Pub Date : 2019-01-01DOI: 10.1515/bglass-2019-0013
M. Velasco, M. T. Souza, M. Crovace, A. J. Aparecido de Oliveira, Edgar Dutra Zanotto
Abstract After five decades of research on bioactive glasses and glass-ceramics, these materials became of considerable interest due to their revolutionary potential for numerous health applications, including cancer treatment. One advantage of glass-ceramics compared with other materials – such as metallic alloys and polymers – is their capability of being highly bioactive and, if desired, containing magnetic phases. Hyperthermia (HT) is an alternative for treating cancer; the strategy is to increase the temperature of the tumor using an external magnetic field that increases the temperature of an implanted magnetic material, which works as an internal heat source. This local increase of temperature, ideally to ~43°C, could kill cancer cells in situ without damaging the healthy surrounding tissue. To achieve such goal, a material that presents a balance between proper magnetic properties and bioactivity is necessary for the safe applicability and successful performance of the HT treatment. Certainly, achieving this ideal balance is the main challenge. In this article we review the state-of-the-art on glass-ceramics intended for HT, and explore the current difficulties in their use for cancer treatment, starting with basic concepts and moving onto recent developments and challenges.
{"title":"Bioactive magnetic glass-ceramics for cancer treatment","authors":"M. Velasco, M. T. Souza, M. Crovace, A. J. Aparecido de Oliveira, Edgar Dutra Zanotto","doi":"10.1515/bglass-2019-0013","DOIUrl":"https://doi.org/10.1515/bglass-2019-0013","url":null,"abstract":"Abstract After five decades of research on bioactive glasses and glass-ceramics, these materials became of considerable interest due to their revolutionary potential for numerous health applications, including cancer treatment. One advantage of glass-ceramics compared with other materials – such as metallic alloys and polymers – is their capability of being highly bioactive and, if desired, containing magnetic phases. Hyperthermia (HT) is an alternative for treating cancer; the strategy is to increase the temperature of the tumor using an external magnetic field that increases the temperature of an implanted magnetic material, which works as an internal heat source. This local increase of temperature, ideally to ~43°C, could kill cancer cells in situ without damaging the healthy surrounding tissue. To achieve such goal, a material that presents a balance between proper magnetic properties and bioactivity is necessary for the safe applicability and successful performance of the HT treatment. Certainly, achieving this ideal balance is the main challenge. In this article we review the state-of-the-art on glass-ceramics intended for HT, and explore the current difficulties in their use for cancer treatment, starting with basic concepts and moving onto recent developments and challenges.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2019-0013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46494716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1515/bglass-2019-0011
M. Arango-Ospina, L. Hupa, A. Boccaccini
Abstract The present study reports the dissolution studies of a family of boron-doped bioactive glasses based on the composition ICIE16. Simulated body fluid (SBF), Tris-buffered solution and lactic acid were used as dissolution media for studies under static and dynamic conditions. The leaching of ions from the glasses under the evaluated conditions and media was compared and the bioactive behaviour of the glasses was evaluated. Influence of the incorporation of boron in the thermal properties of the glass was also analysed. Glasses exhibited faster bioactivity under dynamic dissolution configuration compared to static conditions. Moreover, the glass dissolution rate was faster in acidic conditions than in SBF or Tris solutions. It was found that at increasing boron content the dissolution of the glass is faster.
{"title":"Bioactivity and dissolution behavior of boron-containing bioactive glasses under static and dynamic conditions in different media","authors":"M. Arango-Ospina, L. Hupa, A. Boccaccini","doi":"10.1515/bglass-2019-0011","DOIUrl":"https://doi.org/10.1515/bglass-2019-0011","url":null,"abstract":"Abstract The present study reports the dissolution studies of a family of boron-doped bioactive glasses based on the composition ICIE16. Simulated body fluid (SBF), Tris-buffered solution and lactic acid were used as dissolution media for studies under static and dynamic conditions. The leaching of ions from the glasses under the evaluated conditions and media was compared and the bioactive behaviour of the glasses was evaluated. Influence of the incorporation of boron in the thermal properties of the glass was also analysed. Glasses exhibited faster bioactivity under dynamic dissolution configuration compared to static conditions. Moreover, the glass dissolution rate was faster in acidic conditions than in SBF or Tris solutions. It was found that at increasing boron content the dissolution of the glass is faster.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2019-0011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42921992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1515/bglass-2019-0014
D. Greenspan
Abstract In 1969, fifty years ago, a young professor of ceramic engineering created a 4-component glass to be used as a bone replacement material. That material became known as “Bioglass” and more generally as a class of materials known as bioactive glass. Those first experiments conducted by Dr. Larry Hench completely shifted the paradigm of how the biomaterials and medical communities look at the interactions between inorganic materials and tissues in the body. This article will touch on just a few highlights of the development of bioactive glasses and relate those to the concepts of bioactivity and tissue bonding.
