Pub Date : 2021-07-27DOI: 10.1186/s40323-021-00201-9
J. Nitzler, C. Meier, K. W. Müller, W. Wall, N. Hodge
{"title":"A novel physics-based and data-supported microstructure model for part-scale simulation of laser powder bed fusion of Ti-6Al-4V","authors":"J. Nitzler, C. Meier, K. W. Müller, W. Wall, N. Hodge","doi":"10.1186/s40323-021-00201-9","DOIUrl":"https://doi.org/10.1186/s40323-021-00201-9","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40323-021-00201-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65853401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-23DOI: 10.1186/s40323-021-00209-1
Sebastian D. Proell, W. Wall, C. Meier
{"title":"A simple yet consistent constitutive law and mortar-based layer coupling schemes for thermomechanical macroscale simulations of metal additive manufacturing processes","authors":"Sebastian D. Proell, W. Wall, C. Meier","doi":"10.1186/s40323-021-00209-1","DOIUrl":"https://doi.org/10.1186/s40323-021-00209-1","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48581605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-29DOI: 10.21203/rs.3.rs-651030/v1
E. S. Shoukralla, Nermin Saber, A. Y. Sayed
In this study, we applied an advanced barycentric Lagrange interpolation formula to find the interpolate solutions of weakly singular Fredholm integral equations of the second kind. The kernel is interpolated twice concerning both variables and then is transformed into the product of five matrices; two of them are monomial basis matrices. To isolate the singularity of the kernel, we developed two techniques based on a good choice of different two sets of nodes to be distributed over the integration domain. Each set is specific to one of the kernel arguments so that the kernel values never become zero or imaginary. The significant advantage of thetwo presented techniques is the ability to gain access to an algebraic linear system equivalent to the interpolant solution without applying the collocation method. Moreover, the convergence in the mean of the interpolant solution and the maximum error norm estimation are studied. The interpolate solutions of the illustrated four examples are found strongly converging uniformly to the exact solutions.
{"title":"Computational method for solving weakly singular Fredholm integral equations of the second kind using an advanced barycentric Lagrange interpolation formula","authors":"E. S. Shoukralla, Nermin Saber, A. Y. Sayed","doi":"10.21203/rs.3.rs-651030/v1","DOIUrl":"https://doi.org/10.21203/rs.3.rs-651030/v1","url":null,"abstract":"In this study, we applied an advanced barycentric Lagrange interpolation formula to find the interpolate solutions of weakly singular Fredholm integral equations of the second kind. The kernel is interpolated twice concerning both variables and then is transformed into the product of five matrices; two of them are monomial basis matrices. To isolate the singularity of the kernel, we developed two techniques based on a good choice of different two sets of nodes to be distributed over the integration domain. Each set is specific to one of the kernel arguments so that the kernel values never become zero or imaginary. The significant advantage of thetwo presented techniques is the ability to gain access to an algebraic linear system equivalent to the interpolant solution without applying the collocation method. Moreover, the convergence in the mean of the interpolant solution and the maximum error norm estimation are studied. The interpolate solutions of the illustrated four examples are found strongly converging uniformly to the exact solutions.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43464520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-28DOI: 10.1186/s40323-021-00200-w
Sebastian L. Fuchs, Christoph Meier, Wolfgang A. Wall, Christian J. Cyron
The present work proposes an approach for fluid–solid and contact interaction problems including thermo-mechanical coupling and reversible phase transitions. The solid field is assumed to consist of several arbitrarily-shaped, undeformable but mobile rigid bodies, that are evolved in time individually and allowed to get into mechanical contact with each other. The fluid field generally consists of multiple liquid or gas phases. All fields are spatially discretized using the method of smoothed particle hydrodynamics (SPH). This approach is especially suitable in the context of continually changing interface topologies and dynamic phase transitions without the need for additional methodological and computational effort for interface tracking as compared to mesh- or grid-based methods. Proposing a concept for the parallelization of the computational framework, in particular concerning a computationally efficient evaluation of rigid body motion, is an essential part of this work. Finally, the accuracy and robustness of the proposed framework is demonstrated by several numerical examples in two and three dimensions, involving multiple rigid bodies, two-phase flow, and reversible phase transitions, with a focus on two potential application scenarios in the fields of engineering and biomechanics: powder bed fusion additive manufacturing (PBFAM) and disintegration of food boluses in the human stomach. The efficiency of the parallel computational framework is demonstrated by a strong scaling analysis.
