首页 > 最新文献

Manufacturing Letters最新文献

英文 中文
Mechanical property improvements of LPBF-AlSi10Mg via forging to modify microstructure and defect characteristics 通过锻造改变微观结构和缺陷特征,改善 LPBF-AlSi10Mg 的机械性能
IF 1.9 Q3 ENGINEERING, MANUFACTURING Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.072
Austin Ngo , Noah Kohlhorst , Svitlana Fialkova , Bradley Jared , Tony Schmitz , Glenn Daehn , Jennifer L.W. Carter , Jian Cao , John J. Lewandowski
Additive Manufacturing (AM) processes have versatile capabilities but are susceptible to the formation of as-cast non-equilibrium microstructures, process-induced defects, and porosity, which have deleterious effects on the mechanical performance. As part of our NSF-ERC-HAMMER program, isothermal forging was investigated as a novel post-processing technique for refining microstructure, reducing process defect severity, and thereby improving mechanical properties. Specimens of Laser Powderbed Fusion (LPBF) AlSi10Mg were fabricated over a range of process parameters and tensile tested as a baseline. Initial work focused on duplicate AM material that was then hot forged with 20 % strain to investigate the effects of isothermal forging at one temperature and strain rate on the microstructure, tensile, and fatigue properties of the as-deposited materials. The microstructures, process-induced defect populations, and tensile/fatigue properties of both as-deposited and forged materials were quantified and analysed by OM, EBSD, XCT, and SEM by various NSF-ERC-HAMMER team members. Isothermal hot forging was found to induce recrystallisation and modify process-induced defect geometry along with increasing tensile ductility. The effects of AM deposition parameters and forge post-processing conditions on LPBF AlSi10Mg will be discussed in terms of microstructure, mechanical properties, and fractography.
增材制造(AM)工艺具有多功能性,但容易形成铸造时的非平衡微结构、工艺引起的缺陷和孔隙率,从而对机械性能产生有害影响。作为国家自然科学基金-环境科学研究中心-HAMMER 项目的一部分,等温锻造作为一种新型后处理技术进行了研究,以完善微观结构、减少工艺缺陷的严重程度,从而改善机械性能。在一定的工艺参数范围内制作了激光粉末熔床(LPBF)AlSi10Mg 试样,并作为基线进行了拉伸测试。最初的工作重点是复制 AM 材料,然后以 20% 的应变进行热锻,以研究在一个温度和应变率下进行等温锻造对沉积材料的微观结构、拉伸和疲劳性能的影响。国家自然科学基金委员会-能源研究中心-HAMMER 小组的多名成员通过 OM、EBSD、XCT 和 SEM 对沉积材料和锻造材料的微观结构、加工过程引起的缺陷群以及拉伸/疲劳性能进行了量化和分析。研究发现,等温热锻可诱导再结晶并改变工艺引起的缺陷几何形状,同时增加拉伸延展性。我们将从微观结构、机械性能和断口形貌方面讨论 AM 沉积参数和锻造后处理条件对 LPBF AlSi10Mg 的影响。
{"title":"Mechanical property improvements of LPBF-AlSi10Mg via forging to modify microstructure and defect characteristics","authors":"Austin Ngo ,&nbsp;Noah Kohlhorst ,&nbsp;Svitlana Fialkova ,&nbsp;Bradley Jared ,&nbsp;Tony Schmitz ,&nbsp;Glenn Daehn ,&nbsp;Jennifer L.W. Carter ,&nbsp;Jian Cao ,&nbsp;John J. Lewandowski","doi":"10.1016/j.mfglet.2024.09.072","DOIUrl":"10.1016/j.mfglet.2024.09.072","url":null,"abstract":"<div><div>Additive Manufacturing (AM) processes have versatile capabilities but are susceptible to the formation of as-cast non-equilibrium microstructures, process-induced defects, and porosity, which have deleterious effects on the mechanical performance. As part of our NSF-ERC-HAMMER program, isothermal forging was investigated as a novel post-processing technique for refining microstructure, reducing process defect severity, and thereby improving mechanical properties. Specimens of Laser Powderbed Fusion (LPBF) AlSi10Mg were fabricated over a range of process parameters and tensile tested as a baseline. Initial work focused on duplicate AM material that was then hot forged with 20 % strain to investigate the effects of isothermal forging at one temperature and strain rate on the microstructure, tensile, and fatigue properties of the as-deposited materials. The microstructures, process-induced defect populations, and tensile/fatigue properties of both as-deposited and forged materials were quantified and analysed by OM, EBSD, XCT, and SEM by various NSF-ERC-HAMMER team members. Isothermal hot forging was found to induce recrystallisation and modify process-induced defect geometry along with increasing tensile ductility. The effects of AM deposition parameters and forge post-processing conditions on LPBF AlSi10Mg will be discussed in terms of microstructure, mechanical properties, and fractography.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 568-574"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analytical temperature model for spindle speed selection in additive friction stir deposition 用于在添加剂摩擦搅拌沉积过程中选择主轴转速的温度分析模型
IF 1.9 Q3 ENGINEERING, MANUFACTURING Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.090
Tony Schmitz , Elijah Charles , Brett Compton
This paper describes a physics-based, analytical model for additive friction stir deposition (AFSD) spindle speed selection to achieve a desired deposition temperature. In the model, power input to the feedstock, which enables plastic flow and deposition, is related to the material temperature rise and subsequent flow stress reduction using Fourier’s conduction rate equation. Power input is modeled as frictional heating at the deposit-surface interface and adiabatic heating due to plastic deformation. The flow stress is predicted using the strain, strain rate, and temperature-dependent Johnson-Cook constitutive model for the selected feedstock alloy. Model predictions are compared to AFSD numerical simulation results available in the literature and experiments for aluminum alloys.
