首页 > 最新文献

Current Plant Biology最新文献

英文 中文
Metabolomic analysis of grapes and leaves from symptomatic and asymptomatic Vitis vinifera grapevines with Esca disease 有症状和无症状葡萄藤埃斯卡病葡萄和叶片的代谢组分析
IF 5.4 Q1 PLANT SCIENCES Pub Date : 2024-08-10 DOI: 10.1016/j.cpb.2024.100378
Florent Weiller , Inês Diniz , Diana Pimentel , Alexander Erban , Pedro Reis , Flávio Soares , Cecília Rego , Joachim Kopka , Ana Margarida Fortes

Esca is a grapevine trunk disease spreading in vineyards worldwide, and of rising concern since no efficient treatment is available to mitigate its impact. Trunks, grapes and leaves from symptomatic and asymptomatic Aragonês vines were collected at harvest stage to characterise plant responses associated with this fungal disease. Presence of Esca associated fungi in the trunks was confirmed by molecular methods using ITS region. Metabolomics of grapes and leaves was analysed by Gas chromatography coupled to electron impact ionization time-of-flight mass spectrometry (GC-EI/TOF-MS) and GC coupled to an EI/quadrupole MS (GC-EI/QUAD-MS and showed that both organs from symptomatic plants exhibited a different metabolic reprogramming than those from asymptomatic. Symptomatic leaves present lesser content in tricarboxylic and polyhydroxy acids, and this metabolic adjustment may involve salicylic acid metabolism. On the other hand, symptomatic fruits accumulate long-chain fatty acids probably related with cuticle reinforcement to mitigate changes in water transport caused by trunk damage, and defence-related metabolites such as α-tocopherol. Symptomatic berries also presented alterations in volatile aroma compounds such as C6-volatiles, and acetic acid suggesting an impact on subsequent wine quality. Altogether this study, identified putative metabolic markers associated with Esca disease in plants with different symptomatology and contributed to a physiological understanding of this fungal disease that could help in the development of mitigation strategies for its spread.

埃斯卡是一种在全球葡萄园蔓延的葡萄树干病害,由于没有有效的治疗方法来减轻其影响,因此日益受到关注。在收获期收集了有症状和无症状阿拉贡ê斯葡萄树的树干、葡萄和叶片,以确定与这种真菌疾病相关的植物反应特征。通过使用 ITS 区域的分子方法确认了树干中存在埃斯卡相关真菌。通过气相色谱-电子碰撞电离飞行时间质谱(GC-EI/TOF-MS)和气相色谱-电子碰撞电离四极杆质谱(GC-EI/QUAD-MS)对葡萄和叶片的代谢组学进行了分析,结果表明,与无症状植物相比,有症状植物的两个器官都表现出不同的代谢重编程。有症状的叶片三羧酸和多羟基酸含量较低,这种代谢调整可能涉及水杨酸代谢。另一方面,有症状的果实会积累长链脂肪酸,这可能与角质层加固有关,以缓解树干受损造成的水分运输变化,以及与防御有关的代谢物,如α-生育酚。有症状的浆果还表现出挥发性芳香化合物(如 C6-挥发性化合物和乙酸)的变化,这表明会对后续的葡萄酒质量产生影响。总之,这项研究在不同症状的植物中发现了与埃斯卡病相关的假定代谢标记,有助于从生理学角度了解这种真菌病害,从而有助于制定缓解其传播的策略。
{"title":"Metabolomic analysis of grapes and leaves from symptomatic and asymptomatic Vitis vinifera grapevines with Esca disease","authors":"Florent Weiller ,&nbsp;Inês Diniz ,&nbsp;Diana Pimentel ,&nbsp;Alexander Erban ,&nbsp;Pedro Reis ,&nbsp;Flávio Soares ,&nbsp;Cecília Rego ,&nbsp;Joachim Kopka ,&nbsp;Ana Margarida Fortes","doi":"10.1016/j.cpb.2024.100378","DOIUrl":"10.1016/j.cpb.2024.100378","url":null,"abstract":"<div><p>Esca is a grapevine trunk disease spreading in vineyards worldwide, and of rising concern since no efficient treatment is available to mitigate its impact. Trunks, grapes and leaves from symptomatic and asymptomatic Aragonês vines were collected at harvest stage to characterise plant responses associated with this fungal disease. Presence of Esca associated fungi in the trunks was confirmed by molecular methods using ITS region. Metabolomics of grapes and leaves was analysed by Gas chromatography coupled to electron impact ionization time-of-flight mass spectrometry (GC-EI/TOF-MS) and GC coupled to an EI/quadrupole MS (GC-EI/QUAD-MS and showed that both organs from symptomatic plants exhibited a different metabolic reprogramming than those from asymptomatic. Symptomatic leaves present lesser content in tricarboxylic and polyhydroxy acids, and this metabolic adjustment may involve salicylic acid metabolism. On the other hand, symptomatic fruits accumulate long-chain fatty acids probably related with cuticle reinforcement to mitigate changes in water transport caused by trunk damage, and defence-related metabolites such as α-tocopherol. Symptomatic berries also presented alterations in volatile aroma compounds such as C6-volatiles, and acetic acid suggesting an impact on subsequent wine quality. Altogether this study, identified putative metabolic markers associated with Esca disease in plants with different symptomatology and contributed to a physiological understanding of this fungal disease that could help in the development of mitigation strategies for its spread.</p></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"40 ","pages":"Article 100378"},"PeriodicalIF":5.4,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214662824000604/pdfft?md5=9d5a9970c377cb61acbbc804f8de824b&pid=1-s2.0-S2214662824000604-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142088786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elicitation and precursor induced approaches for the enhancement of α−tocopherol production using suspension cultures of Solanum lycopersicum 利用番茄悬浮培养物提高α-生育酚产量的诱导和前体诱导方法
IF 5.4 Q1 PLANT SCIENCES Pub Date : 2024-08-08 DOI: 10.1016/j.cpb.2024.100377
Harish Mani Chandra , Balamurugan Shanmugaraj , Ashutosh Sharma , Sathishkumar Ramalingam

Elicitation and precursor feeding are the effective strategies for enhancing the synthesis of bioactive compounds in plant cell suspension cultures. The present study aimed to explore an efficient elicitation and precursor feeding protocol and its effect on inducing the accumulation of α-tocopherol in Solanum lycopersicum (tomato) suspension cell culture. The tomato cell suspension cultures were treated with different elicitors (Methyl Jasmonate, Salicylic acid and Yeast extract) and precursors (Homogentisic acid, Tyrosine, Hydroxypyruvic acid and Phytol) and the effect of α-tocopherol production was studied. Significant increase in the α-tocopherol was observed on day 5 upon methyl jasmonate treatment which represented 17.7 fold increase in comparison to the control. The treatment of precursor in combination viz., 150 μM Homogentisic acid + 150 μM Phytol showed the maximum enhancement of α-tocopherol up to 22 fold on day 10 compared to the untreated control. These results suggested that the suspension cultures combining with the optimal precursor feeding and elicitors enhanced the production of α-tocopherol in economically important tomato cell cultures.