{"title":"An SPH framework for fluid–solid and contact interaction problems including thermo-mechanical coupling and reversible phase transitions","authors":"Sebastian L. Fuchs, Christoph Meier, Wolfgang A. Wall, Christian J. Cyron","doi":"10.1186/s40323-021-00200-w","DOIUrl":"https://doi.org/10.1186/s40323-021-00200-w","url":null,"abstract":"The present work proposes an approach for fluid–solid and contact interaction problems including thermo-mechanical coupling and reversible phase transitions. The solid field is assumed to consist of several arbitrarily-shaped, undeformable but mobile rigid bodies, that are evolved in time individually and allowed to get into mechanical contact with each other. The fluid field generally consists of multiple liquid or gas phases. All fields are spatially discretized using the method of smoothed particle hydrodynamics (SPH). This approach is especially suitable in the context of continually changing interface topologies and dynamic phase transitions without the need for additional methodological and computational effort for interface tracking as compared to mesh- or grid-based methods. Proposing a concept for the parallelization of the computational framework, in particular concerning a computationally efficient evaluation of rigid body motion, is an essential part of this work. Finally, the accuracy and robustness of the proposed framework is demonstrated by several numerical examples in two and three dimensions, involving multiple rigid bodies, two-phase flow, and reversible phase transitions, with a focus on two potential application scenarios in the fields of engineering and biomechanics: powder bed fusion additive manufacturing (PBFAM) and disintegration of food boluses in the human stomach. The efficiency of the parallel computational framework is demonstrated by a strong scaling analysis.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138510031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-17DOI: 10.1186/s40323-021-00213-5
Zhe Bai, Liqian Peng
{"title":"Non-intrusive nonlinear model reduction via machine learning approximations to low-dimensional operators","authors":"Zhe Bai, Liqian Peng","doi":"10.1186/s40323-021-00213-5","DOIUrl":"https://doi.org/10.1186/s40323-021-00213-5","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41324551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-04DOI: 10.1186/s40323-021-00199-0
Maialen Areitioaurtena, Unai Segurajauregi, Ville Akujärvi, Martin Fisk, Iker Urresti, Eneko Ukar
The numerical simulation of the induction heating process can be computationally expensive, especially if ferromagnetic materials are studied. There are several analytical models that describe the electromagnetic phenomena. However, these are very limited by the geometry of the coil and the workpiece. Thus, the usual method for computing more complex systems is to use the finite element method to solve the set of equations in the multiphysical system, but this easily becomes very time consuming. This paper deals with the problem of solving a coupled electromagnetic - thermal problem with higher computational efficiency. For this purpose, a semi-analytical modeling strategy is proposed, that is based on an initial finite element computation, followed by the use of analytical electromagnetic equations to solve the coupled electromagnetic-thermal problem. The usage of the simplified model is restricted to simple geometrical features such as flat or curved surfaces with great curvature to skin depth ratio. Numerical and experimental validation of the model show an average error between 0.9% and 4.1% in the prediction of the temperature evolution, reaching a greater accuracy than other analyzed commercial softwares. A 3D case of a double-row large size ball bearing is also presented, fully validating the proposed approach in terms of computational time and accuracy for complex industrial cases.