{"title":"Bioglass at 50 – A look at Larry Hench’s legacy and bioactive materials","authors":"D. Greenspan","doi":"10.1515/bglass-2019-0014","DOIUrl":"https://doi.org/10.1515/bglass-2019-0014","url":null,"abstract":"Abstract In 1969, fifty years ago, a young professor of ceramic engineering created a 4-component glass to be used as a bone replacement material. That material became known as “Bioglass” and more generally as a class of materials known as bioactive glass. Those first experiments conducted by Dr. Larry Hench completely shifted the paradigm of how the biomaterials and medical communities look at the interactions between inorganic materials and tissues in the body. This article will touch on just a few highlights of the development of bioactive glasses and relate those to the concepts of bioactivity and tissue bonding.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2019-0014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48715327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1515/bglass-2019-0012
J. Barberi, A. Nommeots-Nomm, E. Fiume, E. Verné, J. Massera, F. Baino
Abstract Since the discovery of 45S5 Bioglass® by Larry Hench, bioactive glasses have been widely studied as bone substitute materials and, in more recent years, have also shown great promise for producing three-dimensional scaffolds. The development of additive manufacturing techniques and their application in bone tissue engineering allows the design and fabrication of complex structures with controlled porosity. However, achieving strong and mechanically-reliable bioactive glass scaffolds is still a great challenge. Furthermore, there is a relative paucity of studies reporting an exhaustive assessment of other mechanical properties than compressive strength of glass-derived scaffolds. This research work aimed at determining key mechanical properties of silicate SiO2-Na2O-K2OMgO-CaO-P2O5 glass scaffolds fabricated by robocasting and exhibiting a porosity gradient. When tested in compression, these scaffolds had a strength of 6 MPa, a Young’s modulus around 340 MPa, a fracture energy of 93 kJ/m3 and a Weibull modulus of 3, which provides a quantification of the scaffold reliability and reproducibility. Robocasting was a suitable manufacturing method to obtain structures with favorable porosity and mechanical properties comparable to those of the human cancellous bone, which is fundamental regarding osteointegration of bone implants.
{"title":"Mechanical characterization of pore-graded bioactive glass scaffolds produced by robocasting","authors":"J. Barberi, A. Nommeots-Nomm, E. Fiume, E. Verné, J. Massera, F. Baino","doi":"10.1515/bglass-2019-0012","DOIUrl":"https://doi.org/10.1515/bglass-2019-0012","url":null,"abstract":"Abstract Since the discovery of 45S5 Bioglass® by Larry Hench, bioactive glasses have been widely studied as bone substitute materials and, in more recent years, have also shown great promise for producing three-dimensional scaffolds. The development of additive manufacturing techniques and their application in bone tissue engineering allows the design and fabrication of complex structures with controlled porosity. However, achieving strong and mechanically-reliable bioactive glass scaffolds is still a great challenge. Furthermore, there is a relative paucity of studies reporting an exhaustive assessment of other mechanical properties than compressive strength of glass-derived scaffolds. This research work aimed at determining key mechanical properties of silicate SiO2-Na2O-K2OMgO-CaO-P2O5 glass scaffolds fabricated by robocasting and exhibiting a porosity gradient. When tested in compression, these scaffolds had a strength of 6 MPa, a Young’s modulus around 340 MPa, a fracture energy of 93 kJ/m3 and a Weibull modulus of 3, which provides a quantification of the scaffold reliability and reproducibility. Robocasting was a suitable manufacturing method to obtain structures with favorable porosity and mechanical properties comparable to those of the human cancellous bone, which is fundamental regarding osteointegration of bone implants.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2019-0012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44326609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1515/bglass-2019-0015
S. Kargozar, F. Baino, S. Banijamali, M. Mozafari
Abstract Synthesis and use of novel compositions of bioactive glasses (BGs) for hard tissue engineering are of important significance in the biomedical field. In this study, we successfully synthesized a series of 58S-based BGs containing fluoride (F−) and silver (Ag+) ions through a sol-gel method for possible use in bone/dental regeneration and antibacterial strategies. Characterizations of samples were performed by using thermal analyses (thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), textural analysis (N2 adsorption-desorption), and morphological observations by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The obtained data revealed that the fabricated BGs are in a glassy state before incubation in the Kokubo’s simulated body fluid (SBF), and an apatite-like layer is formed on their surface after 7 days of immersion in SBF. The size of the glass particles was in the nano-range (about 100 nm or below), and their pore size was in the mesoporous range (15-25 nm). These early results suggest that the F- and Ag-doped glasses show promise as multifunctional bioactive materials for bone/dental tissue engineering.