本文介绍了一种基于物理学的分析模型,用于选择添加剂摩擦搅拌沉积(AFSD)主轴转速,以达到所需的沉积温度。在该模型中,对原料的功率输入(可实现塑性流动和沉积)与材料温升和随后的流动应力降低有关,采用的是傅里叶传导率方程。输入功率被模拟为沉积物表面界面的摩擦加热和塑性变形引起的绝热加热。流动应力是使用应变、应变率和温度相关的约翰逊-库克构成模型对所选原料合金进行预测的。模型预测结果与铝合金的 AFSD 数值模拟结果和实验结果进行了比较。
{"title":"Analytical temperature model for spindle speed selection in additive friction stir deposition","authors":"Tony Schmitz ,&nbsp;Elijah Charles ,&nbsp;Brett Compton","doi":"10.1016/j.mfglet.2024.09.090","DOIUrl":"10.1016/j.mfglet.2024.09.090","url":null,"abstract":"<div><div>This paper describes a physics-based, analytical model for additive friction stir deposition (AFSD) spindle speed selection to achieve a desired deposition temperature. In the model, power input to the feedstock, which enables plastic flow and deposition, is related to the material temperature rise and subsequent flow stress reduction using Fourier’s conduction rate equation. Power input is modeled as frictional heating at the deposit-surface interface and adiabatic heating due to plastic deformation. The flow stress is predicted using the strain, strain rate, and temperature-dependent Johnson-Cook constitutive model for the selected feedstock alloy. Model predictions are compared to AFSD numerical simulation results available in the literature and experiments for aluminum alloys.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 720-729"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Friction stir processing: A thermomechanical processing tool for high pressure die cast Al-alloys for vehicle light-weighting 摩擦搅拌加工:用于汽车轻量化的高压压铸铝合金的热机械加工工具
IF 1.9 Q3 ENGINEERING, MANUFACTURING Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.061
Avik Samanta , Hrishikesh Das , Glenn J. Grant , Saumyadeep Jana
This study uses friction stir processing (FSP) for thermomechanical processing of high-pressure die-casting (HPDC) to modify microstructure and improve mechanical properties. FSP is carried out on two different HPDC aluminum alloys: (a) general-purpose, high-iron, HPDC A380 alloy and (b) premium quality, low-iron HPDC Aural-5 alloy in thin wall, flat plate geometry. Subsequent mechanical testing shows ∼30 % and ∼65 % enhancement in yield strength and tensile ductility. In addition, FSP leads to ∼10 times improvement in fatigue life for A380 alloy and ∼70 % improvement in fracture toughness for Aural-5 alloy. These findings emphasize the capability of FSP to modify the microstructure of HPDC Al-alloys-based structural components so that they can demonstrate a good combination of strength, ductility, fracture toughness, and high fatigue properties for long-term durability and reliability.
本研究采用摩擦搅拌加工(FSP)对高压压铸(HPDC)进行热机械加工,以改变微观结构并提高机械性能。FSP 在两种不同的 HPDC 铝合金上进行:(a) 通用、高铁 HPDC A380 合金;(b) 优质、低铁 HPDC Aural-5 薄壁平板合金。随后的机械测试表明,屈服强度和拉伸延展性分别提高了 30% 和 65%。此外,FSP 还使 A380 合金的疲劳寿命提高了 ∼ 10 倍,Aural-5 合金的断裂韧性提高了 ∼ 70%。这些发现强调了 FSP 对基于 HPDC 铝合金的结构组件的微观结构进行改性的能力,从而使其能够很好地结合强度、延展性、断裂韧性和高疲劳性能,以获得长期的耐用性和可靠性。
{"title":"Friction stir processing: A thermomechanical processing tool for high pressure die cast Al-alloys for vehicle light-weighting","authors":"Avik Samanta ,&nbsp;Hrishikesh Das ,&nbsp;Glenn J. Grant ,&nbsp;Saumyadeep Jana","doi":"10.1016/j.mfglet.2024.09.061","DOIUrl":"10.1016/j.mfglet.2024.09.061","url":null,"abstract":"<div><div>This study uses friction stir processing (FSP) for thermomechanical processing of high-pressure die-casting (HPDC) to modify microstructure and improve mechanical properties. FSP is carried out on two different HPDC aluminum alloys: (a) general-purpose, high-iron, HPDC A380 alloy and (b) premium quality, low-iron HPDC Aural-5 alloy in thin wall, flat plate geometry. Subsequent mechanical testing shows ∼30 % and ∼65 % enhancement in yield strength and tensile ductility. In addition, FSP leads to ∼10 times improvement in fatigue life for A380 alloy and ∼70 % improvement in fracture toughness for Aural-5 alloy. These findings emphasize the capability of FSP to modify the microstructure of HPDC Al-alloys-based structural components so that they can demonstrate a good combination of strength, ductility, fracture toughness, and high fatigue properties for long-term durability and reliability.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 504-512"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rotary ultrasonic surface machining of silicon: Effects of ultrasonic power and tool rotational speed 硅的旋转超声波表面加工:超声波功率和工具转速的影响
