Bacillus thuringiensis parasporin-2 (PS2Aa1 or Mpp46Aa1) selectively destroys human cancer cells, making it a promising anticancer agent. PS2Aa1 protoxin expression in Escherichia coli typically results in inclusion bodies that must be solubilized and digested by proteinase K to become active. Here, maltose-binding protein (MBP) was fused to the N-terminus of PS2Aa1, either full-length (MBP-fPS2) or truncated (MBP-tPS2), to increase soluble protein expression in E. coli and avoid solubilization and proteolytic activation. Soluble MBP-fPS2 and MBD-tPS2 proteins were produced in E. coli and purified with endotoxin levels below 1 EU/μg. MBP-fPS2 was cytotoxic against T cell leukemia MOLT-4 and Jurkat cell lines after proteinase-K digestion. However, MBP-tPS2 was cytotoxic immediately without MBP tag removal or activation. MBP-tPS2′s thermal stability also makes it appropriate for bioproduction and therapeutic applications.
苏云金芽孢杆菌寄生虫素-2(PS2Aa1 或 Mpp46Aa1)可选择性地破坏人类癌细胞,是一种很有前途的抗癌剂。在大肠杆菌中表达 PS2Aa1 原毒素通常会产生包涵体,这些包涵体必须经过蛋白酶 K 的溶解和消化才能具有活性。在这里,麦芽糖结合蛋白(MBP)与 PS2Aa1 的 N 端融合,无论是全长(MBP-fPS2)还是截短(MBP-tPS2),都是为了增加大肠杆菌中可溶性蛋白的表达,避免溶解和蛋白水解活化。可溶性 MBP-fPS2 和 MBD-tPS2 蛋白在大肠杆菌中产生并纯化,内毒素水平低于 1 EU/μg。经蛋白酶-K 消化后,MBP-fPS2 对 T 细胞白血病 MOLT-4 和 Jurkat 细胞株具有细胞毒性。然而,MBP-tPS2 在未去除 MBP 标记或未激活的情况下立即具有细胞毒性。MBP-tPS2 的热稳定性也使其适用于生物生产和治疗应用。
{"title":"A fusion protein designed for soluble expression, rapid purification, and enhanced stability of parasporin-2 with potential therapeutic applications","authors":"Monrudee Srisaisap , Thanya Suwankhajit , Panadda Boonserm","doi":"10.1016/j.btre.2024.e00851","DOIUrl":"10.1016/j.btre.2024.e00851","url":null,"abstract":"<div><p><em>Bacillus thuringiensis</em> parasporin-2 (PS2Aa1 or Mpp46Aa1) selectively destroys human cancer cells, making it a promising anticancer agent. PS2Aa1 protoxin expression in <em>Escherichia coli</em> typically results in inclusion bodies that must be solubilized and digested by proteinase K to become active. Here, maltose-binding protein (MBP) was fused to the N-terminus of PS2Aa1, either full-length (MBP-fPS2) or truncated (MBP-tPS2), to increase soluble protein expression in <em>E. coli</em> and avoid solubilization and proteolytic activation. Soluble MBP-fPS2 and MBD-tPS2 proteins were produced in <em>E. coli</em> and purified with endotoxin levels below 1 EU/μg. MBP-fPS2 was cytotoxic against T cell leukemia MOLT-4 and Jurkat cell lines after proteinase-K digestion. However, MBP-tPS2 was cytotoxic immediately without MBP tag removal or activation. MBP-tPS2′s thermal stability also makes it appropriate for bioproduction and therapeutic applications.</p></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"43 ","pages":"Article e00851"},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215017X24000249/pdfft?md5=0a5deb261e169fd6c41fb525c3a27dd7&pid=1-s2.0-S2215017X24000249-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141963307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-25DOI: 10.1016/j.btre.2024.e00849
Oscar M. Elizondo Sada , Isa S.A. Hiemstra , Nattawan Chorhirankul , Michel Eppink , Rene H. Wijffels , Anja E.M. Janssen , Antoinette Kazbar
Deep eutectic solvents (DES) are green alternatives for conventional solvents. They have gained attention for their potential to extract valuable compounds from biomass, such as seaweed. In this framework, a case study was developed to assess the feasibility of pressure-driven membrane processes as an efficient tool for the recovery of deep eutectic solvents and targeted biomolecules. For this purpose, a mixture composed of the DES choline chloride – ethylene glycol (ChCl-EG) 1:2, water and alginate was made to mimic a DES extraction from seaweed. An integrated separation process design was proposed where ultrafiltration-diafiltration-nanofiltration (UF-DF-NF) was coupled. UF and DF were found to be effective for the separation of alginate with an 85 % yield. DES was likewise recovered by 93 %, proving the membrane filtrations’ technical feasibility. The NF performance to separate the DES from the water, for its recycling, laid by a 45 %-50 % retention and a final concentrated DES solution of 18 %(v/v).
