals. Final rectal temperature (MW: p < 0.001, g = 3.81, CW: p < 0.001, g = 4.04), oxygen uptake, cardiovascular strain, and energy expenditure were higher during HOT trials (p ≤ 0.05) regardless of exercise type. Both HOT trials elicited higher final carbohydrate oxidation (CHOox) than TEMP CW at min 90 (HOT MW: p < 0.001, g = 1.45, HOT CW: p = 0.009, g = 0.67) and HOT MW CHOox exceeded TEMP MW at min 80 and 90 (p = 0.049, g = 0.60 and p = 0.024, g = 0.73, respectively). There were no within-environment differences in substrate oxidation indicating that severe exertion work cycles did not produce a carryover effect during subsequent loaded walking. The rate of CHOox during 90 minutes of load carriage in the heat appears to be primarily affected by accumulated thermal load.
{"title":"Heat stress increases carbohydrate oxidation rates and oxygen uptake during prolonged load carriage exercise.","authors":"Paul Rosbrook, Daniel Sweet, JianBo Qiao, David P Looney, Lee M Margolis, David Hostler, Riana R Pryor, J Luke Pryor","doi":"10.1080/23328940.2024.2322920","DOIUrl":"10.1080/23328940.2024.2322920","url":null,"abstract":"<p><p>Military missions are conducted in a multitude of environments including heat and may involve walking under load following severe exertion, the metabolic demands of which may have nutritional implications for fueling and recovery planning. Ten males equipped a military pack loaded to 30% of their body mass and walked in 20°C/40% relative humidity (RH) (TEMP) or 37°C/20% RH (HOT) either continuously (CW) for 90 min at the first ventilatory threshold or mixed walking (MW) with unloaded running intervals above the second ventilatory threshold between min 35 and 55 of the 90 min bout. Pulmonary gas, thermoregulatory, and cardiovascular variables were analyzed following running intervals. Final rectal temperature (MW: <i>p</i> < 0.001, g = 3.81, CW: <i>p</i> < 0.001, g = 4.04), oxygen uptake, cardiovascular strain, and energy expenditure were higher during HOT trials (<i>p</i> ≤ 0.05) regardless of exercise type. Both HOT trials elicited higher final carbohydrate oxidation (CHO<sub>ox</sub>) than TEMP CW at min 90 (HOT MW: <i>p</i> < 0.001, g = 1.45, HOT CW: <i>p</i> = 0.009, g = 0.67) and HOT MW CHO<sub>ox</sub> exceeded TEMP MW at min 80 and 90 (<i>p</i> = 0.049, g = 0.60 and <i>p</i> = 0.024, g = 0.73, respectively). There were no within-environment differences in substrate oxidation indicating that severe exertion work cycles did not produce a carryover effect during subsequent loaded walking. The rate of CHO<sub>ox</sub> during 90 minutes of load carriage in the heat appears to be primarily affected by accumulated thermal load.</p>","PeriodicalId":36837,"journal":{"name":"Temperature","volume":"11 2","pages":"170-181"},"PeriodicalIF":0.0,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11152092/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141284982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-07eCollection Date: 2024-01-01DOI: 10.1080/23328940.2024.2313954
Xiang Ren Tan, Ivan C C Low, Tuck Wah Soong, Jason K W Lee
Pre-exercise passive heating attenuates muscle damage caused by eccentric exercise in rats where the induction of heat shock proteins (HSPs) confers a myoprotective effect. We investigated whether pre-exercise hot water immersion (HWI) confers similar benefits in humans. Eleven recreational male athletes were immersed in 41°C water up to 60 min or until rectal temperatures reached 39.5°C. After a 6 h rest, the participants performed an eccentric downhill run for 1 h at -4% gradient to induce muscle damage. An endurance capacity test at 75% VO2max was conducted 18 h later. The control trial was similar except that participants were immersed at 34°C. Blood samples were collected to assess HSPs levels, creatine kinase, and lactate dehydrogenase activities. Plasma eHSP70 was higher post-immersion in HWI trials (1.3 ± 0.4 vs 1.1 ± 0.4; p = 0.005). Plasma eHSP27 was higher before (p = 0.049) and after (p = 0.015) endurance test in HWI. Leukocytic p-HSP27 was increased 18 h after HWI (0.97 ± 0.14 vs 0.67 ± 0.11; p = 0.04). Creatine kinase and lactate dehydrogenase activities were increased by 3-fold and 1.5-fold, respectively, after endurance test in HWI but did not differ across trials (p > 0.05). Mean heart rates were higher during eccentric run and endurance test in HWI as compared to control (p < 0.05). Endurance capacity was similar between trials (57.3 ± 11.5 min vs 55.0 ± 13.5 min; p = 0.564). Pre-exercise heating increased the expression of plasma eHSPs and leukocytic p-HSP27 but did not reduce muscle damage nor enhance endurance capacity.
