Pub Date : 2024-11-01DOI: 10.1016/j.aaf.2023.03.001
In this paper, we develop a bioeconomic model to determine an optimal wild catch harvest and freshwater commercial aquaculture production in a lake that uses cages or floating rafts. Although off-bottom aquaculture activities have less impact on the environment compared to on-bottom aquaculture, it has negative externalities. It takes away the fishing area and hence creates pressure in the open-access fishing ground. It also changes the nutrient and ecological composition of the environment. We recommend the implementation of a reserved area to minimize the impact of fishing and aquaculture activities. The reserve also helps in improving the habitat and restocking the fish population which is declining rapidly. We determine the optimal sizes of the aquaculture and reserve and the optimal effort level that maximizes social welfare. We illustrate our findings using numerical simulations and perform an analysis of the optimal solutions with respect to biological and economic parameters involved in the model.
{"title":"Optimal effort, fish farming, and marine reserve in fisheries management","authors":"","doi":"10.1016/j.aaf.2023.03.001","DOIUrl":"10.1016/j.aaf.2023.03.001","url":null,"abstract":"<div><div>In this paper, we develop a bioeconomic model to determine an optimal wild catch harvest and freshwater commercial aquaculture production in a lake that uses cages or floating rafts. Although off-bottom aquaculture activities have less impact on the environment compared to on-bottom aquaculture, it has negative externalities. It takes away the fishing area and hence creates pressure in the open-access fishing ground. It also changes the nutrient and ecological composition of the environment. We recommend the implementation of a reserved area to minimize the impact of fishing and aquaculture activities. The reserve also helps in improving the habitat and restocking the fish population which is declining rapidly. We determine the optimal sizes of the aquaculture and reserve and the optimal effort level that maximizes social welfare. We illustrate our findings using numerical simulations and perform an analysis of the optimal solutions with respect to biological and economic parameters involved in the model.</div></div>","PeriodicalId":36894,"journal":{"name":"Aquaculture and Fisheries","volume":"9 6","pages":"Pages 975-980"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84875970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.aaf.2023.07.006
Recirculating Aquaculture System (RAS) is introduced in aquaculture farming industry to reduce water resource utilization, efficient the energy and land uses, and also help minimalize the water exchange. This system enables utilization of unsuitable land and promotes a sustainable environment in aquaculture industry. Furthermore, this technology has been established and proved efficient in monitoring the aquatic animal condition subsequently helps in maintaining the water quality and help remove solid particle wastes from the aquaculture treatment. As today, RAS has been developed with more effective technologies such as the use of UV irradiation, solid capture, protein skimmer and also provided with highly techno bio-filtration set. Basically, this system was applied for broodstock maturation, nursery phase, and grow-out production. In this review article, we provide an overview of RAS between the clear water, probiotic, and biofloc technology, and the advantages of its combination. Even though RAS and biofloc is two different parallel system, the application of the probiotic and biofloc in the semi-RAS application system is intense to be investigated. The synergistic effect of RAS using this combination towards high yield aquaculture production will be highlighted in this review paper. Expectantly this review paper will generate awareness and useful information on the RAS application in the aquaculture system operation with help in maximize the impact to the aquaculture yield production.