深共晶溶剂(DES)是传统溶剂的绿色替代品。它们因具有从海藻等生物质中提取有价值化合物的潜力而备受关注。在此框架下,开发了一个案例研究,以评估压力驱动膜过程作为回收深共晶溶剂和目标生物分子的有效工具的可行性。为此,我们制作了一种由氯化胆碱-乙二醇(ChCl-EG)1:2、水和海藻酸组成的混合物,以模拟从海藻中提取 DES 的过程。提出了一种综合分离工艺设计,将超滤-渗滤-纳滤(UF-DF-NF)结合起来。结果发现,超滤和纳滤能有效分离海藻酸盐,分离率达 85%。DES 的回收率同样达到 93%,证明了膜过滤的技术可行性。从水中分离 DES 的 NF 性能为其再循环奠定了 45 %-50 % 的保留率和 18 %(v/v)的最终浓缩 DES 溶液。
{"title":"Pressure-driven membrane processes for the recovery and recycling of deep eutectic solvents: A seaweed biorefinery case study.","authors":"Oscar M. Elizondo Sada , Isa S.A. Hiemstra , Nattawan Chorhirankul , Michel Eppink , Rene H. Wijffels , Anja E.M. Janssen , Antoinette Kazbar","doi":"10.1016/j.btre.2024.e00849","DOIUrl":"https://doi.org/10.1016/j.btre.2024.e00849","url":null,"abstract":"<div><p>Deep eutectic solvents (DES) are green alternatives for conventional solvents. They have gained attention for their potential to extract valuable compounds from biomass, such as seaweed. In this framework, a case study was developed to assess the feasibility of pressure-driven membrane processes as an efficient tool for the recovery of deep eutectic solvents and targeted biomolecules. For this purpose, a mixture composed of the DES choline chloride – ethylene glycol (ChCl-EG) 1:2, water and alginate was made to mimic a DES extraction from seaweed. An integrated separation process design was proposed where ultrafiltration-diafiltration-nanofiltration (UF-DF-NF) was coupled. UF and DF were found to be effective for the separation of alginate with an 85 % yield. DES was likewise recovered by 93 %, proving the membrane filtrations’ technical feasibility. The NF performance to separate the DES from the water, for its recycling, laid by a 45 %-50 % retention and a final concentrated DES solution of 18 %(v/v).</p></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"43 ","pages":"Article e00849"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215017X24000225/pdfft?md5=9d8e3de09fb53a8a62f7c382f4637951&pid=1-s2.0-S2215017X24000225-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141540804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.1016/j.btre.2024.e00847
Theerakarn Srisangsung , Thareeya Phetphoung , Suwimon Manopwisedjaroen , Kaewta Rattanapisit , Christine Joy I. Bulaon , Arunee Thitithanyanont , Vudhiporn Limprasutr , Richard Strasser , Waranyoo Phoolcharoen
Plant-based manufacturing has the advantage of post-translational modifications. While plant-specific N-glycans have been associated with allergic reactions, their effect on the specific immune response upon vaccination is not yet understood. In this study, we produced an RBD-Fc subunit vaccine in both wildtype (WT) and glycoengineered (∆XF) Nicotiana benthamiana plants. The N-glycan analysis: RBD-Fc carrying the ER retention peptide mainly displayed high mannose. When produced in WT RBD-Fc displayed complex-type (GnGnXF) N-glycans. In contrast, ∆XF plants produced RBD-Fc with humanized complex N-glycans that lack potentially immunogenic xylose and core fucose residues (GnGn). The three recombinant RBD-Fc glycovariants were tested. Immunization with any of the RBD-Fc proteins resulted in a similar titer of anti-RBD antibodies in mice. Likewise, antisera from subunit RBD-Fc vaccines also demonstrated comparable neutralization against SARS-CoV-2. Thus, we conclude that N-glycan modifications of the RBD-Fc protein have no impact on their capacity to activate immune responses and induce neutralizing antibody production.