{"title":"Synthesis and physico-chemical characterization of fluoride (F)- and silver (Ag)-substituted sol-gel mesoporous bioactive glasses","authors":"S. Kargozar, F. Baino, S. Banijamali, M. Mozafari","doi":"10.1515/bglass-2019-0015","DOIUrl":"https://doi.org/10.1515/bglass-2019-0015","url":null,"abstract":"Abstract Synthesis and use of novel compositions of bioactive glasses (BGs) for hard tissue engineering are of important significance in the biomedical field. In this study, we successfully synthesized a series of 58S-based BGs containing fluoride (F−) and silver (Ag+) ions through a sol-gel method for possible use in bone/dental regeneration and antibacterial strategies. Characterizations of samples were performed by using thermal analyses (thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), textural analysis (N2 adsorption-desorption), and morphological observations by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The obtained data revealed that the fabricated BGs are in a glassy state before incubation in the Kokubo’s simulated body fluid (SBF), and an apatite-like layer is formed on their surface after 7 days of immersion in SBF. The size of the glass particles was in the nano-range (about 100 nm or below), and their pore size was in the mesoporous range (15-25 nm). These early results suggest that the F- and Ag-doped glasses show promise as multifunctional bioactive materials for bone/dental tissue engineering.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2019-0015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47784691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1515/bglass-2019-0008
N. Sharmin, M. S. Hasan, M. Islam, C. Pang, Fu Gu, A. Parsons, I. Ahmed
Abstract Present work explores the relationship between the composition, dissolution rate, ion release and cytocompatibility of a series of borophosphate glasses. While, the base glass was selected to be 40mol%P2O5-16mol%CaO-24mol%MgO-20mol%Na2O, three B2O3 modified glass compositions were formulated by replacing Na2O with 1, 5 and 10 mol% B2O3. Ion release study was conducted using inductively coupled plasma atomic emission spectroscopy (ICP-AES). The thermal scans of the glasses as determined by differential scanning calorimetry (DSC) revealed an increment in the thermal properties with increasing B2O3 content in the glasses. On the other hand, the dissolution rate of the glasses decreased with increasing B2O3 content. To identify the effect of boron ion release on the cytocompatibility properties of the glasses, MG63 cells were cultured on the surface of the glass discs. The in vitro cell culture study suggested that glasses with 5 mol% B2O3 (P40B5) showed better cell proliferation and metabolic activity as compares to the glasses with 10 mol% (P40B10) or with no B2O3 (P40B0). The confocal laser scanning microscopy (CLSM) images of live/dead stained MG63 cells attached to the surface of the glasses also revealed that the number of dead cells attached to P40B5 glasses were significantly lower than both P40B0 and P40B10 glasses.
