Pub Date : 2016-01-14DOI: 10.1515/bglass-2016-0010
Barbara Pföss, R. Conradt
Abstract The interaction between bioactive glass and body fluid is crucial for the special properties of this material, therefore a large number of experimental data is available in literature. However, a frame for systematic interpretation of these results in terms of understanding the mechanisms at the interface between glass and body medium and the relation between glass composition and dissolution behavior is still missing. For two multicomponent bioactive glasses, 45S5 and 13-93, the Gibbs energies of the glassy material on one side and their aqueous system on the other side were calculated individually. The difference between solid material and aqueous system further constitutes the pH dependent Gibbs energy of hydration, ∆Ghydr. The impact of glass compositions and glassy or crystalline state on ∆Ghydr is demonstrated referring to chemical durability. Along considerations regarding the aqueous system, the thermodynamic calculations proof the precipitation of hydroxyapatite inwater and simulated body fluid for a systemcontaining P2O5 and Ca2+. In the course of deriving the Gibbs energies for bioactive glass compositions via constitutional compounds, bioactive behavior is discussed from the point of coexisting equilibrium phases in the system of Na2O-CaO-SiO2.
生物活性玻璃与体液的相互作用是这种材料特殊性能的关键,因此文献中有大量的实验数据。然而,从了解玻璃与体介质界面的机制以及玻璃成分与溶解行为之间的关系方面,仍然缺乏一个系统解释这些结果的框架。对于45S5和13-93两种多组分生物活性玻璃,分别计算了一侧玻璃材料和另一侧水体系的吉布斯能。固体物质与水体系之间的差异进一步构成了依赖pH的水化吉布斯能∆Ghydr。玻璃成分和玻璃态或结晶态对∆Ghydr的影响参照化学耐久性进行论证。考虑到水系统,热力学计算证明了羟基磷灰石在水中的沉淀和模拟体液中含有P2O5和Ca2+的系统。在通过组成化合物推导生物活性玻璃组合物的吉布斯能的过程中,从na20 - cao - sio2体系中共存平衡相的角度讨论了生物活性行为。
{"title":"A thermodynamic discourse on the dissolution behavior of bioactive glasses","authors":"Barbara Pföss, R. Conradt","doi":"10.1515/bglass-2016-0010","DOIUrl":"https://doi.org/10.1515/bglass-2016-0010","url":null,"abstract":"Abstract The interaction between bioactive glass and body fluid is crucial for the special properties of this material, therefore a large number of experimental data is available in literature. However, a frame for systematic interpretation of these results in terms of understanding the mechanisms at the interface between glass and body medium and the relation between glass composition and dissolution behavior is still missing. For two multicomponent bioactive glasses, 45S5 and 13-93, the Gibbs energies of the glassy material on one side and their aqueous system on the other side were calculated individually. The difference between solid material and aqueous system further constitutes the pH dependent Gibbs energy of hydration, ∆Ghydr. The impact of glass compositions and glassy or crystalline state on ∆Ghydr is demonstrated referring to chemical durability. Along considerations regarding the aqueous system, the thermodynamic calculations proof the precipitation of hydroxyapatite inwater and simulated body fluid for a systemcontaining P2O5 and Ca2+. In the course of deriving the Gibbs energies for bioactive glass compositions via constitutional compounds, bioactive behavior is discussed from the point of coexisting equilibrium phases in the system of Na2O-CaO-SiO2.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2016-0010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67222177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-14DOI: 10.1515/bglass-2016-0011
William C. Lepry, Sophia Smith, L. Liverani, A. Boccaccini, S. Nazhat
Abstract Recently, sol-gel derived borate glasses (BGs) have shown unprecedented conversion rates to bone-like mineral (hydroxycarbonated apatite). In an effort to explore their potential applications in bone tissue engineering, this study reports on the fabrication and characterization of BG particle incorporated electrospun "- polycaprolactone (PCL) fibrous composites. The electrospinning technique successfully incorporated PCL fibres with BG particles at 2.5 and 5 w/v%, with the higher BG loading creating a three-dimensional cotton-wool like morphology. Dynamic vapour sorption showed greater extents of mass change with BG content attributable to water sorption, and indicating greater reactivity in the composite systems. In vitro bioactivity was investigated in simulated body fluid for up to 7 days. Scanning electron microscopy, Fourier-transform infrared spectroscopy and xray diffraction indicated apatite formation in the 5 w/v% incorporated composite scaffold, which initiated as early as day 3. In summary, sol-gel derived BGs incorporatedfibrous electrospun PCL composites indicate rapid reactivity and bioactivity with potential applications in mineralized tissue engineering.