{"title":"The impact of N-glycans on the immune response of plant-produced SARS-CoV-2 RBD-Fc proteins","authors":"Theerakarn Srisangsung , Thareeya Phetphoung , Suwimon Manopwisedjaroen , Kaewta Rattanapisit , Christine Joy I. Bulaon , Arunee Thitithanyanont , Vudhiporn Limprasutr , Richard Strasser , Waranyoo Phoolcharoen","doi":"10.1016/j.btre.2024.e00847","DOIUrl":"https://doi.org/10.1016/j.btre.2024.e00847","url":null,"abstract":"<div><p>Plant-based manufacturing has the advantage of post-translational modifications. While plant-specific N-glycans have been associated with allergic reactions, their effect on the specific immune response upon vaccination is not yet understood. In this study, we produced an RBD-Fc subunit vaccine in both wildtype (WT) and glycoengineered (∆XF) <em>Nicotiana benthamiana</em> plants. The N-glycan analysis: RBD-Fc carrying the ER retention peptide mainly displayed high mannose. When produced in WT RBD-Fc displayed complex-type (GnGnXF) N-glycans. In contrast, ∆XF plants produced RBD-Fc with humanized complex N-glycans that lack potentially immunogenic xylose and core fucose residues (GnGn). The three recombinant RBD-Fc glycovariants were tested. Immunization with any of the RBD-Fc proteins resulted in a similar titer of anti-RBD antibodies in mice. Likewise, antisera from subunit RBD-Fc vaccines also demonstrated comparable neutralization against SARS-CoV-2. Thus, we conclude that N-glycan modifications of the RBD-Fc protein have no impact on their capacity to activate immune responses and induce neutralizing antibody production.</p></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"43 ","pages":"Article e00847"},"PeriodicalIF":0.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215017X24000201/pdfft?md5=2a6a99f12c7f6eaf75696f1d8114a510&pid=1-s2.0-S2215017X24000201-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141484170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.1016/j.btre.2024.e00848
Salma M. Abdelnasser , Nourhan Abu-Shahba
Background
Hepatocellular carcinoma (HCC) is one of the most serious types of cancer that accounts for numerous cancer deaths worldwide. HCC is poorly prognosed and is a highly chemotherapy-resistant tumor. Therefore, new treatments are urgently needed. Exopolysaccharides (EPS-1) produced from the novel Bacillus sonorensis strain was found to exhibit chemopreventive effects against cancer.
Objective
Evaluating the anti-cancer cytotoxic effect of exopolysaccharides (EPS-1) produced by the newly studied Bacillus sonorensis strain SAmt2.
Methods
The cytotoxic activity was investigated through cell cycle, apoptosis, and autophagy analyses using flow cytometry technique. Also, the effect of EPS-1 on Huh7 release of COX-2 was examined using ELISA.
Results
Our results revealed that EPS-1exhibit an anti-proliferative effect on Huh7 cells through decreasing the percentage of cells at the S-phase and G2 phase, while increasing the cell population at the sub-G1 and G1 phases. Apoptosis analysis showed that EPS-1 increased necrotic and apoptotic cell fractions in EPS-1 treated Huh7. In addition, it induced significant autophagic cell death in the Huh7.Finally, antiproliferative and apoptosis induction results were supportedby ELISA assay results where the protein level of COX-2 was declined.
Conclusion
: In conclusion, EPS-1 derived from B. sonorensis SAmt2, is a promising proliferation inhibitor of Huh7 cells with potential anticancer effects.