{"title":"Effect of dissolution rate and subsequent ion release on cytocompatibility properties of borophosphate glasses","authors":"N. Sharmin, M. S. Hasan, M. Islam, C. Pang, Fu Gu, A. Parsons, I. Ahmed","doi":"10.1515/bglass-2019-0008","DOIUrl":"https://doi.org/10.1515/bglass-2019-0008","url":null,"abstract":"Abstract Present work explores the relationship between the composition, dissolution rate, ion release and cytocompatibility of a series of borophosphate glasses. While, the base glass was selected to be 40mol%P2O5-16mol%CaO-24mol%MgO-20mol%Na2O, three B2O3 modified glass compositions were formulated by replacing Na2O with 1, 5 and 10 mol% B2O3. Ion release study was conducted using inductively coupled plasma atomic emission spectroscopy (ICP-AES). The thermal scans of the glasses as determined by differential scanning calorimetry (DSC) revealed an increment in the thermal properties with increasing B2O3 content in the glasses. On the other hand, the dissolution rate of the glasses decreased with increasing B2O3 content. To identify the effect of boron ion release on the cytocompatibility properties of the glasses, MG63 cells were cultured on the surface of the glass discs. The in vitro cell culture study suggested that glasses with 5 mol% B2O3 (P40B5) showed better cell proliferation and metabolic activity as compares to the glasses with 10 mol% (P40B10) or with no B2O3 (P40B0). The confocal laser scanning microscopy (CLSM) images of live/dead stained MG63 cells attached to the surface of the glasses also revealed that the number of dead cells attached to P40B5 glasses were significantly lower than both P40B0 and P40B10 glasses.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2019-0008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46709420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1515/bglass-2019-0009
William C. Lepry, E. Rezabeigi, Sophia Smith, S. Nazhat
Abstract Sol-gel derived bioactive borate glasses (SGBGs) rapidly convert to hydroxycarbonated apatite (HCA) in simulated body fluid (SBF), in vitro. While previous studies have examined the influence of processing and composition on bioactivity, the effect of the in vitro dissolution media has not been well examined for these glasses. In this study, the mineral conversion of a SGBG substituted 45S5 Bioglass® formulation (“B46”, (46.1)B2O3-(26.9)CaO-(24.4)Na2O-(2.6)P2O5, mol%), was examined in six different dissolution media: SBF, tris(hydroxymethyl)aminomethane (TRIS, pH 7.4) buffer, Dulbecco’s phosphate buffered saline (PBS, 1X), Dulbecco’s Modified Eagle Medium (DMEM, 1X), 0.9% Saline (SAL), and deionized water (DIW) at 1.5 mg/mL for 10 min, 2h, and 1d. All media underwent a rapid increase in pH as a result of glass dissolution and ion release. B46 in SBF, TRIS, and PBS converted to HCA while B46 in DMEM, SAL, and DIW converted to calcite according to attenuated total reflectance-Fourier-transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The ratio of B46 to SBF was also examined at 3, 6, 12, and 24 mg/mL for 1d. These results help elucidate the dissolution and mineral conversion of borate glasses and help provide insights into optimizing pre-conditioning treatments for both in vitro and in vivo analyses.
{"title":"Dissolution and bioactivity of a sol-gel derived borate glass in six different solution media","authors":"William C. Lepry, E. Rezabeigi, Sophia Smith, S. Nazhat","doi":"10.1515/bglass-2019-0009","DOIUrl":"https://doi.org/10.1515/bglass-2019-0009","url":null,"abstract":"Abstract Sol-gel derived bioactive borate glasses (SGBGs) rapidly convert to hydroxycarbonated apatite (HCA) in simulated body fluid (SBF), in vitro. While previous studies have examined the influence of processing and composition on bioactivity, the effect of the in vitro dissolution media has not been well examined for these glasses. In this study, the mineral conversion of a SGBG substituted 45S5 Bioglass® formulation (“B46”, (46.1)B2O3-(26.9)CaO-(24.4)Na2O-(2.6)P2O5, mol%), was examined in six different dissolution media: SBF, tris(hydroxymethyl)aminomethane (TRIS, pH 7.4) buffer, Dulbecco’s phosphate buffered saline (PBS, 1X), Dulbecco’s Modified Eagle Medium (DMEM, 1X), 0.9% Saline (SAL), and deionized water (DIW) at 1.5 mg/mL for 10 min, 2h, and 1d. All media underwent a rapid increase in pH as a result of glass dissolution and ion release. B46 in SBF, TRIS, and PBS converted to HCA while B46 in DMEM, SAL, and DIW converted to calcite according to attenuated total reflectance-Fourier-transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The ratio of B46 to SBF was also examined at 3, 6, 12, and 24 mg/mL for 1d. These results help elucidate the dissolution and mineral conversion of borate glasses and help provide insights into optimizing pre-conditioning treatments for both in vitro and in vivo analyses.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2019-0009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49275437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1515/bglass-2019-0010
L. F. Chungong, M. Isaacs, A. Morrell, Laura A Swansbury, A. Hannon, A. Lee, G. Mountjoy, Richard A. Martin
Abstract Bioactive glasses are important for biomedical and dental applications. The controlled release of key ions, which elicit favourable biological responses, is known to be the first key step in the bioactivity of these materials. Properties such as bioactivity and solubility can be tailored for specific applications. The addition of fluoride ions is particularly interesting for dental applications as it promotes the formation of fluoro-apatite. To date there have been mixed reports in the literature on how fluorine is structurally incorporated into bioactive glasses. To optimize the design and subsequent bioactivity of these glasses, it is important to understand the connections between the glass composition, structure and relevant macroscopic properties such as apatite formation and glass degradation in aqueous media. Using neutron diffraction, high energy X-ray diffraction, 29Si NMR, FTIR and XPS we have investigated the atomic scale structure of mixed calcium oxide / calcium fluoride silicate based bioactive glasses. No evidence of direct Si-F bonding was observed, instead fluorine was found to bond directly to calcium resulting in mixed oxygen/fluoride polyhedra. It was therefore concluded that the addition of fluorine does not depolymerise the silicate network and that the widely used network connectivity models are valid in these oxyfluoride systems.