诱导和前体饲喂是提高植物细胞悬浮培养物中生物活性化合物合成的有效策略。本研究旨在探索一种高效的诱导和前体喂养方案及其对诱导番茄悬浮细胞培养物中α-生育酚积累的影响。用不同的诱导剂(茉莉酸甲酯、水杨酸和酵母提取物)和前体(高柑橘酸、酪氨酸、羟基丙酮酸和植物醇)处理番茄悬浮细胞培养物,并研究其对α-生育酚产生的影响。在茉莉酸甲酯处理后的第 5 天,观察到 α-生育酚显著增加,与对照组相比增加了 17.7 倍。150 μM Homogentisic acid + 150 μM Phytol 的前体组合处理显示,与未处理的对照组相比,α-生育酚在第 10 天增加了 22 倍。这些结果表明,悬浮培养物与最佳前体喂养和诱导剂相结合,提高了具有重要经济价值的番茄细胞培养物中 α-生育酚的产量。
{"title":"Elicitation and precursor induced approaches for the enhancement of α−tocopherol production using suspension cultures of Solanum lycopersicum","authors":"Harish Mani Chandra ,&nbsp;Balamurugan Shanmugaraj ,&nbsp;Ashutosh Sharma ,&nbsp;Sathishkumar Ramalingam","doi":"10.1016/j.cpb.2024.100377","DOIUrl":"10.1016/j.cpb.2024.100377","url":null,"abstract":"<div><p>Elicitation and precursor feeding are the effective strategies for enhancing the synthesis of bioactive compounds in plant cell suspension cultures. The present study aimed to explore an efficient elicitation and precursor feeding protocol and its effect on inducing the accumulation of α-tocopherol in <em>Solanum lycopersicum</em> (tomato) suspension cell culture. The tomato cell suspension cultures were treated with different elicitors (Methyl Jasmonate, Salicylic acid and Yeast extract) and precursors (Homogentisic acid, Tyrosine, Hydroxypyruvic acid and Phytol) and the effect of α-tocopherol production was studied. Significant increase in the α-tocopherol was observed on day 5 upon methyl jasmonate treatment which represented 17.7 fold increase in comparison to the control. The treatment of precursor in combination <em>viz.,</em> 150 μM Homogentisic acid + 150 μM Phytol showed the maximum enhancement of α-tocopherol up to 22 fold on day 10 compared to the untreated control. These results suggested that the suspension cultures combining with the optimal precursor feeding and elicitors enhanced the production of α-tocopherol in economically important tomato cell cultures.</p></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"39 ","pages":"Article 100377"},"PeriodicalIF":5.4,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214662824000598/pdfft?md5=f04fdbf0a0dfff3a6639ee1e1c0012b1&pid=1-s2.0-S2214662824000598-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141978977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive characterization and expression profiling of defensin family peptides in Arabidopsis thaliana with a focus on their abiotic stress-specific transcriptional modulation 拟南芥中防御素家族多肽的综合表征和表达谱分析,重点关注其在非生物胁迫下的特异性转录调控作用
IF 5.4 Q1 PLANT SCIENCES Pub Date : 2024-07-31 DOI: 10.1016/j.cpb.2024.100376
Guido Domingo , Vittoria Locato , Sara Cimini , Laura Ciceri , Milena Marsoni , Laura De Gara , Marcella Bracale , Candida Vannini

In addition to defensins, plants possess an array of defensin-like peptides that share many of their characteristics, as well as a role in plant’s innate immunity. Their involvement in the response to pathogens is well-known but the contribution in the plant response to abiotic stimuli is not fully understood. We have undertaken an in silico analysis to characterize all defensin family genes hitherto found in Arabidopsis, including genes encoding for defensin-like peptides, by detecting several peptides as candidates for further studies aiming to decipher specific responses to biotic and abiotic stresses, as well as to their crosstalk. We performed several analyses, including co-expression and cis-regulatory elements analyses, using transcriptomic data obtained from the ARS database, which integrates more than 20,000 Arabidopsis RNA-seq libraries.

In silico analysis showed that jasmonates and ABA, together with transcription factors belonging to WRKY and AP2/EREBP families, modulate defensin and defensin-like gene expression. Indeed, the analysis performed in this study allowed to extract and organize omics data, which finally supported the inducible nature of defensins under both abiotic and biotic stresses. Moreover, in vivo expression analyses confirmed the heat and drought responsiveness of PDF1.4, ATTI1, PDF1.1, DEFL 206, defensin family genes selected for being upregulated by several abiotic conditions, at transcriptional level. Finally, the co-expression analysis provided information on other biological processes that may be correlated to the defensin induction, such as maintaining ROS homeostasis. Combining the comprehensive analysis of different transcriptional datasets with the integration of in vivo analyses emerged as a robust methodological approach to assess the proposed multi-stress responsive nature of defensin family genes.

除防御素外,植物还拥有一系列防御素样肽,它们具有防御素的许多共同特征,并在植物的先天免疫中发挥作用。它们参与对病原体的反应是众所周知的,但在植物对非生物刺激的反应中所起的作用还不完全清楚。我们对迄今为止在拟南芥中发现的所有防御素家族基因(包括编码防御素样肽的基因)进行了硅学分析,发现了几种候选肽,并将其作为进一步研究的对象,旨在破译它们对生物和非生物胁迫的特定反应以及它们之间的相互影响。我们利用从ARS数据库(该数据库整合了2万多个拟南芥RNA-seq文库)获得的转录组数据进行了多项分析,包括共表达和顺式调控元件分析。硅学分析表明,茉莉酸盐和ABA以及属于WRKY和AP2/EREBP家族的转录因子可调节防御素和类防御素基因的表达。事实上,本研究中进行的分析提取并整理了omics数据,最终支持了防御素在非生物和生物胁迫下的诱导性质。此外,体内表达分析证实了 PDF1.4、ATTI1、PDF1.1、DEFL 206 这些防御素家族基因在转录水平上对热和干旱的响应性。最后,共表达分析提供了可能与防御素诱导相关的其他生物过程的信息,如维持 ROS 的平衡。将不同转录数据集的综合分析与体内分析相结合,是评估防御素家族基因的多胁迫响应特性的可靠方法。
{"title":"A comprehensive characterization and expression profiling of defensin family peptides in Arabidopsis thaliana with a focus on their abiotic stress-specific transcriptional modulation","authors":"Guido Domingo ,&nbsp;Vittoria Locato ,&nbsp;Sara Cimini ,&nbsp;Laura Ciceri ,&nbsp;Milena Marsoni ,&nbsp;Laura De Gara ,&nbsp;Marcella Bracale ,&nbsp;Candida Vannini","doi":"10.1016/j.cpb.2024.100376","DOIUrl":"10.1016/j.cpb.2024.100376","url":null,"abstract":"<div><p>In addition to defensins, plants possess an array of defensin-like peptides that share many of their characteristics, as well as a role in plant’s innate immunity. Their involvement in the response to pathogens is well-known but the contribution in the plant response to abiotic stimuli is not fully understood. We have undertaken an <em>in silico</em> analysis to characterize all defensin family genes hitherto found in Arabidopsis, including genes encoding for defensin-like peptides, by detecting several peptides as candidates for further studies aiming to decipher specific responses to biotic and abiotic stresses, as well as to their crosstalk. We performed several analyses, including co-expression and cis-regulatory elements analyses, using transcriptomic data obtained from the ARS database, which integrates more than 20,000 Arabidopsis RNA-seq libraries.</p><p><em>In silico</em> analysis showed that jasmonates and ABA, together with transcription factors belonging to WRKY and AP2/EREBP families, modulate defensin and defensin-like gene expression. Indeed, the analysis performed in this study allowed to extract and organize omics data, which finally supported the inducible nature of defensins under both abiotic and biotic stresses. Moreover, <em>in vivo</em> expression analyses confirmed the heat and drought responsiveness of <em>PDF1.4</em>, <em>ATTI1</em>, <em>PDF1.1</em>, <em>DEFL 206</em>, defensin family genes selected for being upregulated by several abiotic conditions, at transcriptional level. Finally, the co-expression analysis provided information on other biological processes that may be correlated to the defensin induction, such as maintaining ROS homeostasis. Combining the comprehensive analysis of different transcriptional datasets with the integration of <em>in vivo</em> analyses emerged as a robust methodological approach to assess the proposed multi-stress responsive nature of defensin family genes.</p></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"39 ","pages":"Article 100376"},"PeriodicalIF":5.4,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214662824000586/pdfft?md5=0aa58b93e49bfcd90e262d4a1c629b13&pid=1-s2.0-S2214662824000586-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging research trends in plant-plastic interactions: A thorough analysis 植物-塑料相互作用的新研究趋势:透彻分析
IF 5.4 Q1 PLANT SCIENCES Pub Date : 2024-07-31 DOI: 10.1016/j.cpb.2024.100375
Bing Yang , Wanju Feng , Qi Lin