{"title":"Bacillus sonorinses derived exopolysaccharide enhances cell cycle arrest, apoptosis, necrosis, autophagy and COX-2 down regulation in liver cancer cells","authors":"Salma M. Abdelnasser , Nourhan Abu-Shahba","doi":"10.1016/j.btre.2024.e00848","DOIUrl":"https://doi.org/10.1016/j.btre.2024.e00848","url":null,"abstract":"<div><h3>Background</h3><p>Hepatocellular carcinoma (HCC) is one of the most serious types of cancer that accounts for numerous cancer deaths worldwide. HCC is poorly prognosed and is a highly chemotherapy-resistant tumor. Therefore, new treatments are urgently needed. Exopolysaccharides (EPS-1) produced from the novel <em>Bacillus sonorensis</em> strain was found to exhibit chemopreventive effects against cancer.</p></div><div><h3>Objective</h3><p>Evaluating the anti-cancer cytotoxic effect of exopolysaccharides (EPS-1) produced by the newly studied <em>Bacillus sonorensis</em> strain SAmt2.</p></div><div><h3>Methods</h3><p>The cytotoxic activity was investigated through cell cycle, apoptosis, and autophagy analyses using flow cytometry technique. Also, the effect of EPS-1 on Huh7 release of COX-2 was examined using ELISA.</p></div><div><h3>Results</h3><p>Our results revealed that EPS-1exhibit an anti-proliferative effect on Huh7 cells through decreasing the percentage of cells at the S-phase and G2 phase, while increasing the cell population at the sub-G1 and G1 phases. Apoptosis analysis showed that EPS-1 increased necrotic and apoptotic cell fractions in EPS-1 treated Huh7. In addition, it induced significant autophagic cell death in the Huh7.Finally, antiproliferative and apoptosis induction results were supportedby ELISA assay results where the protein level of COX-2 was declined.</p></div><div><h3>Conclusion</h3><p>: In conclusion, EPS-1 derived from <em>B. sonorensis</em> SAmt2, is a promising proliferation inhibitor of Huh7 cells with potential anticancer effects.</p></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"43 ","pages":"Article e00848"},"PeriodicalIF":0.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215017X24000213/pdfft?md5=3861a0b1ad5638485c2813b661e33e9c&pid=1-s2.0-S2215017X24000213-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141484214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-07DOI: 10.1016/j.btre.2024.e00846
Sai Manogna Kotakadi , Manpreet Jivin Bangarupeta , Kusuma Kandati , Deva Prasad Raju Borelli , Jaheera Anwar Sayyed , Mannur Ismail Shaik , John Sushma Nannepaga
The present study investigates S. cumini seed extracts which are considered as a promising and valuable source of bioactive compounds were prepared using different solvents such as methanol, ethanol, petroleum ether, acetone, chloroform, and diethyl ether. Among these solvents, methanol exhibited the highest extraction with a yield of 42 %. HPLC analysis revealed the highest concentration of quercetin flavonoids (49.62 mg/gm) in the methanolic S. cumini seed extract. Thus, the current work deals with the MgONPs synthesis through a biological approach using different S. cumini seed extracts. In vitro anti-oxidant properties were evaluated, which showed an IC50 value of 22.46 μg/mL for MgONPs synthesized from methanolic extract, surpassing the anti-oxidant potency of ascorbic acid by threefold. By leveraging the rich repository of bioactive compounds found within S. cumini seed extract, this study presents a novel approach to MgONPs synthesis. Exploring the symbiotic relationship between S. cumini seed extract and MgONPs, this research elucidates the pivotal role of bioactive compounds in guiding the formation and properties of nanostructures. Further anti-microbial studies on MgONPs from methanolic S. cumini seed extract were conducted against four different bacterial strains (Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and S. typhimurium), revealing potent anti-microbial activity with 5.3 mm of inhibition for 100 µl against S. typhimurium. These findings suggest that S. cumini is a source of bioactive compounds responsible for the successful synthesis of MgONPs. Characterization studies of MgONPs were also carried out using UV–vis spectroscopy, FTIR, SEM, XRD, DSC and HPLC.