{"title":"Acellular Bioactivity of Sol-Gel Derived Borate Glass-Polycaprolactone Electrospun Scaffolds","authors":"William C. Lepry, Sophia Smith, L. Liverani, A. Boccaccini, S. Nazhat","doi":"10.1515/bglass-2016-0011","DOIUrl":"https://doi.org/10.1515/bglass-2016-0011","url":null,"abstract":"Abstract Recently, sol-gel derived borate glasses (BGs) have shown unprecedented conversion rates to bone-like mineral (hydroxycarbonated apatite). In an effort to explore their potential applications in bone tissue engineering, this study reports on the fabrication and characterization of BG particle incorporated electrospun \"- polycaprolactone (PCL) fibrous composites. The electrospinning technique successfully incorporated PCL fibres with BG particles at 2.5 and 5 w/v%, with the higher BG loading creating a three-dimensional cotton-wool like morphology. Dynamic vapour sorption showed greater extents of mass change with BG content attributable to water sorption, and indicating greater reactivity in the composite systems. In vitro bioactivity was investigated in simulated body fluid for up to 7 days. Scanning electron microscopy, Fourier-transform infrared spectroscopy and xray diffraction indicated apatite formation in the 5 w/v% incorporated composite scaffold, which initiated as early as day 3. In summary, sol-gel derived BGs incorporatedfibrous electrospun PCL composites indicate rapid reactivity and bioactivity with potential applications in mineralized tissue engineering.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2016-0011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67222252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-14DOI: 10.1515/bglass-2016-0012
D. Brauer, R. Brückner, M. Tylkowski, L. Hupa
Abstract Two sodium-free mixed alkali series of bioactive glasses based on compositions Bioglass 45S5 and ICIE1, containing lithium and/or potassium as alkali ions, were prepared by a melt-quench route. Thermal properties showed the well-known mixed alkali effect, with glass transition and crystallisation temperatures and the coefficient of thermal expansion going either through a minimum or a maximum for the mixed alkali composition, resulting in a wider processing window. Ion release, by contrast, was controlled by the modifier ionic radius, with ion release rates in dynamic and static dissolution studies increasing for potassium-substituted glasses compared to the composition containing lithium as the only alkali ion. This was caused by pronounced changes in oxygen packing density and molar volume of the glasses owing to the differences in ionic radii (76 pm for Li+ and 138 pm for K+). Partially substituting one alkali for another therefore helps to improve high temperature processing of bioactive glasses and can also be used to control or tailor ion release.
{"title":"Sodium-free mixed alkali bioactive glasses","authors":"D. Brauer, R. Brückner, M. Tylkowski, L. Hupa","doi":"10.1515/bglass-2016-0012","DOIUrl":"https://doi.org/10.1515/bglass-2016-0012","url":null,"abstract":"Abstract Two sodium-free mixed alkali series of bioactive glasses based on compositions Bioglass 45S5 and ICIE1, containing lithium and/or potassium as alkali ions, were prepared by a melt-quench route. Thermal properties showed the well-known mixed alkali effect, with glass transition and crystallisation temperatures and the coefficient of thermal expansion going either through a minimum or a maximum for the mixed alkali composition, resulting in a wider processing window. Ion release, by contrast, was controlled by the modifier ionic radius, with ion release rates in dynamic and static dissolution studies increasing for potassium-substituted glasses compared to the composition containing lithium as the only alkali ion. This was caused by pronounced changes in oxygen packing density and molar volume of the glasses owing to the differences in ionic radii (76 pm for Li+ and 138 pm for K+). Partially substituting one alkali for another therefore helps to improve high temperature processing of bioactive glasses and can also be used to control or tailor ion release.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2016-0012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67222486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-05DOI: 10.1515/bglass-2016-0009
Parichart Naruphontjirakul, Sarah L. Greasley, Shu Chen, A. Porter, Julian R. Jones
Abstract Non-porous monodispersed strontium containing bioactive glass (Si2O-CaO-SrO) nanoparticles (Sr- BGNPs), were synthesised using a modified Stöber process. Silica nanoparticles (Si-NPs) with diameters 90 ± 10 nm were produced through hydrolysis and polycondensation reactions of the silicon alkoxide precursor, tetraethyl orthosilicate (TEOS), prior to the incorporation of cations; calcium (Ca) and strontium (Sr), into the silica networks through heat treatment (calcination). Sr was substituted for Ca on a mole basis from non- (0SrBGNPs) to fullsubstitution (100SrBGNPs) in order to increase the amount of network modifiers in the Si-NPs. The different ratios of Si: Ca; 1:1.3 and 1:8.0, presented various elemental compositions (i.e. 77–92 mol% of SiO2). The effect of Si: Ca/Sr ratio on particle size, morphology and dispersitywas evaluated, as well as the in vitro cell viability effect of Sr- BGNPs and their dissolution products on pre-osteoblast cell line, MC3T3-E1. Sr incorporation did not affect particle size or dispersity. For 1:1.3 ratio, SrBGNPs caused no toxic effects on the cells and dissolution products of 75- and 100- SrBGNPs showed great potential to promote MC3T3-E1 activity.