{"title":"A semi-analytical coupled simulation approach for induction heating","authors":"Maialen Areitioaurtena, Unai Segurajauregi, Ville Akujärvi, Martin Fisk, Iker Urresti, Eneko Ukar","doi":"10.1186/s40323-021-00199-0","DOIUrl":"https://doi.org/10.1186/s40323-021-00199-0","url":null,"abstract":"The numerical simulation of the induction heating process can be computationally expensive, especially if ferromagnetic materials are studied. There are several analytical models that describe the electromagnetic phenomena. However, these are very limited by the geometry of the coil and the workpiece. Thus, the usual method for computing more complex systems is to use the finite element method to solve the set of equations in the multiphysical system, but this easily becomes very time consuming. This paper deals with the problem of solving a coupled electromagnetic - thermal problem with higher computational efficiency. For this purpose, a semi-analytical modeling strategy is proposed, that is based on an initial finite element computation, followed by the use of analytical electromagnetic equations to solve the coupled electromagnetic-thermal problem. The usage of the simplified model is restricted to simple geometrical features such as flat or curved surfaces with great curvature to skin depth ratio. Numerical and experimental validation of the model show an average error between 0.9% and 4.1% in the prediction of the temperature evolution, reaching a greater accuracy than other analyzed commercial softwares. A 3D case of a double-row large size ball bearing is also presented, fully validating the proposed approach in terms of computational time and accuracy for complex industrial cases.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138510051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-01DOI: 10.1186/s40323-021-00197-2
F. Moshfeghifar, S. Darkner, K. Erleben, C. Wong
{"title":"Contact modeling from images using cut finite element solvers","authors":"F. Moshfeghifar, S. Darkner, K. Erleben, C. Wong","doi":"10.1186/s40323-021-00197-2","DOIUrl":"https://doi.org/10.1186/s40323-021-00197-2","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40323-021-00197-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43482092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-27DOI: 10.1186/s40323-022-00236-6
Muhammad Altaf Khattak, M. I. Ahmad, Lihong Feng, P. Benner
{"title":"Multivariate moment-matching for model order reduction of quadratic-bilinear systems using error bounds","authors":"Muhammad Altaf Khattak, M. I. Ahmad, Lihong Feng, P. Benner","doi":"10.1186/s40323-022-00236-6","DOIUrl":"https://doi.org/10.1186/s40323-022-00236-6","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49567018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-19DOI: 10.1186/s40323-021-00198-1
C. Issa, R. Izadifard
{"title":"Numerical simulation of the experimental behavior of RC beams at elevated temperatures","authors":"C. Issa, R. Izadifard","doi":"10.1186/s40323-021-00198-1","DOIUrl":"https://doi.org/10.1186/s40323-021-00198-1","url":null,"abstract":"","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40323-021-00198-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65853283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-05-12DOI: 10.1186/s40323-021-00196-3
Martin Servin, Tomas Berglund, Samuel Nystedt
A multiscale model for real-time simulation of terrain dynamics is explored. To represent the dynamics on different scales the model combines the description of soil as a continuous solid, as distinct particles and as rigid multibodies. The models are dynamically coupled to each other and to the earthmoving equipment. Agitated soil is represented by a hybrid of contacting particles and continuum solid, with the moving equipment and resting soil as geometric boundaries. Each zone of active soil is aggregated into distinct bodies, with the proper mass, momentum and frictional-cohesive properties, which constrain the equipment’s multibody dynamics. The particle model parameters are pre-calibrated to the bulk mechanical parameters for a wide range of different soils. The result is a computationally efficient model for earthmoving operations that resolve the motion of the soil, using a fast iterative solver, and provide realistic forces and dynamic for the equipment, using a direct solver for high numerical precision. Numerical simulations of excavation and bulldozing operations are performed to test the model and measure the computational performance. Reference data is produced using coupled discrete element and multibody dynamics simulations at relatively high resolution. The digging resistance and soil displacements with the real-time multiscale model agree with the reference model up to 10–25%, and run more than three orders of magnitude faster.
{"title":"A multiscale model of terrain dynamics for real-time earthmoving simulation","authors":"Martin Servin, Tomas Berglund, Samuel Nystedt","doi":"10.1186/s40323-021-00196-3","DOIUrl":"https://doi.org/10.1186/s40323-021-00196-3","url":null,"abstract":"A multiscale model for real-time simulation of terrain dynamics is explored. To represent the dynamics on different scales the model combines the description of soil as a continuous solid, as distinct particles and as rigid multibodies. The models are dynamically coupled to each other and to the earthmoving equipment. Agitated soil is represented by a hybrid of contacting particles and continuum solid, with the moving equipment and resting soil as geometric boundaries. Each zone of active soil is aggregated into distinct bodies, with the proper mass, momentum and frictional-cohesive properties, which constrain the equipment’s multibody dynamics. The particle model parameters are pre-calibrated to the bulk mechanical parameters for a wide range of different soils. The result is a computationally efficient model for earthmoving operations that resolve the motion of the soil, using a fast iterative solver, and provide realistic forces and dynamic for the equipment, using a direct solver for high numerical precision. Numerical simulations of excavation and bulldozing operations are performed to test the model and measure the computational performance. Reference data is produced using coupled discrete element and multibody dynamics simulations at relatively high resolution. The digging resistance and soil displacements with the real-time multiscale model agree with the reference model up to 10–25%, and run more than three orders of magnitude faster.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138510032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}