Plants are integral components of ecosystems and key sources of food, medicine, and other resources for human societies. The interactions between micro(nano)plastics and plants have garnered significant attention in recent years due to the pervasive nature of plastic pollution and its potential impact on terrestrial and aquatic ecosystems. This study aims to analyze the current understanding, critical knowledge gaps and future perspectives on the interactions between plants and plastic residues, including microplastics, nanoplastics, microfiber, and microbeads. Data was gathered from the Web of Science Core Collection database, with 1049 documents indexed from 2009 to 2023 for further analysis. Co-citation analysis combined with co-word network analysis was utilized. The findings indicate a notable increase in publication productivity on plastic-plant interactions over the past decade, with China, India, Italy, Korea, and Spain as the core research countries in the field. Chinese universities and research institutions, particularly Naikai University and the Chinese Academy of Sciences, are the major research drivers. Weitao Liu from Naikai University was the most productive author up to 2023. Science of the Total Environment, Environmental Pollution, and Journal of Hazardous Materials were the top three journal that published the most articles. The most frequently cited article titled “Microplastics can change soil properties and affect plant performance” published in Environmental Science & Technology in 2019. The co-citation network highlights the interconnectedness of plant-plastic interactions, while burst analysis and thematic mapping suggest that future research will focus on the impact of emerging contaminants like microplastics and nanoplastics on soil health in the plastisphere. More long-scale and long-term interdisciplinary studies including plant species and polymer types at field condition are needed to a better understanding the plant-plastic interactions. This study offers a thorough and unbiased real-time analysis of plant-plastic interactions, highlighting current trends and outlining future research directions and priorities.

植物是生态系统不可或缺的组成部分,也是人类社会食物、药物和其他资源的重要来源。近年来,由于塑料污染的普遍性及其对陆地和水生生态系统的潜在影响,微(纳)塑料与植物之间的相互作用引起了人们的极大关注。本研究旨在分析目前对植物与塑料残留物(包括微塑料、纳米塑料、微纤维和微珠)之间相互作用的理解、关键知识差距和未来展望。数据收集自 Web of Science 核心数据库,其中收录了 2009 年至 2023 年的 1049 篇文献,以供进一步分析。共引分析与共词网络分析相结合。研究结果表明,在过去十年中,有关塑料与植物相互作用的论文发表率显著提高,中国、印度、意大利、韩国和西班牙成为该领域的核心研究国家。中国的大学和研究机构,特别是内开大学和中国科学院,是研究的主要推动者。来自内开大学的刘伟涛是截至 2023 年的高产作者。全环境科学》、《环境污染》和《危险材料学报》是发表文章最多的三大期刊。被引用次数最多的文章题为《微塑料可改变土壤性质并影响植物性能》,发表于2019年的《环境科学与技术》(Environmental Science & Technology)。共引网络凸显了植物与塑料之间相互作用的相互关联性,而突发分析和主题映射表明,未来的研究将重点关注微塑料和纳米塑料等新兴污染物对植物界土壤健康的影响。为了更好地了解植物与塑料之间的相互作用,需要进行更多大规模的长期跨学科研究,包括实地条件下的植物物种和聚合物类型。本研究对植物与塑料的相互作用进行了全面、公正的实时分析,突出了当前的趋势,并概述了未来的研究方向和重点。
{"title":"Emerging research trends in plant-plastic interactions: A thorough analysis","authors":"Bing Yang ,&nbsp;Wanju Feng ,&nbsp;Qi Lin","doi":"10.1016/j.cpb.2024.100375","DOIUrl":"10.1016/j.cpb.2024.100375","url":null,"abstract":"<div><p>Plants are integral components of ecosystems and key sources of food, medicine, and other resources for human societies. The interactions between micro(nano)plastics and plants have garnered significant attention in recent years due to the pervasive nature of plastic pollution and its potential impact on terrestrial and aquatic ecosystems. This study aims to analyze the current understanding, critical knowledge gaps and future perspectives on the interactions between plants and plastic residues, including microplastics, nanoplastics, microfiber, and microbeads. Data was gathered from the Web of Science Core Collection database, with 1049 documents indexed from 2009 to 2023 for further analysis. Co-citation analysis combined with co-word network analysis was utilized. The findings indicate a notable increase in publication productivity on plastic-plant interactions over the past decade, with China, India, Italy, Korea, and Spain as the core research countries in the field. Chinese universities and research institutions, particularly Naikai University and the Chinese Academy of Sciences, are the major research drivers. Weitao Liu from Naikai University was the most productive author up to 2023. <em>Science of the Total Environment</em>, <em>Environmental Pollution</em>, and <em>Journal of Hazardous Materials</em> were the top three journal that published the most articles. The most frequently cited article titled “Microplastics can change soil properties and affect plant performance” published in <em>Environmental Science &amp; Technology</em> in 2019. The co-citation network highlights the interconnectedness of plant-plastic interactions, while burst analysis and thematic mapping suggest that future research will focus on the impact of emerging contaminants like microplastics and nanoplastics on soil health in the plastisphere. More long-scale and long-term interdisciplinary studies including plant species and polymer types at field condition are needed to a better understanding the plant-plastic interactions. This study offers a thorough and unbiased real-time analysis of plant-plastic interactions, highlighting current trends and outlining future research directions and priorities.</p></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"39 ","pages":"Article 100375"},"PeriodicalIF":5.4,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214662824000574/pdfft?md5=c2adb0f95608657634ac01cfbbcc6588&pid=1-s2.0-S2214662824000574-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141963009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring molecular, morphological, and biochemical diversity of Phaeolus vulgaris landraces cultivated in the Aniene Valley (Lazio region, Italy) 探索安尼尼山谷(意大利拉齐奥地区)种植的 Phaeolus vulgaris 陆生品系的分子、形态和生化多样性
IF 5.4 Q1 PLANT SCIENCES Pub Date : 2024-07-22 DOI: 10.1016/j.cpb.2024.100374
Enrica Alicandri , Anna Rita Paolacci , Lorenzo Coluccia , Martina Marcomeni , Paola Taviani , Mario Ciaffi