{"title":"Synergistic effects of Recirculating Aquaculture System (RAS) with combination of clear water, probiotic and biofloc technology: A review","authors":"","doi":"10.1016/j.aaf.2023.07.006","DOIUrl":"10.1016/j.aaf.2023.07.006","url":null,"abstract":"<div><div>Recirculating Aquaculture System (RAS) is introduced in aquaculture farming industry to reduce water resource utilization, efficient the energy and land uses, and also help minimalize the water exchange. This system enables utilization of unsuitable land and promotes a sustainable environment in aquaculture industry. Furthermore, this technology has been established and proved efficient in monitoring the aquatic animal condition subsequently helps in maintaining the water quality and help remove solid particle wastes from the aquaculture treatment. As today, RAS has been developed with more effective technologies such as the use of UV irradiation, solid capture, protein skimmer and also provided with highly techno bio-filtration set. Basically, this system was applied for broodstock maturation, nursery phase, and grow-out production. In this review article, we provide an overview of RAS between the clear water, probiotic, and biofloc technology, and the advantages of its combination. Even though RAS and biofloc is two different parallel system, the application of the probiotic and biofloc in the semi-RAS application system is intense to be investigated. The synergistic effect of RAS using this combination towards high yield aquaculture production will be highlighted in this review paper. Expectantly this review paper will generate awareness and useful information on the RAS application in the aquaculture system operation with help in maximize the impact to the aquaculture yield production.</div></div>","PeriodicalId":36894,"journal":{"name":"Aquaculture and Fisheries","volume":"9 6","pages":"Pages 883-892"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73378125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.aaf.2023.05.003
This study aimed to evaluate the supplementation of the probiotic Pseudoalteromonas piscicida 1Ub to the biofloc system as an ecofriendly strategy for protecting white shrimp (Penaeus vannamei) from Vibrio parahaemolyticus infection. Shrimp with an average body weight of (0.50 ± 0.09) g were reared in 30 glass jars with a working volume of 2.5 L at a density of 20 ind/L. Shrimp were reared for 5 d for each treatment, which included the biofloc system without and with 106 colony forming unit (CFU) per mL probiotic. The regular clear water system was used as control. All treatment groups were challenged with 103, 105, and 107 CFU/mL V. parahaemolyticus. For the negative control, shrimp were reared without V. parahaemolyticus. The results showed that the density of V. parahaemolyticus cocultured with P. piscicida 1Ub decreased and the density of V. parahaemolyticus in rearing water and shrimp body in the probiotic-treated group was lower than that in the control group (P < 0.05). The survival and immune response (total hemocyte count, phagocytic activity, respiratory burst, phenoloxidase, and superoxide dismutase) of shrimp in the probiotic group was higher than that in the positive control (P < 0.05). Moreover, supplementing the biofloc system with the probiotic could protect shrimp hepatopancreas from damage caused by V. parahaemolyticus, regardless of bacterial density. Thus, the supplementation of the probiotic P. piscicida 1Ub in the biofloc system could significantly protect and increase the resistance of shrimp to V. parahaemolyticus infection.
{"title":"Biofloc system supplemented by Pseudoalteromonas piscicida 1Ub protects the Pacific white shrimp Penaeus vannamei from Vibrio parahaemolyticus infection","authors":"","doi":"10.1016/j.aaf.2023.05.003","DOIUrl":"10.1016/j.aaf.2023.05.003","url":null,"abstract":"<div><div>This study aimed to evaluate the supplementation of the probiotic <em>Pseudoalteromonas piscicida</em> 1Ub to the biofloc system as an ecofriendly strategy for protecting white shrimp (<em>Penaeus vannamei</em>) from <em>Vibrio parahaemolyticus</em> infection. Shrimp with an average body weight of (0.50 ± 0.09) g were reared in 30 glass jars with a working volume of 2.5 L at a density of 20 ind/L. Shrimp were reared for 5 d for each treatment, which included the biofloc system without and with 10<sup>6</sup> colony forming unit (CFU) per mL probiotic. The regular clear water system was used as control. All treatment groups were challenged with 10<sup>3</sup>, 10<sup>5</sup>, and 10<sup>7</sup> CFU/mL <em>V. parahaemolyticus</em>. For the negative control, shrimp were reared without <em>V. parahaemolyticus</em>. The results showed that the density of <em>V. parahaemolyticus</em> cocultured with <em>P. piscicida</em> 1Ub decreased and the density of <em>V. parahaemolyticus</em> in rearing water and shrimp body in the probiotic-treated group was lower than that in the control group (<em>P</em> < 0.05). The survival and immune response (total hemocyte count, phagocytic activity, respiratory burst, phenoloxidase, and superoxide dismutase) of shrimp in the probiotic group was higher than that in the positive control (<em>P</em> < 0.05). Moreover, supplementing the biofloc system with the probiotic could protect shrimp hepatopancreas from damage caused by <em>V. parahaemolyticus</em>, regardless of bacterial density. Thus, the supplementation of the probiotic <em>P. piscicida</em> 1Ub in the biofloc system could significantly protect and increase the resistance of shrimp to <em>V. parahaemolyticus</em> infection.</div></div>","PeriodicalId":36894,"journal":{"name":"Aquaculture and Fisheries","volume":"9 6","pages":"Pages 967-974"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74924612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.aaf.2023.05.005
C-myc is a proto-oncogene that plays an important role in a variety of diseases. There were a lot of research on the correlation between C-myc and human viruses. However, the study about C-myc related to aquatic species virus is very limited. In the present study, the qRT-PCR, cellular immunofluorescence and western blotting determination data reported that C-myc and glutaminase (GLS) genes were significantly upregulated when grouper fin cells (GF-1) were infected with red grouper nervous necrosis virus (RGNNV). After knocking down the C-myc gene, the mRNA and protein levels of GLS, capsid protein (CP) and RNA polymerase (RdRp) of RGNNV were significantly reduced in RGNNV-infected GF-1 cells and the overexpression of the C-myc gene remarkably promoted these genes, which indicated that the replication of the virus and GLS gene were positively regulated by C-myc in RGNNV-infected GF-1 cells. In addition, supplementation of exogenous ATP can partially restore viral replication when RGNNV-infected GF-1 cells were cultured in glutamine-free medium, which confirmed that the glutamine was decomposed into ATP to provide energy for viral replication. Further studies confirmed that overexpression of C-myc can increase the content of ATP in normal cells. To sum up, these data suggested that activation of C-myc gene affected viral replication by regulating GLS expression to drive glutamine dissolution.