{"title":"Biosynthesized MgONPs using Syzygium cumini seed extract: Characterization, In vitro anti-oxidant and anti-microbial activity","authors":"Sai Manogna Kotakadi , Manpreet Jivin Bangarupeta , Kusuma Kandati , Deva Prasad Raju Borelli , Jaheera Anwar Sayyed , Mannur Ismail Shaik , John Sushma Nannepaga","doi":"10.1016/j.btre.2024.e00846","DOIUrl":"10.1016/j.btre.2024.e00846","url":null,"abstract":"<div><p>The present study investigates <em>S. cumini</em> seed extracts which are considered as a promising and valuable source of bioactive compounds were prepared using different solvents such as methanol, ethanol, petroleum ether, acetone, chloroform, and diethyl ether. Among these solvents, methanol exhibited the highest extraction with a yield of 42 %. HPLC analysis revealed the highest concentration of quercetin flavonoids (49.62 mg/gm) in the methanolic <em>S. cumini</em> seed extract. Thus, the current work deals with the MgONPs synthesis through a biological approach using different <em>S. cumini</em> seed extracts. <em>In vitro</em> anti-oxidant properties were evaluated, which showed an IC<sub>50</sub> value of 22.46 μg/mL for MgONPs synthesized from methanolic extract, surpassing the anti-oxidant potency of ascorbic acid by threefold. By leveraging the rich repository of bioactive compounds found within <em>S. cumini</em> seed extract, this study presents a novel approach to MgONPs synthesis. Exploring the symbiotic relationship between <em>S. cumini</em> seed extract and MgONPs, this research elucidates the pivotal role of bioactive compounds in guiding the formation and properties of nanostructures. Further anti-microbial studies on MgONPs from methanolic <em>S. cumini</em> seed extract were conducted against four different bacterial strains (<em>Escherichia coli, Bacillus subtilis, Staphylococcus aureus,</em> and <em>S. typhimurium</em>), revealing potent anti-microbial activity with 5.3 mm of inhibition for 100 µl against <em>S. typhimurium</em>. These findings suggest that <em>S. cumini</em> is a source of bioactive compounds responsible for the successful synthesis of MgONPs. Characterization studies of MgONPs were also carried out using UV–vis spectroscopy, FTIR, SEM, XRD, DSC and HPLC.</p></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"43 ","pages":"Article e00846"},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215017X24000195/pdfft?md5=a303f380bbbae029242b783d24373898&pid=1-s2.0-S2215017X24000195-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141415298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the progress in two distinct areas of nanotechnology and aptamer identification technologies, the two fields have merged to what is known as aptamer nanotechnology. Aptamers have varying properties in the biomedical field include their small size, non-toxicity, ease of manufacturing, negligible immunogenicity, ability to identify a wide range of targets, and high immobilizing capacity. Nevertheless, aptamers can utilize the distinct characteristics offered by nanomaterials like optical, magnetic, thermal, electronic properties to become more versatile and function as a novel device in diagnostics and therapeutics. This engineered aptamer conjugated nanomaterials, in turn provides a potentially new and unique properties apart from the pre-existing characteristics of aptamer and nanomaterials, where they act to offer wide array of applications in the biomedical field ranging from drug targeting, delivery of drugs, biosensing, bioimaging. This review gives comprehensive insight of the different aptamer conjugated nanomaterials and their utilization in biomedical field. Firstly, it introduces on the aptamer selection methods and roles of nanomaterials offered. Further, different conjugation strategies are explored in addition, the class of aptamer conjugated nanodevices being discussed. Typical biomedical examples and studies specifically, related to drug delivery, biosensing, bioimaging have been presented.
{"title":"Revolutionizing biomedicine: Aptamer-based nanomaterials and nanodevices for therapeutic applications","authors":"Rajkumari Urmi , Pallabi Banerjee , Manisha Singh , Risha Singh , Sonam Chhillar , Neha Sharma , Anshuman Chandra , Nagendra Singh , Imteyaz Qamar","doi":"10.1016/j.btre.2024.e00843","DOIUrl":"10.1016/j.btre.2024.e00843","url":null,"abstract":"<div><p>With the progress in two distinct areas of nanotechnology and aptamer identification technologies, the two fields have merged to what is known as aptamer nanotechnology. Aptamers have varying properties in the biomedical field include their small size, non-toxicity, ease of manufacturing, negligible immunogenicity, ability to identify a wide range of targets, and high immobilizing capacity. Nevertheless, aptamers can utilize the distinct characteristics offered by nanomaterials like optical, magnetic, thermal, electronic properties to become more versatile and function as a novel device in diagnostics and therapeutics. This engineered aptamer conjugated nanomaterials, in turn provides a potentially new and unique properties apart from the pre-existing characteristics of aptamer and nanomaterials, where they act to offer wide array of applications in the biomedical field ranging from drug targeting, delivery of drugs, biosensing, bioimaging. This review gives comprehensive insight of the different aptamer conjugated nanomaterials and their utilization in biomedical field. Firstly, it introduces on the aptamer selection methods and roles of nanomaterials offered. Further, different conjugation strategies are explored in addition, the class of aptamer conjugated nanodevices being discussed. Typical biomedical examples and studies specifically, related to drug delivery, biosensing, bioimaging have been presented.</p></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"42 ","pages":"Article e00843"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215017X2400016X/pdfft?md5=b7c03533f4441c4f3bb8921af4536f77&pid=1-s2.0-S2215017X2400016X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141145350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.btre.2024.e00844
Supaluk Krittanai , Kaewta Rattanapisit , Christine Joy I. Bulaon , Pannamthip Pitaksajjakul , Sujitra Keadsanti , Pongrama Ramasoota , Richard Strasser , Waranyoo Phoolcharoen
Dengue virus (DENV), transmitted by mosquitoes, is classified into four serotypes (DENV1-4) and typically causes mild, self-limiting symptoms upon initial infection. However, secondary infection can lead to severe symptoms due to antibody-dependent enhancement (ADE). To address this, anti-DENV antibodies are being developed with the goal of neutralizing infection without ADE activity. Previous attempts using a 54_hG1 antibody from CHO-K1 mammalian cells resulted in ADE induction, increasing viral infection. This study aimed to express the D54 monoclonal antibody in Nicotiana benthamiana. The plant-produced antibody had a similar neutralizing profile to the previous 54_hG1 antibody. Notably, the ADE activities of the plant-derived antibody were successfully eliminated, with no sign of viral induction. These findings suggest that N. benthamiana could be a source of therapeutic DENV antibodies. The method offers several advantages, including lower ADE, cost-effectiveness, simple facility requirements, scalability, and potential industrial-scale production in GMP facilities.