The cultivation of common beans has long been integral to rural economies in Italy, particularly in mountainous regions along the Apennine ridge, where the production focuses on local landraces grown by smallholder farmers using low-input methodologies. However, recent socioeconomic changes in rural communities pose a threat of genetic erosion to these landraces. This study examines the genetic diversity, structure, and uniqueness of common bean landraces in the Aniene Valley of the Lazio region to develop preservation strategies. Seventy-three accessions were investigated using morphological (seed traits), biochemical (phaseolin and phytohemagglutinin patterns), and molecular (microsatellite loci) analyses. These analyses revealed significant genetic variability within morphologically uniform seed materials and highlighted cases of homonymy and the inadvertent introduction of foreign genetic material. Among the 292 samples analyzed (four per accession), a clear differentiation between Mesoamerican and Andean gene pools was observed, with the Andean pool being predominant. Despite high levels of homozygosity and uniform seed morphotypes, genetic variability was detected in sixteen of the twenty-one landraces, suggesting that analyzing only a single or few plants per landrace may yield incomplete genetic information. The extensive morphological, biochemical, and genetic characterization of the P. vulgaris collection from the Aniene Valley provides insights for planning effective conservation strategies. These findings emphasize the importance of both in situ/on-farm and ex-situ conservation to preserve the genetic diversity and heritage of these local landraces.

长期以来,普通豆类的种植一直是意大利农村经济不可或缺的一部分,尤其是在亚平宁山脊沿线的山区,其生产主要集中在小农采用低投入方法种植的地方品种上。然而,最近农村社区的社会经济变化对这些土地品种的遗传侵蚀构成了威胁。本研究考察了拉齐奥地区阿尼埃内山谷普通豆类地方品种的遗传多样性、结构和独特性,以制定保护策略。通过形态学(种子性状)、生化(相思豆素和植物血凝素模式)和分子(微卫星位点)分析,对 73 个品种进行了研究。这些分析表明,形态一致的种子材料具有显著的遗传变异性,并突出显示了同种异名和无意中引入外来遗传物质的情况。在分析的 292 个样本中(每个品种四个样本),中美洲基因库和安第斯基因库之间存在明显差异,安第斯基因库占主导地位。尽管同质性很高,种子形态也很一致,但在 21 个地方品种中,有 16 个品种的遗传变异性被检测到,这表明对每个地方品种只分析单株或少数几株植物可能会产生不完整的遗传信息。对安尼尼山谷收集的粗壮罂粟进行广泛的形态、生化和遗传特征描述,为规划有效的保护战略提供了启示。这些发现强调了原地/农场和异地保护对保护这些地方品种的遗传多样性和遗产的重要性。
{"title":"Exploring molecular, morphological, and biochemical diversity of Phaeolus vulgaris landraces cultivated in the Aniene Valley (Lazio region, Italy)","authors":"Enrica Alicandri ,&nbsp;Anna Rita Paolacci ,&nbsp;Lorenzo Coluccia ,&nbsp;Martina Marcomeni ,&nbsp;Paola Taviani ,&nbsp;Mario Ciaffi","doi":"10.1016/j.cpb.2024.100374","DOIUrl":"10.1016/j.cpb.2024.100374","url":null,"abstract":"<div><p>The cultivation of common beans has long been integral to rural economies in Italy, particularly in mountainous regions along the Apennine ridge, where the production focuses on local landraces grown by smallholder farmers using low-input methodologies. However, recent socioeconomic changes in rural communities pose a threat of genetic erosion to these landraces. This study examines the genetic diversity, structure, and uniqueness of common bean landraces in the Aniene Valley of the Lazio region to develop preservation strategies. Seventy-three accessions were investigated using morphological (seed traits), biochemical (phaseolin and phytohemagglutinin patterns), and molecular (microsatellite loci) analyses. These analyses revealed significant genetic variability within morphologically uniform seed materials and highlighted cases of homonymy and the inadvertent introduction of foreign genetic material. Among the 292 samples analyzed (four per accession), a clear differentiation between Mesoamerican and Andean gene pools was observed, with the Andean pool being predominant. Despite high levels of homozygosity and uniform seed morphotypes, genetic variability was detected in sixteen of the twenty-one landraces, suggesting that analyzing only a single or few plants per landrace may yield incomplete genetic information. The extensive morphological, biochemical, and genetic characterization of the <em>P. vulgaris</em> collection from the Aniene Valley provides insights for planning effective conservation strategies. These findings emphasize the importance of both in situ/on-farm and ex-situ conservation to preserve the genetic diversity and heritage of these local landraces.</p></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"39 ","pages":"Article 100374"},"PeriodicalIF":5.4,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214662824000562/pdfft?md5=86e8ea88a4d2be54e55f39cf896d0cb8&pid=1-s2.0-S2214662824000562-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141850542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of a biostimulant enriched in betalain degradation products on ROS signaling, proline accumulation, and phytohormone homeostasis 富含甜菜红素降解产物的生物刺激剂对 ROS 信号转导、脯氨酸积累和植物激素平衡的影响
IF 5.4 Q1 PLANT SCIENCES Pub Date : 2024-07-22 DOI: 10.1016/j.cpb.2024.100373
Noemi Gatti , Graziella Serio , Carla Gentile , Cinzia M. Bertea , Giuseppe Mannino

This study investigates the potential of a biostimulant derived from Selenicereus undatus peel waste and enriched in betalain degradation products (BDP), to influence Arabidopsis thaliana seedling development. Notably, lower BDP concentrations enhanced seedling development, while higher dosages exhibited adverse effects. Assessment of mitochondrial activity in both seeds and purified organelles showed that the tested biostimulant did not affect mitochondrial activity or integrity, highlighting its independence from mitochondrial performance. Mechanistically, BDP-enriched biostimulant modulated ROS-signaling, diminishing H2O2 by regulating the enzymatic activity and gene expression of SOD, CAT, GPX, and GR. Particularly, analyzing their different isoform via qRT-PCR, the primary cellular compartment where detoxification occurred were identified. Furthermore, biostimulant was able to influence proline-accumulation, altering both the expression of metabolism (PC5S, P5CR and OAT) and catabolism (PDH and P5CDH) related genes. Finally, the BDP-enriched biostimulant altered phytohormone levels, mainly affecting ABA/ABA-glu, tZea/tZea-rib, and tZea/IAA. Concerning GAs, the increase in GA4 and GA7 suggested an involvement of GA13ox, a hypothesis encouraged by qRT-PCR analysis. In summary, this study underscores the potential of BDP-based biostimulant as sustainable promoters of plant growth, influencing critical regulatory pathways during germination. Further research is necessary to explore their extensive applications in agricultural practices.

