Due to an array of medicinal properties being attributed to Gotu kola (Centella asiatica (L.) Urb.), there is a growing demand for the incorporation of the plant as an herbal ingredient in drugs, cosmetics but mainly in dietary supplements and herbal drugs, which has been causing a gradual decline on its wild population. A possible way might be the improvement of the content in bioactive constituents that, in this specific matter, have been mainly labelled as being pentacyclic triterpenoids. We hypothesize that using light-emitting diode (LED) treatments can enhance its content in bioactives and improve its neuroprotective effects. Specific LED light treatments caused a metabolic shift, globally reducing the concentrations of the triterpenoids madecassoside, asiaticoside, and their corresponding aglycones. However, LED light treatments caused a pronounced increase in specific phenolic bioactives in comparison with samples obtained under sunlight, mostly pronounced in the concentrations of di-O-caffeoylquinic acids. Principal component analysis corroborated that the improvement on the neuroinflammatory status in BV-2 microglial cells and enhanced inhibition of tyrosinase are correlated with the increase in specific phenolic constituents resulting from LED light treatments. While the anti-neuroinflammatory effects in BV-2 microglial cells are demonstrated here for the first time, our core findings are mostly crucial for meeting the increased demand for C. asiatica in herbal products, as our LED light treatment boosts yields in specific phenolic bioactives and improves neuroprotective effects.
The Papaver genus is famous for its ability to biosynthesize a wide variety of secondary metabolites, including benzylisoquinoline alkaloids (BIAs) which have been prescribed to treat several health issues, ranging from cough to cancer. Plus, they have been evidenced to be powerful antioxidants scavenging free radical that are synthesized and accumulated when plants are striving to relieve biotic and abiotic stresses. Morphine, codeine, thebaine, noscapine, papaverine, and sanguinarine are the most well-known BIAs. The biosynthesis of BIAs is limited to organized tissues, and because the content of BIAs in these tissues is relatively low, the use of differentiated organ culture, hairy root culture, is drown much more attention. Interestingly, the biosynthetic capacity of the hairy root culture is higher than that of native plants, making them an appropriate platform for in vitro BIA production. One of the most attractive options for improving BIAs accumulation in hairy roots for both modest and massive production is to adopt biotechnological strategies. Regarding the latter, however, the bioreactor-based production of plant bioactive compounds is preceded by optimization of some factors related to machinery and culture medium. The purpose of this review is to supply comprehensive information about current and innovative biotechnological approaches which have been employed or have the potential to be applied for elevating BIA production in the Papaver hairy root culture as well as their importance from the medicinal and defensive perspectives.
Given global agricultural challenges such as population growth, climate change, and limitations on resources and the environment, as well as increasing diversity in breeding goals, relying on traditional breeding methods is inadequate to provide food security requirements and promote sustainable development. Genetic transformation technology has become an effective tool for performing functional genomics research and molecular breeding. In this study, we conducted an in-depth analysis of 1669 literary works to investigate the potential of developmental regulators (DRs) in enhancing the efficiency of plant genetic transformation, with a concentration on their use in maize. Through multi-omics data analysis, we identified 12 homologous DRs from various species that are potentially applicable to maize. We identified a total of 41 possible disease resistances (DRs) for maize genetic transformation. Further experimental verification of ZmWIND1, a novel regulator belonging to the ERF/AP2 transcription factor (TF) family, showed that it significantly improved the efficiency of plant regeneration and transformation efficiency in maize. Specifically, compared to the control group, the callus induction rates for the pG3GB411-ZmWIND1 vector increased to 60.22 % and 47.85 % in Xiang249 and Zheng58, respectively. Transformation efficiency increased to 37.5 % in Xiang249 and 16.56 % in Zheng58, both significantly surpassing the control group. These findings have the potential to broaden the range of transformable maize varieties and lines, as well as introduce new genetic transformation methods in agricultural biotechnology, underscoring the immense potential to enhance genetic transformation efficiency through systematic exploration and application of DRs in maize.