{"title":"Nicotiana benthamiana as a potential source for producing anti-dengue virus D54 neutralizing therapeutic antibody","authors":"Supaluk Krittanai , Kaewta Rattanapisit , Christine Joy I. Bulaon , Pannamthip Pitaksajjakul , Sujitra Keadsanti , Pongrama Ramasoota , Richard Strasser , Waranyoo Phoolcharoen","doi":"10.1016/j.btre.2024.e00844","DOIUrl":"https://doi.org/10.1016/j.btre.2024.e00844","url":null,"abstract":"<div><p>Dengue virus (DENV), transmitted by mosquitoes, is classified into four serotypes (DENV1-4) and typically causes mild, self-limiting symptoms upon initial infection. However, secondary infection can lead to severe symptoms due to antibody-dependent enhancement (ADE). To address this, anti-DENV antibodies are being developed with the goal of neutralizing infection without ADE activity. Previous attempts using a 54_hG1 antibody from CHO-K1 mammalian cells resulted in ADE induction, increasing viral infection. This study aimed to express the D54 monoclonal antibody in <em>Nicotiana benthamiana</em>. The plant-produced antibody had a similar neutralizing profile to the previous 54_hG1 antibody. Notably, the ADE activities of the plant-derived antibody were successfully eliminated, with no sign of viral induction. These findings suggest that <em>N. benthamiana</em> could be a source of therapeutic DENV antibodies. The method offers several advantages, including lower ADE, cost-effectiveness, simple facility requirements, scalability, and potential industrial-scale production in GMP facilities.</p></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"42 ","pages":"Article e00844"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215017X24000171/pdfft?md5=79ca3b41102380b3caadfc2baf6a7293&pid=1-s2.0-S2215017X24000171-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141240181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-29DOI: 10.1016/j.btre.2024.e00845
Jeba Faizah Rahman , Hammadul Hoque , Abdullah -Al- Jubayer , Nurnabi Azad Jewel , Md. Nazmul Hasan , Aniqua Tasnim Chowdhury , Shamsul H. Prodhan
Oryza sativa L. is the world's most essential and economically important food crop. Climate change and ecological imbalances make rice plants vulnerable to abiotic and biotic stresses, threatening global food security. The Alfin-like (AL) transcription factor family plays a crucial role in plant development and stress responses. This study comprehensively analyzed this gene family and their expression profiles in rice, revealing nine AL genes, classifying them into three distinct groups based on phylogenetic analysis and identifying four segmental duplication events. RNA-seq data analysis revealed high expression levels of OsALs in different tissues, growth stages, and their responsiveness to stresses. RT-qPCR data showed significant expression of OsALs in different abiotic stresses. Identification of potential cis-regulatory elements in promoter regions has also unveiled their involvement. Tertiary structures of the proteins were predicted. These findings would lay the groundwork for future research to reveal their molecular mechanism in stress tolerance and plant development.