本研究调查了一种生物刺激剂的潜力,这种生物刺激剂提取自硒蕨果皮废物,富含甜菜红素降解产物(BDP),可影响拟南芥幼苗的生长发育。值得注意的是,较低浓度的 BDP 会促进幼苗的生长,而较高的剂量则会产生不利影响。对种子和纯化细胞器中线粒体活性的评估表明,测试的生物刺激剂不会影响线粒体的活性或完整性,这突出表明它与线粒体的性能无关。从机理上讲,富含 BDP 的生物刺激素可调节 ROS 信号,通过调节 SOD、CAT、GPX 和 GR 的酶活性和基因表达来减少 H2O2。特别是通过 qRT-PCR 分析它们的不同同工酶,确定了发生解毒作用的主要细胞区。此外,生物刺激剂还能影响脯氨酸的积累,改变新陈代谢(PC5S、P5CR 和 OAT)和分解代谢(PDH 和 P5CDH)相关基因的表达。最后,富含 BDP 的生物刺激剂改变了植物激素水平,主要影响 ABA/ABA-glu、tZea/tZea-rib 和 tZea/IAA。关于 GAs,GA4 和 GA7 的增加表明有 GA13ox 的参与,qRT-PCR 分析鼓励了这一假设。总之,本研究强调了基于 BDP 的生物刺激剂作为植物生长可持续促进剂的潜力,它能影响萌芽过程中的关键调节途径。要探索它们在农业实践中的广泛应用,还需要进一步的研究。
{"title":"Impact of a biostimulant enriched in betalain degradation products on ROS signaling, proline accumulation, and phytohormone homeostasis","authors":"Noemi Gatti ,&nbsp;Graziella Serio ,&nbsp;Carla Gentile ,&nbsp;Cinzia M. Bertea ,&nbsp;Giuseppe Mannino","doi":"10.1016/j.cpb.2024.100373","DOIUrl":"10.1016/j.cpb.2024.100373","url":null,"abstract":"<div><p>This study investigates the potential of a biostimulant derived from <em>Selenicereus undatus</em> peel waste and enriched in betalain degradation products (BDP), to influence <em>Arabidopsis thaliana</em> seedling development. Notably, lower BDP concentrations enhanced seedling development, while higher dosages exhibited adverse effects. Assessment of mitochondrial activity in both seeds and purified organelles showed that the tested biostimulant did not affect mitochondrial activity or integrity, highlighting its independence from mitochondrial performance. Mechanistically, BDP-enriched biostimulant modulated ROS-signaling, diminishing H<sub>2</sub>O<sub>2</sub> by regulating the enzymatic activity and gene expression of SOD, CAT, GPX, and GR. Particularly, analyzing their different isoform via qRT-PCR, the primary cellular compartment where detoxification occurred were identified. Furthermore, biostimulant was able to influence proline-accumulation, altering both the expression of metabolism (<em>PC5S</em>, <em>P5CR</em> and <em>OAT</em>) and catabolism (<em>PDH</em> and <em>P5CDH</em>) related genes. Finally, the BDP-enriched biostimulant altered phytohormone levels, mainly affecting ABA/ABA-glu, tZea/tZea-rib, and tZea/IAA. Concerning GAs, the increase in GA4 and GA7 suggested an involvement of GA13ox, a hypothesis encouraged by qRT-PCR analysis. In summary, this study underscores the potential of BDP-based biostimulant as sustainable promoters of plant growth, influencing critical regulatory pathways during germination. Further research is necessary to explore their extensive applications in agricultural practices.</p></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"39 ","pages":"Article 100373"},"PeriodicalIF":5.4,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214662824000550/pdfft?md5=1e998df9e096416c57b5dd4c7e0b42b6&pid=1-s2.0-S2214662824000550-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141840735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endophytic bacterium Sphingomonas panaciterrae NB5 influences soil properties and improves growth, nutrient contents, and yield of red amaranth (Amaranthus tricolor L.) 内生细菌 Sphingomonas panaciterrae NB5 影响土壤性质并改善红苋菜(Amaranthus tricolor L.)的生长、养分含量和产量
IF 5.4 Q1 PLANT SCIENCES Pub Date : 2024-07-09 DOI: 10.1016/j.cpb.2024.100372
Razia Sultana , Shah Mohammad Naimul Islam , Sourav Biswas Shuvo , Gazi Md. Adnan Ehsan , Prinon Saha , Md. Mustafijur Rahman Khan , Nishat Rumman

Plant growth promoting rhizobacteria (PGPR) are crucial for enhancing plant growth and restoring soil health. Despite the excellent plant growth promoting traits, information is limited on the efficacy of Sphingomonas as a PGPR, especially in vegetable crops. In this study, we used Sphingomonas panaciterrae NB5 as a biofertilizer in leafy vegetable red amaranth in three methods: seed priming (SP), root drenching + foliar (RD + FA), and bacterial culture filtrate (BCF) foliar application. Bio-inoculation of NB5 significantly increased the plant height, number of leaves, leaf area, stem girth, total chlorophyll, vitamin C, and antioxidant contents of red amaranth in all methods of application. Bacterial treatment resulted in notable alterations to the root structure, consisting of the formation of secondary, tertiary, and fibrous roots, particularly in the BCF foliar application and RD + FA treatment.The fresh and dry biomass significantly increased both in root and shoot, resulting in improved yield. The nutritional profile revealed that bacterial application significantly increased the nitrogen, potassium, magnesium, iron, and zinc content, with a slight increase in phosphorus content, in shoots and roots in all the methods of bacterial application compared to control. In post-harvest soil, NB5 boosted total nitrogen, available phosphorus, calcium, and sulfur, as well as soil organic carbon (SOM) and total bacterial populations, regardless of the application methods. The RD+FA treatment outperformed the other methods of application in most of the plant and soil parameters, and the next was the BCF foliar application. Multivariate analysis also confirmed the better performance of RD+ FA and BCF foliar applications. Therefore, simultaneous application of NB5 through root drenching and foliar application could be recommended to the farmers for increasing the yield of red amaranth with improved nutrients and restoring soil health and productivity.