{"title":"Insight into the atomic scale structure of CaF2-CaO-SiO2 glasses using a combination of neutron diffraction, 29Si solid state NMR, high energy X-ray diffraction, FTIR, and XPS","authors":"L. F. Chungong, M. Isaacs, A. Morrell, Laura A Swansbury, A. Hannon, A. Lee, G. Mountjoy, Richard A. Martin","doi":"10.1515/bglass-2019-0010","DOIUrl":"https://doi.org/10.1515/bglass-2019-0010","url":null,"abstract":"Abstract Bioactive glasses are important for biomedical and dental applications. The controlled release of key ions, which elicit favourable biological responses, is known to be the first key step in the bioactivity of these materials. Properties such as bioactivity and solubility can be tailored for specific applications. The addition of fluoride ions is particularly interesting for dental applications as it promotes the formation of fluoro-apatite. To date there have been mixed reports in the literature on how fluorine is structurally incorporated into bioactive glasses. To optimize the design and subsequent bioactivity of these glasses, it is important to understand the connections between the glass composition, structure and relevant macroscopic properties such as apatite formation and glass degradation in aqueous media. Using neutron diffraction, high energy X-ray diffraction, 29Si NMR, FTIR and XPS we have investigated the atomic scale structure of mixed calcium oxide / calcium fluoride silicate based bioactive glasses. No evidence of direct Si-F bonding was observed, instead fluorine was found to bond directly to calcium resulting in mixed oxygen/fluoride polyhedra. It was therefore concluded that the addition of fluorine does not depolymerise the silicate network and that the widely used network connectivity models are valid in these oxyfluoride systems.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2019-0010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41776622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1515/bglass-2019-0017
Julian R. Jones, F. Baino, A. Boccaccini
Even if the first paper of Prof. Larry Hench that introduced bioactive glass and its properties was published in 1971 (the seminal paper in J. Biomed. Mater. Res. [1]), the actual discovery of bioactive glass and its bone bonding properties dates back to 1969, in the laboratory of Prof. Hench at University of Florida, USA. Over the last 50 years, bioactive glasses, originally intended for applications as bone substitutingmaterials and small orthopedic implants, have expanded in their functionalities and applications, based on innovative chemical compositions and novel processing techniques, to areas such as biomedical coatings, dental care, scaffolds for tissue engineering, and as components of advanced devices for drug delivery, wound healing, soft tissue repair and potential uses in cancer treatment. The present special issue in "Biomedical Glasses" marks the 50th Anniversary of bioactive glass, including a collection of papers written by members of the bioactive glass research community, on a great variety of topics related to the development, properties and applications of bioactive glasses. The collection includes a review paper by David Greenspan, who was the main driving force behind the commercialization of Bioglass (the original bioactive glass composition) and subsequent products that evolved from it, from bone grafts to toothpaste. David summarizes the early development of bioactive glasses and highlights the legacy of Prof. Hench in the broad biomaterials field [2]. Another review paper, by the group of Edgar Zanotto, covers the emerging field of bioactive magnetic glass-ceramics for cancer treatment [3]. Application of bioactive glasses in bone cements is discussed in the papers of Wetzel et al. [4] andMokhtari et al. [5], while applications of different bioactive glasses in bone tissue engineering scaffolds are covered by the papers of Brokmann et al. [6], and Barberi et al. [7] and the field of wound healing and antibacterial effects of bioactive glasses is the subject of the paper of Jung et al. [8]. The special volume includes also several papers featuring the growing field of bioactive glasses incorporating biologically active ions, in this case: Cu [5], Mg [9], Zn [10], B [8, 11–13], F [14–16], Ag [15], Gd [17]. These studies cover fundamental investigations on the structure, crystallization behavior, thermal properties, biocompatibility, bioactivity, dissolution kinetics and biodegradability of a series of bioactive glasses of silicate, phosphate and borate composition, obtained by melting or sol-gel methods. We hope that the present volume will represent a valuable source of information for bioactive glass researchers and that it will be seen as a fitting collection to commemorate the 50th Anniversary of bioactive glass and the legacy of Prof. Larry Hench.