{"title":"Alfin-like (AL) transcription factor family in Oryza sativa L.: Genome-wide analysis and expression profiling under different stresses","authors":"Jeba Faizah Rahman , Hammadul Hoque , Abdullah -Al- Jubayer , Nurnabi Azad Jewel , Md. Nazmul Hasan , Aniqua Tasnim Chowdhury , Shamsul H. Prodhan","doi":"10.1016/j.btre.2024.e00845","DOIUrl":"https://doi.org/10.1016/j.btre.2024.e00845","url":null,"abstract":"<div><p><em>Oryza sativa</em> L. is the world's most essential and economically important food crop. Climate change and ecological imbalances make rice plants vulnerable to abiotic and biotic stresses, threatening global food security. The Alfin-like (AL) transcription factor family plays a crucial role in plant development and stress responses. This study comprehensively analyzed this gene family and their expression profiles in rice, revealing nine AL genes, classifying them into three distinct groups based on phylogenetic analysis and identifying four segmental duplication events. RNA-seq data analysis revealed high expression levels of OsALs in different tissues, growth stages, and their responsiveness to stresses. RT-qPCR data showed significant expression of OsALs in different abiotic stresses. Identification of potential <em>cis</em>-regulatory elements in promoter regions has also unveiled their involvement. Tertiary structures of the proteins were predicted. These findings would lay the groundwork for future research to reveal their molecular mechanism in stress tolerance and plant development.</p></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"43 ","pages":"Article e00845"},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215017X24000183/pdfft?md5=4b15e06ee7f913d21e9b87317c57fc37&pid=1-s2.0-S2215017X24000183-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141289269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-02DOI: 10.1016/j.btre.2024.e00842
Shalini TS , Manivel G , Krishna kumar G , Prathiviraj Ragothaman , Rajesh Kannan Velu , Senthilraja P
Novel anticancer drugs of natural origin have increased tremendously due to the resistance of multiple chemotherapeutic drugs in breast cancer therapy and their high toxicity with undesirable side effects. The study investigates the bioactivity of secondary metabolites derived from Bacillus cereus PSMS6 isolated from marine soil sediment in the Velar estuary, Parangepattai, Cuddalore district, Tamil Nadu, and India. Strains were isolated and antagonistic activity was screened using the agar well diffusion method. B. cereus PSMS6 exhibited potency, and its crude extract was tested for antioxidant, anticancer, and cytotoxic MTT assay potential. The methanolic extract of B. cereus PSMS6 was analyzed by mass spectrometry HRLC-MS and FT-IR to determine the bioactive compounds. A drug interaction study with the anti-breast cancer protein HER2 was performed by molecular docking analysis. Antioxidant activities were determined using total antioxidant scavenging assay, ABTS and DPPH free radical scavenging assays. The total antioxidant scavenging assay of the crude extract of B. cereus methanol had an IC50 value of 28.33±1.01, in ABTS IC50 value of the extract was 29.00±0.28 and in DPPH the IC50 of the extract was 34.91±0.09. The negative ion compound Palmitoylglycerone phosphate had a LibDock score of 149.487 and the positive ion compound N5-(4-Methoxybenzyl) glutamine had 120.116. These compounds show promising anticancer activity. The current study reported that the bioactive secondary metabolite of B. cereus PSMS6 retains anti-cancer, and antioxidant properties. This is the first report to show the production of the Palmitoylglycerone phosphate metabolite from B. cereus PSMS6.