In the era of frequently changing climatic conditions along with ever increasing world population, it becomes imperative to ensure food security. The burden of biotic stresses pose serious threat to crop productivity, therefore, early and accurate detection of plant diseases is essential. Conventional methods exclusively rely on human expertise, and are often labor-intensive, time-consuming, and prone to errors. Recent advancements in machine learning (ML) offer promising alternatives by automating the disease detection processes with high precision and efficiency. We comprehensively analyze various ML techniques, including Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Support Vector Machines (SVMs), Random Forest (RF), and Deep Learning Architectures like ResNet and Inception, among others, highlighting their methodologies, datasets, performance metrics, and real-world applications. This systematic review provides a comprehensive analysis after text mining the most recent literature resources of the last half a decade. The review discusses the proposed models, techniques, accuracy, feature selection, extraction methods, the types of datasets used to perform experiments, and the sources of the datasets. Additionally, this review provides critical analyses of existing models in the context of their limitations and gaps. Our findings suggest that while ML based methods demonstrate substantial potential for enhancing agricultural disease management, there is a urgent need for more robust, scalable, and adaptable solutions to address diverse agricultural conditions and disease complexities. By systematically analyzing the extracted data, this review aspires to provide a valuable resource for researchers and practitioners aiming to develop and implement ML-based systems for crop disease detection, thereby contributing to sustainable agriculture and enhancing food security.
Soil salinity caused by NaCl is a major challenge to agricultural crops worldwide. For this, two WRKY transcription factors were evaluated for their role in salt stress tolerance in tomato plants (Solanum lycopersicum; Sl). SlWRKY36 and SlWRKY51 provided novel insight into the regulatory mechanism in tomato against salt stress via virus-induced gene silencing (VIGS). Salt stress significantly reduced chlorophyll-a, an abundant form of chlorophyll content to 6.0 and 5.1 mg/g and proline content to 0.06 mg/g and 0.09 mg/g respectively in SlWRKY36 and SlWRKY51 silenced tomato plants. This shows that salt stress affected proline content that act as osmo-protectant and damaged photosynthetic pigments in silenced SlWRKY36 and SlWRKY51 tomato plants. Similarly, the concentrations of Na+/ K+ ratio also showed a significantly higher trend 14 days after salt stress with 5.5 mg/g and 8.9 mg/g concentration at 200 mM for SlWRKY36 and SlWRKY51 showing silencing promotes Na+/K+ ion ratio under salt stress. Also, salt stress responsive genes such as salt overly sensitive SOS1 and Na+/H+ exchanger NHX1 displayed lower transcript level in silenced plants at 200 mM salt stress showing their negative regulation by SlWRKY36 and SlWRKY51 gene silencing. Collectively, these findings suggest for the first time the role of SlWRKY36 and SlWRKY51 as positive regulators of salt stress tolerance by managing ion homeostasis, proline content and photosynthetic machinery via transcriptional reprogramming. Overall, SlWRKY36 and SlWRKY51 were explored as potential candidates for engineering salt tolerance in tomato crop plants.
Soil salinity, a major environmental stress, restricts agricultural production worldwide. Gynura divaricata (L.) DC. is widely cultivated on tropical islands in China and has both edible and medicinal value. NaCl stress and growth indicators, antioxidant enzyme activity, as well as MDA, proline, and soluble sugar content, were determined. Based on the transcriptomic data of tissue-cultured G. divaricata plantlets grown in control (0 mM NaCl) and salt stress (50 and 200 mM NaCl) conditions, gene expression patterns were examined. KEGG enrichment analysis of differentially expressed genes indicated significant enrichment of plant hormone signaling, MAPK signaling, and starch and sucrose metabolism pathways. These findings allowed key biological pathways and salt stress-responsive genes to be identified, thus providing a molecular basis for breeding salt-tolerant G. divaricata varieties. This transcriptomic analysis revealed a complex tolerance mechanism of G. divaricata in response to NaCl, laying a foundation for screening and cloning key genes related to NaCl tolerance and studying their interactions. These findings would allow the molecular basis of NaCl tolerance to be explored, with the aim of breeding NaCl-tolerant varieties.