{"title":"Monodispersed strontium containing bioactive glass nanoparticles and MC3T3-E1 cellular response","authors":"Parichart Naruphontjirakul, Sarah L. Greasley, Shu Chen, A. Porter, Julian R. Jones","doi":"10.1515/bglass-2016-0009","DOIUrl":"https://doi.org/10.1515/bglass-2016-0009","url":null,"abstract":"Abstract Non-porous monodispersed strontium containing bioactive glass (Si2O-CaO-SrO) nanoparticles (Sr- BGNPs), were synthesised using a modified Stöber process. Silica nanoparticles (Si-NPs) with diameters 90 ± 10 nm were produced through hydrolysis and polycondensation reactions of the silicon alkoxide precursor, tetraethyl orthosilicate (TEOS), prior to the incorporation of cations; calcium (Ca) and strontium (Sr), into the silica networks through heat treatment (calcination). Sr was substituted for Ca on a mole basis from non- (0SrBGNPs) to fullsubstitution (100SrBGNPs) in order to increase the amount of network modifiers in the Si-NPs. The different ratios of Si: Ca; 1:1.3 and 1:8.0, presented various elemental compositions (i.e. 77–92 mol% of SiO2). The effect of Si: Ca/Sr ratio on particle size, morphology and dispersitywas evaluated, as well as the in vitro cell viability effect of Sr- BGNPs and their dissolution products on pre-osteoblast cell line, MC3T3-E1. Sr incorporation did not affect particle size or dispersity. For 1:1.3 ratio, SrBGNPs caused no toxic effects on the cells and dissolution products of 75- and 100- SrBGNPs showed great potential to promote MC3T3-E1 activity.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2016-0009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67222582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-05DOI: 10.1515/bglass-2016-0007
J. Massera, A. Mishra, S. Guastella, S. Ferraris, E. Verné
Abstract The effect of SrO substitution for CaO, in the 50P2O5-10Na2O-(40-x)CaO-xSrO glass system, on the ability to graft 3-aminopropyltriethoxysilane (APTS) at the glass surface has been investigated and is partially compared to changes occurring further from the surface. The step used for the APTS grafting led to Na leaching and successively to Ca and/or Sr leaching. This gave rise to a P2O5- rich glass surface, especially on sample containing both Ca and Sr ions. The hydration of the phosphate chainswas found to be the most pronounced for the glasses containing large quantity of SrO as evidenced by contact angle and X-ray photoelectron spectroscopy (XPS). The increase in phosphate chain hydration was attributed to the expansion of the glass network when Sr ions are introduced. Finally, based on the N1s XPS peak, N species were found at the surface of the glasses in two configurations: NH2 and – NH2-OH as proof of APTS grafting. APTS grafting on phosphate glass is of importance for the grafting of proteins.