植物生长促进根瘤菌(PGPR)对促进植物生长和恢复土壤健康至关重要。尽管鞘氨单胞菌具有优异的植物生长促进特性,但有关其作为植物生长促进根瘤菌(PGPR)功效的信息却很有限,尤其是在蔬菜作物中。在本研究中,我们将 Sphingomonas panaciterrae NB5 用作叶菜类作物红苋菜的生物肥料,使用了三种方法:种子处理(SP)、根部淋水+叶面喷施(RD + FA)和细菌培养滤液(BCF)叶面喷施。在所有施用方法中,NB5 的生物接种都能显著增加红苋菜的株高、叶片数、叶面积、茎围、叶绿素总量、维生素 C 和抗氧化剂含量。细菌处理显著改变了根部结构,包括形成次生根、三级根和须根,尤其是在 BCF 叶面施肥和 RD + FA 处理中。营养成分分析表明,与对照组相比,所有施菌方法的芽和根中的氮、钾、镁、铁和锌含量都明显增加,磷含量略有增加。在收获后的土壤中,无论采用哪种施用方法,NB5 都能提高总氮、可利用磷、钙、硫以及土壤有机碳(SOM)和细菌总数。在大多数植物和土壤参数方面,RD+FA 处理优于其他施肥方法,其次是 BCF 叶面施肥。多变量分析也证实了 RD+FA 和 BCF 叶面喷施的效果更好。因此,建议农民通过根部淋施和叶面喷施同时施用 NB5,以提高红苋菜的产量,改善营养状况,恢复土壤健康和生产力。
{"title":"Endophytic bacterium Sphingomonas panaciterrae NB5 influences soil properties and improves growth, nutrient contents, and yield of red amaranth (Amaranthus tricolor L.)","authors":"Razia Sultana ,&nbsp;Shah Mohammad Naimul Islam ,&nbsp;Sourav Biswas Shuvo ,&nbsp;Gazi Md. Adnan Ehsan ,&nbsp;Prinon Saha ,&nbsp;Md. Mustafijur Rahman Khan ,&nbsp;Nishat Rumman","doi":"10.1016/j.cpb.2024.100372","DOIUrl":"https://doi.org/10.1016/j.cpb.2024.100372","url":null,"abstract":"<div><p>Plant growth promoting rhizobacteria (PGPR) are crucial for enhancing plant growth and restoring soil health. Despite the excellent plant growth promoting traits, information is limited on the efficacy of <em>Sphingomonas</em> as a PGPR, especially in vegetable crops. In this study, we used <em>Sphingomonas panaciterrae</em> NB5 as a biofertilizer in leafy vegetable red amaranth in three methods: seed priming (SP), root drenching + foliar (RD + FA), and bacterial culture filtrate (BCF) foliar application. Bio-inoculation of NB5 significantly increased the plant height, number of leaves, leaf area, stem girth, total chlorophyll, vitamin C, and antioxidant contents of red amaranth in all methods of application. Bacterial treatment resulted in notable alterations to the root structure, consisting of the formation of secondary, tertiary, and fibrous roots, particularly in the BCF foliar application and RD + FA treatment.The fresh and dry biomass significantly increased both in root and shoot, resulting in improved yield. The nutritional profile revealed that bacterial application significantly increased the nitrogen, potassium, magnesium, iron, and zinc content, with a slight increase in phosphorus content, in shoots and roots in all the methods of bacterial application compared to control. In post-harvest soil, NB5 boosted total nitrogen, available phosphorus, calcium, and sulfur, as well as soil organic carbon (SOM) and total bacterial populations, regardless of the application methods. The RD+FA treatment outperformed the other methods of application in most of the plant and soil parameters, and the next was the BCF foliar application. Multivariate analysis also confirmed the better performance of RD+ FA and BCF foliar applications. Therefore, simultaneous application of NB5 through root drenching and foliar application could be recommended to the farmers for increasing the yield of red amaranth with improved nutrients and restoring soil health and productivity.</p></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"39 ","pages":"Article 100372"},"PeriodicalIF":5.4,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214662824000549/pdfft?md5=5a7946e239cddc8f15b575817c115aca&pid=1-s2.0-S2214662824000549-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141607117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive genomic screening and expression profiling of trihelix family in pearl millet under abiotic stresses with emphasis on functional insights of PgTHX24 非生物胁迫条件下珍珠米三螺旋家族的全面基因组筛选和表达谱分析,重点关注 PgTHX24 的功能研究
IF 5.4 Q1 PLANT SCIENCES Pub Date : 2024-07-06 DOI: 10.1016/j.cpb.2024.100371
Jeky Chanwala , Deepak Kumar Jha , Tsheten Sherpa , Khushbu Kumari , Preeti Barla , Abhimanyu Das , Nrisingha Dey

The trihelix transcription factors (THX TFs) play a crucial role in light responses and are involved in plant growth, development, and stress responses. In this study, we have identified 35 trihelix TFs in pearl millet (Pennisetum glaucum), which is one of the most widely grown C4 cereal crops in tropical semi-arid regions. Identified PgTHXs (Trihelix members of P. glaucum) were classified into 5 subgroups (GT1, GT2, GTγ, SH4, and SIP1) based on phylogenetic analysis, and these subgroup members shared similar gene structure and motif distribution pattern. Collinearity analysis exhibited gene duplication events of trihelix family members in pearl millet across the genome. Gene ontology (GO) annotation and cis-regulatory elements (CREs) analysis of PgTHXs suggested their involvement in diverse biological and molecular functions associated with plant growth, development, and stress responses. RNA sequencing data and expression profile displayed differential expression patterns of PgTHXs under abiotic stress and phytohormone treatments. The induced expression pattern of the PgTHX4, PgTHX5, PgTHX24, and PgTHX30 suggested their potential involvement in abiotic stress responses through phytohormonal signalling pathways. Among these, PgTHX24, a GT-3b member, was localized in the nucleus with self-transactivation ability. Overexpression of PgTHX24 positively regulated expression of stress-related markers in transformed pearl millet calli under drought stress conditions. Promoter activity analysis also highlighted the stress-inducible nature of PgTHX24’s promoter. Overall, our findings provide a comprehensive understanding of PgTHXs with a framework for further functional characterization to understand their regulatory role in pearl millet’s growth, development, and stress responses.

Key message

Thirty-five trihelix TFs were identified in pearl millet, and a comprehensive expression profile highlighted their functional diversity. Overexpression of PgTHX24 exhibited its potential involvement in abiotic stress responses.