{"title":"Secondary metabolite profiling using HR-LCMS, antioxidant and anticancer activity of Bacillus cereus PSMS6 methanolic extract: In silico and in vitro study","authors":"Shalini TS , Manivel G , Krishna kumar G , Prathiviraj Ragothaman , Rajesh Kannan Velu , Senthilraja P","doi":"10.1016/j.btre.2024.e00842","DOIUrl":"https://doi.org/10.1016/j.btre.2024.e00842","url":null,"abstract":"<div><p>Novel anticancer drugs of natural origin have increased tremendously due to the resistance of multiple chemotherapeutic drugs in breast cancer therapy and their high toxicity with undesirable side effects. The study investigates the bioactivity of secondary metabolites derived from <em>Bacillus cereus</em> PSMS6 isolated from marine soil sediment in the Velar estuary, Parangepattai, Cuddalore district, Tamil Nadu, and India. Strains were isolated and antagonistic activity was screened using the agar well diffusion method. <em>B. cereus</em> PSMS6 exhibited potency, and its crude extract was tested for antioxidant, anticancer, and cytotoxic MTT assay potential. The methanolic extract of <em>B. cereus</em> PSMS6 was analyzed by mass spectrometry HRLC-MS and FT-IR to determine the bioactive compounds. A drug interaction study with the anti-breast cancer protein HER2 was performed by molecular docking analysis. Antioxidant activities were determined using total antioxidant scavenging assay, ABTS and DPPH free radical scavenging assays. The total antioxidant scavenging assay of the crude extract of <em>B. cereus</em> methanol had an IC<sub>50</sub> value of 28.33±1.01, in ABTS IC<sub>50</sub> value of the extract was 29.00±0.28 and in DPPH the IC<sub>50</sub> of the extract was 34.91±0.09. The negative ion compound Palmitoylglycerone phosphate had a LibDock score of 149.487 and the positive ion compound N5-(4-Methoxybenzyl) glutamine had 120.116. These compounds show promising anticancer activity. The current study reported that the bioactive secondary metabolite of <em>B. cereus</em> PSMS6 retains anti-cancer, and antioxidant properties. This is the first report to show the production of the Palmitoylglycerone phosphate metabolite from <em>B. cereus</em> PSMS6.</p></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"42 ","pages":"Article e00842"},"PeriodicalIF":0.0,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215017X24000158/pdfft?md5=616ca192af261c51db9f98b7b20f5273&pid=1-s2.0-S2215017X24000158-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140910200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cobra (Naja kaouthia) venom contains many toxins including α-neurotoxin (αNTX) and phospholipase A2 (PLA2), which can cause neurodegeneration, respiratory failure, and even death. The traditional antivenom derived from animal serum faces many challenges and limitations. Heavy-chain-only antibodies (HCAb), fusing VHH with human IgG Fc region, offer advantages in tissue penetration, antigen binding, and extended half-life. This research involved the construction and transient expression of two types of VHH-FC which are specific to α-Neurotoxin (VHH-αNTX-FC) and Phospholipase A2 (VHH-PLA2-FC) in Nicotiana benthamiana leaves. The recombinant HCAbs were incubated for up to six days to optimize expression levels followed by purification by affinity chromatography and characterization using LC/Q-TOF mass spectrometry (MS). Purified proteins demonstrated over 92 % sequence coverage and an average mass of around 82 kDa with a high-mannose N-glycan profile. An antigen binding assay showed that the VHH-αNTX-Fc has a greater ability to bind to crude venom than VHH-PLA2-Fc.
{"title":"Characterization of plant produced VHH antibodies against cobra venom toxins for antivenom therapy","authors":"Sarocha Vitayathikornnasak , Kaewta Rattanapisit , Ashwini Malla , Pipob Suwanchaikasem , Richard Strasser , Narach Khorattanakulchai , Kanokporn Pothisamutyothin , Wanatchaporn Arunmanee , Waranyoo Phoolcharoen","doi":"10.1016/j.btre.2024.e00841","DOIUrl":"https://doi.org/10.1016/j.btre.2024.e00841","url":null,"abstract":"<div><p>Cobra (<em>Naja kaouthia</em>) venom contains many toxins including α-neurotoxin (αNTX) and phospholipase A2 (PLA2), which can cause neurodegeneration, respiratory failure, and even death. The traditional antivenom derived from animal serum faces many challenges and limitations. Heavy-chain-only antibodies (HCAb), fusing V<sub>HH</sub> with human IgG Fc region, offer advantages in tissue penetration, antigen binding, and extended half-life. This research involved the construction and transient expression of two types of V<sub>HH</sub>-F<sub>C</sub> which are specific to α-Neurotoxin (V<sub>HH</sub>-αNTX-F<sub>C</sub>) and Phospholipase A2 (V<sub>HH</sub>-PLA2-F<sub>C</sub>) in <em>Nicotiana benthamiana</em> leaves. The recombinant HCAbs were incubated for up to six days to optimize expression levels followed by purification by affinity chromatography and characterization using LC/Q-TOF mass spectrometry (MS). Purified proteins demonstrated over 92 % sequence coverage and an average mass of around 82 kDa with a high-mannose N-glycan profile. An antigen binding assay showed that the V<sub>HH</sub>-αNTX-Fc has a greater ability to bind to crude venom than V<sub>HH</sub>-PLA2-Fc.</p></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"42 ","pages":"Article e00841"},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215017X24000146/pdfft?md5=118770804465782939c653851a16cfe8&pid=1-s2.0-S2215017X24000146-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140647386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}