{"title":"Surface functionalization of phosphate-based bioactive glasses with 3-aminopropyltriethoxysilane (APTS)","authors":"J. Massera, A. Mishra, S. Guastella, S. Ferraris, E. Verné","doi":"10.1515/bglass-2016-0007","DOIUrl":"https://doi.org/10.1515/bglass-2016-0007","url":null,"abstract":"Abstract The effect of SrO substitution for CaO, in the 50P2O5-10Na2O-(40-x)CaO-xSrO glass system, on the ability to graft 3-aminopropyltriethoxysilane (APTS) at the glass surface has been investigated and is partially compared to changes occurring further from the surface. The step used for the APTS grafting led to Na leaching and successively to Ca and/or Sr leaching. This gave rise to a P2O5- rich glass surface, especially on sample containing both Ca and Sr ions. The hydration of the phosphate chainswas found to be the most pronounced for the glasses containing large quantity of SrO as evidenced by contact angle and X-ray photoelectron spectroscopy (XPS). The increase in phosphate chain hydration was attributed to the expansion of the glass network when Sr ions are introduced. Finally, based on the N1s XPS peak, N species were found at the surface of the glasses in two configurations: NH2 and – NH2-OH as proof of APTS grafting. APTS grafting on phosphate glass is of importance for the grafting of proteins.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2016-0007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67222322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-05DOI: 10.1515/bglass-2016-0008
Barbara Pföss, M. Höner, Monika Wirth, A. Bührig-Polaczek, H. Fischer, R. Conradt
Abstract Defect-free bioactive glass surfaces with a grooved microstructure at the low micrometer scale were achieved by a mold casting process. The process was applied to the well-known glass compositions 45S5 and 13–93. Such microstructured surfaces may exhibit especially favorable conditions for bone cell orientation and growth. The aim of the study was to assess the parameter range for a successful casting process and thus to produce samples suitable to investigate the interaction between structured surfaces and relevant cells. Viscous flow in its temperature dependence and thermal analysis were analyzed to identify a suitable process window and to design a manageable time-temperature process scheme. Counteracting effects such as formation of chill ripples, mold sticking and build-up of permanent thermal stress in the glass had to be overcome. A platinum gold alloy was chosen as mold material with the mold surface bearing the mother shape of the microstructure to be imprinted on the glass surface. First experiments studying the behavior of osteoblast-like cells, seeded on these microstructured glass surfaces revealed excellent viability and an orientation of the cells along the microgrooves. The presented results show that direct casting is a suitable process to produce defined microstructures on bioactive glass surfaces.
{"title":"Structuring of bioactive glass surfaces at the micrometer scale by direct casting intended to influence cell response","authors":"Barbara Pföss, M. Höner, Monika Wirth, A. Bührig-Polaczek, H. Fischer, R. Conradt","doi":"10.1515/bglass-2016-0008","DOIUrl":"https://doi.org/10.1515/bglass-2016-0008","url":null,"abstract":"Abstract Defect-free bioactive glass surfaces with a grooved microstructure at the low micrometer scale were achieved by a mold casting process. The process was applied to the well-known glass compositions 45S5 and 13–93. Such microstructured surfaces may exhibit especially favorable conditions for bone cell orientation and growth. The aim of the study was to assess the parameter range for a successful casting process and thus to produce samples suitable to investigate the interaction between structured surfaces and relevant cells. Viscous flow in its temperature dependence and thermal analysis were analyzed to identify a suitable process window and to design a manageable time-temperature process scheme. Counteracting effects such as formation of chill ripples, mold sticking and build-up of permanent thermal stress in the glass had to be overcome. A platinum gold alloy was chosen as mold material with the mold surface bearing the mother shape of the microstructure to be imprinted on the glass surface. First experiments studying the behavior of osteoblast-like cells, seeded on these microstructured glass surfaces revealed excellent viability and an orientation of the cells along the microgrooves. The presented results show that direct casting is a suitable process to produce defined microstructures on bioactive glass surfaces.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2016-0008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67222521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-01-01DOI: 10.1515/bglass-2016-0001
A. Rastelli, G. Nicolodelli, R. A. Romano, D. Milori, I. L. O. Perazzoli, E. J. Ferreira, A. Pedroso, M. T. Souza, O. Peitl, Edgar Dutra Zanotto
Abstract Tooth bleaching agents may weaken the tooth structure, therefore, it is important to minimize any risks of enamel and dentine damage caused by them. In this way, different materials have been used to avoid or minimize the tooth damage during bleaching. Recently, bioactive glasses have been demonstrated to be effective in mineralization of dental structures. Therefore, this study evaluated the effect of BioSilicate® (a polycrystalline bioactive glass-ceramic) after bleaching by Laser-induced breakdown spectroscopy (LIBS) technique. Bovine dental blocks with 4 × 4 × 3 mm were obtained (n = 20), sequentially embedded in epoxy resin and then polished. Bleaching was performed using 35% hydrogen peroxide (Whiteness HP). Calcium (Ca) and phosphate (P) intensity values by LIBSwere obtained before the treatment (T0, baseline – control Group), after bleaching (T1), and after BioSilicate® application (T2). The use of BioSilicate® after bleaching showed to be an optimal way to remineralize enamel surface making BioSilicate® application a promising adjunct step to avoid or minimize the mineral loss on enamel surface after bleaching.