三螺旋转录因子(THX TFs)在光反应中起着至关重要的作用,并参与植物的生长、发育和胁迫反应。在这项研究中,我们鉴定了珍珠粟(Pennisetum glaucum)中的 35 个三螺旋转录因子,珍珠粟是热带半干旱地区最广泛种植的 C4 谷类作物之一。根据系统发育分析,被鉴定的 PgTHXs(珍珠粟中的三螺旋成员)被分为 5 个亚群(GT1、GT2、GTγ、SH4 和 SIP1),这些亚群成员具有相似的基因结构和基序分布模式。共线性分析表明,三螺旋家族成员的基因在珍珠粟整个基因组中存在重复事件。对 PgTHXs 的基因本体(GO)注释和顺式调控元件(CREs)分析表明,它们参与了与植物生长、发育和胁迫响应相关的多种生物和分子功能。RNA 测序数据和表达谱显示了 PgTHXs 在非生物胁迫和植物激素处理下的不同表达模式。PgTHX4、PgTHX5、PgTHX24和PgTHX30的诱导表达模式表明,它们可能通过植物激素信号途径参与非生物胁迫响应。其中,PgTHX24 是 GT-3b 成员,定位于细胞核,具有自激活能力。在干旱胁迫条件下,过表达 PgTHX24 能正向调控转化珍珠米胼胝体中胁迫相关标记的表达。启动子活性分析也突显了 PgTHX24 启动子的胁迫诱导特性。总之,我们的研究结果提供了一个全面了解 PgTHXs 的框架,以便进一步进行功能表征,了解它们在珍珠粟的生长、发育和胁迫响应中的调控作用。PgTHX24的过表达表明它可能参与了非生物胁迫响应。
{"title":"Comprehensive genomic screening and expression profiling of trihelix family in pearl millet under abiotic stresses with emphasis on functional insights of PgTHX24","authors":"Jeky Chanwala ,&nbsp;Deepak Kumar Jha ,&nbsp;Tsheten Sherpa ,&nbsp;Khushbu Kumari ,&nbsp;Preeti Barla ,&nbsp;Abhimanyu Das ,&nbsp;Nrisingha Dey","doi":"10.1016/j.cpb.2024.100371","DOIUrl":"https://doi.org/10.1016/j.cpb.2024.100371","url":null,"abstract":"<div><p>The trihelix transcription factors (THX TFs) play a crucial role in light responses and are involved in plant growth, development, and stress responses. In this study, we have identified 35 trihelix TFs in pearl millet (<em>Pennisetum glaucum</em>), which is one of the most widely grown C<sub>4</sub> cereal crops in tropical semi-arid regions. Identified PgTHXs (Trihelix members of <em>P. glaucum</em>) were classified into 5 subgroups (GT1, GT2, GTγ, SH4, and SIP1) based on phylogenetic analysis, and these subgroup members shared similar gene structure and motif distribution pattern. Collinearity analysis exhibited gene duplication events of trihelix family members in pearl millet across the genome. Gene ontology (GO) annotation and <em>cis</em>-regulatory elements (CREs) analysis of <em>PgTHX</em>s suggested their involvement in diverse biological and molecular functions associated with plant growth, development, and stress responses. RNA sequencing data and expression profile displayed differential expression patterns of <em>PgTHX</em>s under abiotic stress and phytohormone treatments. The induced expression pattern of the <em>PgTHX4</em>, <em>PgTHX5</em>, <em>PgTHX24,</em> and <em>PgTHX30</em> suggested their potential involvement in abiotic stress responses through phytohormonal signalling pathways. Among these, <em>PgTHX24</em>, a GT-3b member, was localized in the nucleus with self-transactivation ability. Overexpression of <em>PgTHX24</em> positively regulated expression of stress-related markers in transformed pearl millet calli under drought stress conditions. Promoter activity analysis also highlighted the stress-inducible nature of <em>PgTHX24</em>’s promoter. Overall, our findings provide a comprehensive understanding of <em>PgTHX</em>s with a framework for further functional characterization to understand their regulatory role in pearl millet’s growth, development, and stress responses.</p></div><div><h3>Key message</h3><p>Thirty-five trihelix TFs were identified in pearl millet, and a comprehensive expression profile highlighted their functional diversity. Overexpression of <em>PgTHX24</em> exhibited its potential involvement in abiotic stress responses.</p></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"39 ","pages":"Article 100371"},"PeriodicalIF":5.4,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214662824000537/pdfft?md5=80b9bac6adc4ae0d5cd00ffbc72b9070&pid=1-s2.0-S2214662824000537-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141607118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of gene expression signature for drought stress response in barley (Hordeum vulgare L.) using machine learning approach 利用机器学习方法识别大麦(Hordeum vulgare L.)干旱胁迫响应的基因表达特征
IF 5.4 Q1 PLANT SCIENCES Pub Date : 2024-07-02 DOI: 10.1016/j.cpb.2024.100370
Bahman Panahi, Saber Golkari

Barley (Hordeum vulgare L.) is an important cereal crop, playing a pivotal role in global agriculture and food systems. Drought has a significant impact on barley growth and yield productivity. In the current study, core drought stress responsive genes were investigated using an integrative approach. First, we determined the core differentially expressed genes (DEGs) in multiple RNA-seq experiments using a p-value combination approach. Then, machine learning approaches including four weighting algorithms were harnessed for prioritization and determination of signature genes. Moreover, predictive models were optimized using tree induction and naive Bayes algorithms. Finally, the functional importance of the core DEGs and signature genes and pathways were dissected using gene ontology, KEGG enrichment, and protein-protein interaction network analysis. Results showed that the core DEGs participate in carbon metabolism, biosynthesis of secondary metabolites, glyoxylate and dicarboxylate metabolism, carbon fixation, biosynthesis and degradation of amino acids, glycolysis/gluconeogenesis, pyruvate metabolism, starch and sucrose metabolism, glycerolipid metabolism, beta-alanine metabolism, ascorbate and aldarate metabolism, taurine and hypotaurine metabolism. Notably, the C4.5 algorithm, boasting a remarkable 100 % accuracy, pinpointed two genes of particular importance including HORVU.MOREX.R3.1HG0063740, encoding the endo-1, 3–1, 4-beta-D-glucanase, and HORVU.MOREX.R3.1HG0083720, which encodes the bifunctional inhibitor/lipid-transfer protein. This comprehensive analysis contributes significantly to understanding of the core drought responsive genes and pathways. Moreover, these findings lay the groundwork for further research aimed at developing drought-resistant barley varieties and utilizing predictive models in field screening programs.

大麦(Hordeum vulgare L.)是一种重要的谷类作物,在全球农业和粮食系统中发挥着举足轻重的作用。干旱对大麦的生长和产量有重大影响。本研究采用综合方法对大麦的核心干旱胁迫响应基因进行了研究。首先,我们使用 p 值组合方法确定了多个 RNA-seq 实验中的核心差异表达基因(DEGs)。然后,利用包括四种加权算法在内的机器学习方法确定特征基因的优先级。此外,还使用树归纳法和天真贝叶斯算法对预测模型进行了优化。最后,利用基因本体论、KEGG富集和蛋白-蛋白相互作用网络分析剖析了核心DEGs、特征基因和通路的功能重要性。结果表明,核心 DEGs 参与了碳代谢、次生代谢物的生物合成、乙醛酸和二羧酸代谢、碳固定、氨基酸的生物合成和降解、糖酵解/糖醛酸生成、丙酮酸代谢、淀粉和蔗糖代谢、甘油脂代谢、β-丙氨酸代谢、抗坏血酸和醛酸代谢、牛磺酸和低牛磺酸代谢。值得注意的是,C4.5 算法的准确率高达 100%,它确定了两个特别重要的基因,包括编码内-1,3-1,4-beta-D-葡聚糖酶的 HORVU.MOREX.R3.1HG0063740,以及编码双功能抑制剂/脂质转移蛋白的 HORVU.MOREX.R3.1HG0083720。这一全面分析极大地促进了对核心干旱响应基因和途径的了解。此外,这些发现还为进一步研究抗旱大麦品种和在田间筛选计划中利用预测模型奠定了基础。
{"title":"Identification of gene expression signature for drought stress response in barley (Hordeum vulgare L.) using machine learning approach","authors":"Bahman Panahi,&nbsp;Saber Golkari","doi":"10.1016/j.cpb.2024.100370","DOIUrl":"https://doi.org/10.1016/j.cpb.2024.100370","url":null,"abstract":"<div><p>Barley (<em>Hordeum vulgare</em> L.) is an important cereal crop, playing a pivotal role in global agriculture and food systems. Drought has a significant impact on barley growth and yield productivity. In the current study, core drought stress responsive genes were investigated using an integrative approach. First, we determined the core differentially expressed genes (DEGs) in multiple RNA-seq experiments using a p-value combination approach. Then, machine learning approaches including four weighting algorithms were harnessed for prioritization and determination of signature genes. Moreover, predictive models were optimized using tree induction and naive Bayes algorithms. Finally, the functional importance of the core DEGs and signature genes and pathways were dissected using gene ontology, KEGG enrichment, and protein-protein interaction network analysis. Results showed that the core DEGs participate in carbon metabolism, biosynthesis of secondary metabolites, glyoxylate and dicarboxylate metabolism, carbon fixation, biosynthesis and degradation of amino acids, glycolysis/gluconeogenesis, pyruvate metabolism, starch and sucrose metabolism, glycerolipid metabolism, beta-alanine metabolism, ascorbate and aldarate metabolism, taurine and hypotaurine metabolism. Notably, the C4.5 algorithm, boasting a remarkable 100 % accuracy, pinpointed two genes of particular importance including HORVU.MOREX.R3.1HG0063740, encoding the endo-1, 3–1, 4-beta-D-glucanase, and HORVU.MOREX.R3.1HG0083720, which encodes the bifunctional inhibitor/lipid-transfer protein. This comprehensive analysis contributes significantly to understanding of the core drought responsive genes and pathways. Moreover, these findings lay the groundwork for further research aimed at developing drought-resistant barley varieties and utilizing predictive models in field screening programs.</p></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"39 ","pages":"Article 100370"},"PeriodicalIF":5.4,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214662824000525/pdfft?md5=072d4d9ed97b105887d42db3f2e1587f&pid=1-s2.0-S2214662824000525-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141540096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using non-equilibrium thermodynamics to model cadmium accumulation by maize 利用非平衡热力学建立玉米镉积累模型
IF 5.4 Q1 PLANT SCIENCES Pub Date : 2024-07-02 DOI: 10.1016/j.cpb.2024.100369
Christian Moyne , Pierre Leglize , Thibault Sterckeman