C-myc 是一种原癌基因,在多种疾病中发挥着重要作用。关于 C-myc 与人类病毒之间相关性的研究很多。然而,关于 C-myc 与水生物种病毒相关的研究却非常有限。本研究通过qRT-PCR、细胞免疫荧光和Western印迹测定数据发现,石斑鱼鳍细胞(GF-1)感染红石斑鱼神经坏死病毒(RGNNV)后,C-myc和谷氨酰胺酶(GLS)基因显著上调。敲除C-myc基因后,RGNNV感染的GF-1细胞中RGNNV的GLS、囊膜蛋白(CP)和RNA聚合酶(RdRp)的mRNA和蛋白水平明显降低,而C-myc基因的过表达对这些基因有明显的促进作用,这表明在RGNNV感染的GF-1细胞中病毒的复制和GLS基因受C-myc的正向调控。此外,在无谷氨酰胺培养基中培养 RGNNV 感染的 GF-1 细胞时,补充外源 ATP 可部分恢复病毒复制,这证实谷氨酰胺被分解为 ATP 为病毒复制提供能量。进一步的研究证实,过表达 C-myc 可增加正常细胞中的 ATP 含量。总之,这些数据表明,C-myc 基因的激活通过调节 GLS 的表达来驱动谷氨酰胺的分解,从而影响病毒的复制。
{"title":"C-myc modulates the replication of RGNNV via glutamine-mediated ATP production in grouper fin cells","authors":"","doi":"10.1016/j.aaf.2023.05.005","DOIUrl":"10.1016/j.aaf.2023.05.005","url":null,"abstract":"<div><div><em>C-myc</em> is a proto-oncogene that plays an important role in a variety of diseases. There were a lot of research on the correlation between C-myc and human viruses. However, the study about <em>C-myc</em> related to aquatic species virus is very limited. In the present study, the qRT-PCR, cellular immunofluorescence and western blotting determination data reported that <em>C-myc</em> and glutaminase (<em>GLS</em>) genes were significantly upregulated when grouper fin cells (GF-1) were infected with red grouper nervous necrosis virus (RGNNV). After knocking down the <em>C-myc</em> gene, the mRNA and protein levels of <em>GLS</em>, capsid protein (<em>CP</em>) and RNA polymerase (<em>RdRp</em>) of RGNNV were significantly reduced in RGNNV-infected GF-1 cells and the overexpression of the <em>C-myc</em> gene remarkably promoted these genes, which indicated that the replication of the virus and <em>GLS</em> gene were positively regulated by <em>C-myc</em> in RGNNV-infected GF-1 cells. In addition, supplementation of exogenous ATP can partially restore viral replication when RGNNV-infected GF-1 cells were cultured in glutamine-free medium, which confirmed that the glutamine was decomposed into ATP to provide energy for viral replication. Further studies confirmed that overexpression of <em>C-myc</em> can increase the content of ATP in normal cells. To sum up, these data suggested that activation of <em>C-myc</em> gene affected viral replication by regulating <em>GLS</em> expression to drive glutamine dissolution.</div></div>","PeriodicalId":36894,"journal":{"name":"Aquaculture and Fisheries","volume":"9 6","pages":"Pages 929-936"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82520737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Body shape divergence of paradise thread fish (Polynemus paradiseus) collected from different coastal habitats of southern Bangladesh: A multivariate approach for population discrimination","authors":"Md Asaduzzaman, Mohammad Zafar Iqbal, Farjana Akter Chamily, Sumi Akter, Md Sadequr Rahman Khan, LiLian Wong, Sheikh Mustafizur Rahman, Md Moshiur Rahman","doi":"10.1016/j.aaf.2024.05.001","DOIUrl":"https://doi.org/10.1016/j.aaf.2024.05.001","url":null,"abstract":"","PeriodicalId":36894,"journal":{"name":"Aquaculture and Fisheries","volume":"21 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141699890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.aaf.2024.06.002