{"title":"After bleaching enamel remineralization using a bioactive glass-ceramic (BioSilicate®)","authors":"A. Rastelli, G. Nicolodelli, R. A. Romano, D. Milori, I. L. O. Perazzoli, E. J. Ferreira, A. Pedroso, M. T. Souza, O. Peitl, Edgar Dutra Zanotto","doi":"10.1515/bglass-2016-0001","DOIUrl":"https://doi.org/10.1515/bglass-2016-0001","url":null,"abstract":"Abstract Tooth bleaching agents may weaken the tooth structure, therefore, it is important to minimize any risks of enamel and dentine damage caused by them. In this way, different materials have been used to avoid or minimize the tooth damage during bleaching. Recently, bioactive glasses have been demonstrated to be effective in mineralization of dental structures. Therefore, this study evaluated the effect of BioSilicate® (a polycrystalline bioactive glass-ceramic) after bleaching by Laser-induced breakdown spectroscopy (LIBS) technique. Bovine dental blocks with 4 × 4 × 3 mm were obtained (n = 20), sequentially embedded in epoxy resin and then polished. Bleaching was performed using 35% hydrogen peroxide (Whiteness HP). Calcium (Ca) and phosphate (P) intensity values by LIBSwere obtained before the treatment (T0, baseline – control Group), after bleaching (T1), and after BioSilicate® application (T2). The use of BioSilicate® after bleaching showed to be an optimal way to remineralize enamel surface making BioSilicate® application a promising adjunct step to avoid or minimize the mineral loss on enamel surface after bleaching.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2016-0001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67221955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-12-24DOI: 10.1515/bglass-2015-0017
R. J. Watters, Roger F. R. Brown, D. Day
Abstract The purpose of this project was to investigate the angiogenic mechanism of bioactive borate glass for soft tissue repair in a ‘hairless’ SKH1 mouse model. Subcutaneous microvascular responses to bioactive glass microfibers (45S5, 13-93B3, and 13-93B3Cu) and bioactive glass beads (13-93, 13-93B3, and 13-93B3Cu) were assessed via: noninvasive imaging of skin microvasculature; histomorphometry of microvascular densities; and quantitative PCR measurements of mRNA expression of VEGF and FGF-2 cytokines. Live imaging via dorsal skin windows showed the formation at twoweeks of a halo-like structure infused with microvessels surrounding implanted boratebased 13-93B3 and 13-93B3Cu glass beads, a response not observed with silicate-based 13-93 glass beads. Quantitative histomorphometry of tissues implanted with plugs of 45S5, 13-93B3, and 13-93B3Cu glass microfibers revealed microvascular densities that were 1.6-, 2.3-, and 2.7-times higher, respectively, than the sham control valueswhereas 13-93, 13-93B3, and 13-93B3Cu glass beads caused the microvascular density to increase 1.3-, 1.6-, and 2.5-fold, respectively, relative to sham controls. Quantitative PCR measurements indicate a marginally significant increased expression of VEGF mRNA in tissues with 13-93B3Cu glass beads, an outcome that supported the hypothesis that copper-doped borate glass could promote VEGF expression followed by angiogenesis for enhanced wound healing.