Many people around the world are overexposed to cadmium through their consumption of plant products. A model predicting Cd content in crops would improve risk assessment and cultural practices. As no such model exists, we evaluated different methods to simulate the root uptake of Cd and its translocation to the aerial parts of maize.

Using non-equilibrium thermodynamics, the Cd flux (JA,B) from one compartment (A) to another (B) was considered to be proportional to the difference in electrochemical potential between the compartments and given by an equation of the type JA,B=βA,Bln(KBCA/KACB), where βA,B and KB are constants and CA and CB the actual Cd concentrations in compartments A and B. The compartments considered were rhizosphere solution (Rh), root cortex (Co), xylem sap (X) and aerial tissues. The model was evaluated against the experimental uptake of Cd by maize exposed for 8 h to a constant Cd concentration in the rhizosphere solution.

The formalism made it possible to describe the flow of Cd from the rhizosphere to the root cortex, with βRh,Co = 8.7E-11 mol m−2 s−1 and KCo = 73. This questions the common use of Michaelis-Menten kinetics to model root absorption over the long term (throughout the cultivation period). In this case, the apparent validity of the Michaelis-Menten uptake kinetics is probably more closely linked to the root growth than to the Cd internalization mechanisms. To take into account the resistance to the ion transport linked to crossing the root cortex, thermodynamic and diffusion formalisms had to be associated, which enabled the prediction of the Cd flux towards xylem, with KX = 12.48 and a diffusion coefficient DCo<

世界上有许多人因食用植物产品而过量接触镉。一个能预测作物中镉含量的模型将改善风险评估和文化实践。由于目前还没有这样的模型,我们评估了不同的方法来模拟玉米根部对镉的吸收及其向气生部分的转移。利用非平衡热力学,我们认为镉从一个区室(A)到另一个区室(B)的通量(JA,B)与区室之间的电化学势之差成正比,并由 JA,B=βA,Bln(KBCA/KACB) 型方程给出,其中 βA,B 和 KB 是常数,CA 和 CB 是区室 A 和 B 中的实际镉浓度。考虑的分区包括根圈溶液(Rh)、根皮层(Co)、木质部汁液(X)和气生组织。根据玉米在根圈溶液中恒定的镉浓度下暴露 8 小时对镉的吸收实验,对该模型进行了评估。该模型可以描述镉从根圈到根皮层的流动,βRh,Co = 8.7E-11 mol m-2 s-1 和 KCo = 73。这就对通常使用 Michaelis-Menten 动力学来模拟根系的长期吸收(整个栽培期)提出了质疑。在这种情况下,Michaelis-Menten 吸收动力学的表面有效性可能与根的生长而不是镉的内化机制有更密切的关系。考虑到穿过根皮层对离子传输的阻力,必须将热力学和扩散形式联系起来,这样才能预测木质部的镉通量(KX = 12.48,扩散系数 DCo = 3.44E-11 m2 s-1)。通过模拟植物蒸腾作用产生的液流,可以更好地预测从木质部到气生组织的镉通量。这项工作为建立相对简单的植物镉积累模型开辟了前景。
{"title":"Using non-equilibrium thermodynamics to model cadmium accumulation by maize","authors":"Christian Moyne ,&nbsp;Pierre Leglize ,&nbsp;Thibault Sterckeman","doi":"10.1016/j.cpb.2024.100369","DOIUrl":"https://doi.org/10.1016/j.cpb.2024.100369","url":null,"abstract":"<div><p>Many people around the world are overexposed to cadmium through their consumption of plant products. A model predicting Cd content in crops would improve risk assessment and cultural practices. As no such model exists, we evaluated different methods to simulate the root uptake of Cd and its translocation to the aerial parts of maize.</p><p>Using non-equilibrium thermodynamics, the Cd flux (<span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>A</mi><mo>,</mo><mi>B</mi></mrow></msub></math></span>) from one compartment (A) to another (B) was considered to be proportional to the difference in electrochemical potential between the compartments and given by an equation of the type <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>A</mi><mo>,</mo><mi>B</mi></mrow></msub><mo>=</mo><msub><mrow><mi>β</mi></mrow><mrow><mi>A</mi><mo>,</mo><mi>B</mi></mrow></msub><mi>ln</mi><mo>(</mo><mrow><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>B</mi></mrow></msub><msub><mrow><mi>C</mi></mrow><mrow><mi>A</mi></mrow></msub></mrow><mo>/</mo><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>A</mi></mrow></msub><msub><mrow><mi>C</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>)</mo></mrow></mrow></mrow></math></span>, where <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>A</mi><mo>,</mo><mi>B</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span> are constants and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span> the actual Cd concentrations in compartments A and B. The compartments considered were rhizosphere solution (Rh), root cortex (Co), xylem sap (X) and aerial tissues. The model was evaluated against the experimental uptake of Cd by maize exposed for 8 h to a constant Cd concentration in the rhizosphere solution.</p><p>The formalism made it possible to describe the flow of Cd from the rhizosphere to the root cortex, with <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>Rh</mi><mo>,</mo><mi>Co</mi></mrow></msub></math></span> = 8.7E-11 mol m<sup>−2</sup> s<sup>−1</sup> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>Co</mi></mrow></msub></math></span> = 73. This questions the common use of Michaelis-Menten kinetics to model root absorption over the long term (throughout the cultivation period). In this case, the apparent validity of the Michaelis-Menten uptake kinetics is probably more closely linked to the root growth than to the Cd internalization mechanisms. To take into account the resistance to the ion transport linked to crossing the root cortex, thermodynamic and diffusion formalisms had to be associated, which enabled the prediction of the Cd flux towards xylem, with <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>X</mi></mrow></msub></math></span> = 12.48 and a diffusion coefficient <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>Co</mi></mrow><","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"39 ","pages":"Article 100369"},"PeriodicalIF":5.4,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214662824000513/pdfft?md5=076a4e1b55c8a030ced23ba5fbe9d60b&pid=1-s2.0-S2214662824000513-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141540094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current Plant Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1