{"title":"Pre-exercise hot water immersion increased circulatory heat shock proteins but did not alter muscle damage markers or endurance capacity after eccentric exercise.","authors":"Xiang Ren Tan, Ivan C C Low, Tuck Wah Soong, Jason K W Lee","doi":"10.1080/23328940.2024.2313954","DOIUrl":"10.1080/23328940.2024.2313954","url":null,"abstract":"<p><p>Pre-exercise passive heating attenuates muscle damage caused by eccentric exercise in rats where the induction of heat shock proteins (HSPs) confers a myoprotective effect. We investigated whether pre-exercise hot water immersion (HWI) confers similar benefits in humans. Eleven recreational male athletes were immersed in 41°C water up to 60 min or until rectal temperatures reached 39.5°C. After a 6 h rest, the participants performed an eccentric downhill run for 1 h at -4% gradient to induce muscle damage. An endurance capacity test at 75% VO<sub>2max</sub> was conducted 18 h later. The control trial was similar except that participants were immersed at 34°C. Blood samples were collected to assess HSPs levels, creatine kinase, and lactate dehydrogenase activities. Plasma eHSP70 was higher post-immersion in HWI trials (1.3 ± 0.4 vs 1.1 ± 0.4; <i>p</i> = 0.005). Plasma eHSP27 was higher before (<i>p</i> = 0.049) and after (<i>p</i> = 0.015) endurance test in HWI. Leukocytic p-HSP27 was increased 18 h after HWI (0.97 ± 0.14 vs 0.67 ± 0.11; <i>p</i> = 0.04). Creatine kinase and lactate dehydrogenase activities were increased by 3-fold and 1.5-fold, respectively, after endurance test in HWI but did not differ across trials (<i>p</i> > 0.05). Mean heart rates were higher during eccentric run and endurance test in HWI as compared to control (<i>p</i> < 0.05). Endurance capacity was similar between trials (57.3 ± 11.5 min vs 55.0 ± 13.5 min; <i>p</i> = 0.564). Pre-exercise heating increased the expression of plasma eHSPs and leukocytic p-HSP27 but did not reduce muscle damage nor enhance endurance capacity.</p>","PeriodicalId":36837,"journal":{"name":"Temperature","volume":"11 2","pages":"157-169"},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11152112/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141284983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-04DOI: 10.1080/23328940.2024.2310459
Abderrezak Bouchama, T. Mündel, Orlando Laitano
{"title":"Beyond heatwaves: A nuanced view of temperature-related mortality","authors":"Abderrezak Bouchama, T. Mündel, Orlando Laitano","doi":"10.1080/23328940.2024.2310459","DOIUrl":"https://doi.org/10.1080/23328940.2024.2310459","url":null,"abstract":"","PeriodicalId":36837,"journal":{"name":"Temperature","volume":"13 s8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140266971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-25DOI: 10.1080/23328940.2023.2262144
S. Shokur, Silvestro Micera
{"title":"Thermal phantom sensations in arm amputees and what it means for future prosthetics","authors":"S. Shokur, Silvestro Micera","doi":"10.1080/23328940.2023.2262144","DOIUrl":"https://doi.org/10.1080/23328940.2023.2262144","url":null,"abstract":"","PeriodicalId":36837,"journal":{"name":"Temperature","volume":"26 18","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140433151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-28DOI: 10.1080/23328940.2024.2302772
Luthfil Aidiel, Darren Z. Y. Lim, Kin M. Chow, Mohammed Ihsan, M. Chia, H. Choo
{"title":"Precooling via immersion in CO\u0000 2\u0000 -enriched water at 25°C decreased core body temperature but did not improve 10-km cycling time trial in the heat","authors":"Luthfil Aidiel, Darren Z. Y. Lim, Kin M. Chow, Mohammed Ihsan, M. Chia, H. Choo","doi":"10.1080/23328940.2024.2302772","DOIUrl":"https://doi.org/10.1080/23328940.2024.2302772","url":null,"abstract":"","PeriodicalId":36837,"journal":{"name":"Temperature","volume":"14 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139592067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}