{"title":"Angiogenic Effect of Bioactive Borate Glass Microfibers and Beads in the Hairless Mouse","authors":"R. J. Watters, Roger F. R. Brown, D. Day","doi":"10.1515/bglass-2015-0017","DOIUrl":"https://doi.org/10.1515/bglass-2015-0017","url":null,"abstract":"Abstract The purpose of this project was to investigate the angiogenic mechanism of bioactive borate glass for soft tissue repair in a ‘hairless’ SKH1 mouse model. Subcutaneous microvascular responses to bioactive glass microfibers (45S5, 13-93B3, and 13-93B3Cu) and bioactive glass beads (13-93, 13-93B3, and 13-93B3Cu) were assessed via: noninvasive imaging of skin microvasculature; histomorphometry of microvascular densities; and quantitative PCR measurements of mRNA expression of VEGF and FGF-2 cytokines. Live imaging via dorsal skin windows showed the formation at twoweeks of a halo-like structure infused with microvessels surrounding implanted boratebased 13-93B3 and 13-93B3Cu glass beads, a response not observed with silicate-based 13-93 glass beads. Quantitative histomorphometry of tissues implanted with plugs of 45S5, 13-93B3, and 13-93B3Cu glass microfibers revealed microvascular densities that were 1.6-, 2.3-, and 2.7-times higher, respectively, than the sham control valueswhereas 13-93, 13-93B3, and 13-93B3Cu glass beads caused the microvascular density to increase 1.3-, 1.6-, and 2.5-fold, respectively, relative to sham controls. Quantitative PCR measurements indicate a marginally significant increased expression of VEGF mRNA in tissues with 13-93B3Cu glass beads, an outcome that supported the hypothesis that copper-doped borate glass could promote VEGF expression followed by angiogenesis for enhanced wound healing.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2015-0017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67221845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-12-18DOI: 10.1515/bglass-2015-0015
Sungho Lee, A. Obata, D. Brauer, T. Kasuga
Abstract Owing to their controlled solubility, phosphate invert glasses are of interest for use as temporary implant materials or tissue engineering scaffolds for controlled ion release.MgO-CaO-SrO-TiO2-P2O5 invert glasses were prepared and their dissolution behavior and cell response were examined.MgO addition to the phosphate invert glass system improved glass formation, owing to the relatively large field strength of Mg2+ ions. In osteoblastlike MC3T3-E1 cell culture tests, cell numbers on the invert glasses were significantly larger compared with the control, possibly caused by the release of Mg2+ ions promoting enhanced cell adhesion and proliferation. Alkaline phosphatase (ALP) activity varied with glass composition, with higher strontium for calcium substitution (33 to 100%) showing highest ALP activity. This effect may be caused by the release of strontium ions from the glasses.
{"title":"Dissolution behavior and cell compatibility of alkali-free MgO-CaO-SrO-TiO2-P2O5 glasses for biomedical applications","authors":"Sungho Lee, A. Obata, D. Brauer, T. Kasuga","doi":"10.1515/bglass-2015-0015","DOIUrl":"https://doi.org/10.1515/bglass-2015-0015","url":null,"abstract":"Abstract Owing to their controlled solubility, phosphate invert glasses are of interest for use as temporary implant materials or tissue engineering scaffolds for controlled ion release.MgO-CaO-SrO-TiO2-P2O5 invert glasses were prepared and their dissolution behavior and cell response were examined.MgO addition to the phosphate invert glass system improved glass formation, owing to the relatively large field strength of Mg2+ ions. In osteoblastlike MC3T3-E1 cell culture tests, cell numbers on the invert glasses were significantly larger compared with the control, possibly caused by the release of Mg2+ ions promoting enhanced cell adhesion and proliferation. Alkaline phosphatase (ALP) activity varied with glass composition, with higher strontium for calcium substitution (33 to 100%) showing highest ALP activity. This effect may be caused by the release of strontium ions from the glasses.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2015-0015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67222115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-11-03DOI: 10.1515/bglass-2015-0013
Botao Song, Liang Wu, Chengtie Wu, Jiang Chang
Abstract In this communication, hollow bioactive glass (BG) nanofibers were fabricated via a single-nozzle electrospinning method. The morphology of the prepared hollow BG nanofibers was observed by SEM and TEM, and the results showed that BG nanofibers had a continuous hollow interior. The hollow BG nanofibers were incubated in simulated body fluid (SBF) to investigate their apatitemineralization ability, and the result showed that after incubation for 6 h a flower-like apatite was observed on the surface of hollowBGnanofibers, and the Fourier transform infrared (FTIR) result further confirmed the formation of apatite. The results suggested that hollow BG nanofibers could be used for drug delivery and bone regeneration applications due to their unique hollow structure and bioactivity.
{"title":"Preparation of hollow bioactive glass nanofibers by a facile electrospinning method","authors":"Botao Song, Liang Wu, Chengtie Wu, Jiang Chang","doi":"10.1515/bglass-2015-0013","DOIUrl":"https://doi.org/10.1515/bglass-2015-0013","url":null,"abstract":"Abstract In this communication, hollow bioactive glass (BG) nanofibers were fabricated via a single-nozzle electrospinning method. The morphology of the prepared hollow BG nanofibers was observed by SEM and TEM, and the results showed that BG nanofibers had a continuous hollow interior. The hollow BG nanofibers were incubated in simulated body fluid (SBF) to investigate their apatitemineralization ability, and the result showed that after incubation for 6 h a flower-like apatite was observed on the surface of hollowBGnanofibers, and the Fourier transform infrared (FTIR) result further confirmed the formation of apatite. The results suggested that hollow BG nanofibers could be used for drug delivery and bone regeneration applications due to their unique hollow structure and bioactivity.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2015-0013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67221594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}