即使Larry Hench教授在1971年发表了第一篇介绍生物活性玻璃及其特性的论文(《J. Biomed》上的开创性论文)。板牙。Res. b[1]),生物活性玻璃及其骨粘合性能的实际发现可以追溯到1969年,在美国佛罗里达大学Hench教授的实验室。在过去的50年里,生物活性玻璃最初用于骨替代材料和小型骨科植入物,基于创新的化学成分和新的加工技术,其功能和应用范围已经扩展到生物医学涂层、牙科保健、组织工程支架等领域,以及作为药物输送、伤口愈合、软组织修复和癌症治疗等先进设备的组成部分。本期《生物医学眼镜》特刊纪念生物活性玻璃问世50周年,收录了由生物活性玻璃研究团体成员撰写的一系列论文,内容涉及生物活性玻璃的发展、特性和应用等诸多主题。该系列包括大卫·格林斯潘(David Greenspan)的一篇评论论文,他是生物玻璃(最初的生物活性玻璃成分)商业化的主要推动者,并由此衍生出从骨移植物到牙膏等后续产品。David总结了生物活性玻璃的早期发展,并强调了Hench教授在广泛的生物材料领域的遗产。另一篇由Edgar Zanotto小组撰写的综述文章,涵盖了用于癌症治疗的生物活性磁性微晶玻璃这一新兴领域。Wetzel et al.[4]和mokhtari et al.[5]的论文讨论了生物活性玻璃在骨水泥中的应用,而Brokmann et al.[6]和Barberi et al.[7]的论文涵盖了不同生物活性玻璃在骨组织工程支架中的应用,生物活性玻璃的伤口愈合和抗菌作用领域是Jung et al.[8]的论文的主题。该特刊还包括几篇介绍生物活性玻璃领域的论文,这些生物活性玻璃含有生物活性离子,在这种情况下:Cu [5], Mg [9], Zn [10], B [8,11 - 13], F [14-16], Ag [15], Gd[17]。这些研究涵盖了对硅酸盐、磷酸盐和硼酸盐组成的一系列生物活性玻璃的结构、结晶行为、热性能、生物相容性、生物活性、溶解动力学和生物降解性的基础研究,这些玻璃是通过熔融或溶胶-凝胶方法获得的。我们希望本卷将为生物活性玻璃研究人员提供有价值的信息来源,并将被视为纪念生物活性玻璃50周年和拉里·亨奇教授遗产的合适收藏。
{"title":"Special Issue: 50 Years of Bioactive Glasses: celebratory special issue in “Biomedical Glasses”","authors":"Julian R. Jones, F. Baino, A. Boccaccini","doi":"10.1515/bglass-2019-0017","DOIUrl":"https://doi.org/10.1515/bglass-2019-0017","url":null,"abstract":"Even if the first paper of Prof. Larry Hench that introduced bioactive glass and its properties was published in 1971 (the seminal paper in J. Biomed. Mater. Res. [1]), the actual discovery of bioactive glass and its bone bonding properties dates back to 1969, in the laboratory of Prof. Hench at University of Florida, USA. Over the last 50 years, bioactive glasses, originally intended for applications as bone substitutingmaterials and small orthopedic implants, have expanded in their functionalities and applications, based on innovative chemical compositions and novel processing techniques, to areas such as biomedical coatings, dental care, scaffolds for tissue engineering, and as components of advanced devices for drug delivery, wound healing, soft tissue repair and potential uses in cancer treatment. The present special issue in \"Biomedical Glasses\" marks the 50th Anniversary of bioactive glass, including a collection of papers written by members of the bioactive glass research community, on a great variety of topics related to the development, properties and applications of bioactive glasses. The collection includes a review paper by David Greenspan, who was the main driving force behind the commercialization of Bioglass (the original bioactive glass composition) and subsequent products that evolved from it, from bone grafts to toothpaste. David summarizes the early development of bioactive glasses and highlights the legacy of Prof. Hench in the broad biomaterials field [2]. Another review paper, by the group of Edgar Zanotto, covers the emerging field of bioactive magnetic glass-ceramics for cancer treatment [3]. Application of bioactive glasses in bone cements is discussed in the papers of Wetzel et al. [4] andMokhtari et al. [5], while applications of different bioactive glasses in bone tissue engineering scaffolds are covered by the papers of Brokmann et al. [6], and Barberi et al. [7] and the field of wound healing and antibacterial effects of bioactive glasses is the subject of the paper of Jung et al. [8]. The special volume includes also several papers featuring the growing field of bioactive glasses