Guanhua Wang, Kun Han, Yu Hu, Hongbo Pan, Jiamei Jiang
{"title":"Redescription of two Euplotes species (Ciliophora, Euplotida) from Yangtze River Estuary, China, with a note on the distributions of this genus in China","authors":"Guanhua Wang, Kun Han, Yu Hu, Hongbo Pan, Jiamei Jiang","doi":"10.1016/j.aaf.2024.06.002","DOIUrl":"https://doi.org/10.1016/j.aaf.2024.06.002","url":null,"abstract":"","PeriodicalId":36894,"journal":{"name":"Aquaculture and Fisheries","volume":"7 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141696677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.aaf.2024.06.001
Daqing Wu, Lichen Liu
{"title":"Study on eco-efficiency and influencing factors of freshwater aquaculture based on the Super-NSBM model in the Yangtze River Economic Belt","authors":"Daqing Wu, Lichen Liu","doi":"10.1016/j.aaf.2024.06.001","DOIUrl":"https://doi.org/10.1016/j.aaf.2024.06.001","url":null,"abstract":"","PeriodicalId":36894,"journal":{"name":"Aquaculture and Fisheries","volume":"29 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141716544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.aaf.2024.05.003
Anwar Hossain, Md. Al Zahid, S. K. Sanyal, Md. Inja-Mamun Haque, Md. Habibullah-Al-Mamun, S. C. Mandal, Kozo Watanabe
{"title":"Heterogeneous bacterial communities in gills and intestine of Nile tilapia (Oreochromis niloticus) and in water and sediments of aquaculture ponds in Bangladesh","authors":"Anwar Hossain, Md. Al Zahid, S. K. Sanyal, Md. Inja-Mamun Haque, Md. Habibullah-Al-Mamun, S. C. Mandal, Kozo Watanabe","doi":"10.1016/j.aaf.2024.05.003","DOIUrl":"https://doi.org/10.1016/j.aaf.2024.05.003","url":null,"abstract":"","PeriodicalId":36894,"journal":{"name":"Aquaculture and Fisheries","volume":"25 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141693602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.aaf.2024.05.002
Christal Winona Clyde, Jin Ping Tan, S. Yeap, CY Yong
{"title":"Current updates on viral infections affecting tilapia","authors":"Christal Winona Clyde, Jin Ping Tan, S. Yeap, CY Yong","doi":"10.1016/j.aaf.2024.05.002","DOIUrl":"https://doi.org/10.1016/j.aaf.2024.05.002","url":null,"abstract":"","PeriodicalId":36894,"journal":{"name":"Aquaculture and Fisheries","volume":"158 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141695085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1016/j.aaf.2024.06.005
Majid Habibnia, S. Bahram, M. Bahrekazemi, S. Javadian, Masoud Hedayatifard, Mohsen Abdel-Tawwab
{"title":"Effects of dietary Pediocuccus pentosaceus and/or ferulic acid on performance, digestive enzymes, blood biochemistry, and growth-related genes expression in rainbow trout (Oncorhynchus mykiss)","authors":"Majid Habibnia, S. Bahram, M. Bahrekazemi, S. Javadian, Masoud Hedayatifard, Mohsen Abdel-Tawwab","doi":"10.1016/j.aaf.2024.06.005","DOIUrl":"https://doi.org/10.1016/j.aaf.2024.06.005","url":null,"abstract":"","PeriodicalId":36894,"journal":{"name":"Aquaculture and Fisheries","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141705847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}