incorporating biologically active ions, in this case: Cu [5], Mg [9], Zn [10], B [8, 11–13], F [14–16], Ag [15], Gd [17]. These studies cover fundamental investigations on the structure, crystallization behavior, thermal properties, biocompatibility, bioactivity, dissolution kinetics and biodegradability of a series of bioactive glasses of silicate, phosphate and borate composition, obtained by melting or sol-gel methods. We hope that the present volume will represent a valuable source of information for bioactive glass researchers and that it will be seen as a fitting collection to commemorate the 50th Anniversary of bioactive glass and the legacy of Prof. Larry Hench.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41416820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1515/bglass-2019-0004
E. Fiume, E. Verné, F. Baino
Abstract The crystallization process of a bioactive silicate glass with 47.5SiO2-10Na2O-10K2O-10MgO-20CaO-2.5P2O5 molar composition was investigated by using nonisothermal differential t hermal a nalysis (DTA). T he DTA plots recorded at different heating rates exhibited a single crystallization peak. The activation energy for crystallization was estimated by applying the equations proposed by Kissinger and Matusita-Sakka. The Johnson-Mehl-Avrami exponent (n) was assessed by using the Ozawa and Augis-Bennett methods. The analyses suggest that a surface crystallization mechanism with one-dimensional crystal growth is predominant. The activation energy for viscous flow was also assessed (176 kJ/mol) and was found lower than the activation energy for crystallization (271 kJ/mol). This confirms the stability of 47.5B against crystallization and its good sinterability, which is a highly attractive feature for producing glass products of biomedical interest, such as bioactive porous scaffolds for bone repair.
{"title":"Crystallization behavior of SiO2–P2O5–CaO–MgO–Na2O–K2O bioactive glass powder","authors":"E. Fiume, E. Verné, F. Baino","doi":"10.1515/bglass-2019-0004","DOIUrl":"https://doi.org/10.1515/bglass-2019-0004","url":null,"abstract":"Abstract The crystallization process of a bioactive silicate glass with 47.5SiO2-10Na2O-10K2O-10MgO-20CaO-2.5P2O5 molar composition was investigated by using nonisothermal differential t hermal a nalysis (DTA). T he DTA plots recorded at different heating rates exhibited a single crystallization peak. The activation energy for crystallization was estimated by applying the equations proposed by Kissinger and Matusita-Sakka. The Johnson-Mehl-Avrami exponent (n) was assessed by using the Ozawa and Augis-Bennett methods. The analyses suggest that a surface crystallization mechanism with one-dimensional crystal growth is predominant. The activation energy for viscous flow was also assessed (176 kJ/mol) and was found lower than the activation energy for crystallization (271 kJ/mol). This confirms the stability of 47.5B against crystallization and its good sinterability, which is a highly attractive feature for producing glass products of biomedical interest, such as bioactive porous scaffolds for bone repair.","PeriodicalId":37354,"journal":{"name":"Biomedical Glasses","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bglass-2019-0004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48633319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}