IF 1.9 Q3 ENGINEERING, MANUFACTURING Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.063
Sarower Kabir , Shah Rumman Ansary , Yunze Li , Meng Zhang , Weilong Cong
The surging demand for monocrystalline silicon materials in the production of microelectronic components highlights its crucial role in the semiconductor and optic industries. Hence it is inevitable to produce a silicon workpiece with high quality finish to meet the demand in semiconductor industries. Due to high brittleness, controlling the quality of silicon in surface machining is quite difficult. Traditional manufacturing processes induce issues like rough surfaces and edge chipping. It was reported that rotary ultrasonic surface machining (RUSM) can effectively reduce cutting force, roughness, and edge chipping in machining of brittle materials. There have been several studies on drilling and sliding silicon materials using rotary ultrasonic machining investigating the effects of machining parameters on the output variables such as cutting force, torque, edge chipping, surface roughness etc. However, to the best of the authors’ knowledge, there are no reported investigations on effects of machining variables (ultrasonic power and tool rotation speed) in surface machining of silicon materials using the rotary ultrasonic machining. This study aimed to investigate the impacts of ultrasonic power and tool rotation speed on the cutting force, edge chipping, and surface roughness. Experimental results show that the ultrasonic vibration and tool rotation speed had a notable impact on edge chipping and cutting forces. Lastly, the current research has paved the way for widening the research on investigating grinding of the silicon wafer in semiconductor manufacturing with ultrasonic vibration and high rotation speed. In semiconductor wafer manufacturing, grinding process is used to reduce the flatness but generate surface and subsurface damage. With further investigations, RUSM can contribute to reducing these damages.
微电子元件生产对单晶硅材料的需求激增,凸显了它在半导体和光学行业中的重要作用。因此,为满足半导体行业的需求,生产出高质量的硅工件势在必行。由于硅的脆性很高,在表面加工中控制其质量相当困难。传统的制造工艺会导致表面粗糙和边缘崩裂等问题。据报道,旋转超声波表面加工(RUSM)可有效降低脆性材料加工中的切削力、粗糙度和边缘崩角。已有多项关于使用旋转超声波加工钻孔和滑动硅材料的研究,调查了加工参数对切削力、扭矩、边缘崩裂、表面粗糙度等输出变量的影响。然而,就作者所知,还没有关于使用旋转超声波加工硅材料时加工变量(超声波功率和刀具转速)对表面加工影响的研究报告。本研究旨在探讨超声波功率和刀具转速对切削力、边缘崩角和表面粗糙度的影响。实验结果表明,超声波振动和刀具转速对边缘崩角和切削力有显著影响。最后,目前的研究为拓宽研究半导体制造中硅晶片的超声波振动和高转速磨削铺平了道路。在半导体晶片制造过程中,研磨工艺用于降低平面度,但会产生表面和次表面损伤。随着研究的深入,RUSM 可以为减少这些损伤做出贡献。
{"title":"Rotary ultrasonic surface machining of silicon: Effects of ultrasonic power and tool rotational speed","authors":"Sarower Kabir ,&nbsp;Shah Rumman Ansary ,&nbsp;Yunze Li ,&nbsp;Meng Zhang ,&nbsp;Weilong Cong","doi":"10.1016/j.mfglet.2024.09.063","DOIUrl":"10.1016/j.mfglet.2024.09.063","url":null,"abstract":"<div><div>The surging demand for monocrystalline silicon materials in the production of microelectronic components highlights its crucial role in the semiconductor and optic industries. Hence it is inevitable to produce a silicon workpiece with high quality finish to meet the demand in semiconductor industries. Due to high brittleness, controlling the quality of silicon in surface machining is quite difficult. Traditional manufacturing processes induce issues like rough surfaces and edge chipping. It was reported that rotary ultrasonic surface machining (RUSM) can effectively reduce cutting force, roughness, and edge chipping in machining of brittle materials. There have been several studies on drilling and sliding silicon materials using rotary ultrasonic machining investigating the effects of machining parameters on the output variables such as cutting force, torque, edge chipping, surface roughness etc. However, to the best of the authors’ knowledge, there are no reported investigations on effects of machining variables (ultrasonic power and tool rotation speed) in surface machining of silicon materials using the rotary ultrasonic machining. This study aimed to investigate the impacts of ultrasonic power and tool rotation speed on the cutting force, edge chipping, and surface roughness. Experimental results show that the ultrasonic vibration and tool rotation speed had a notable impact on edge chipping and cutting forces. Lastly, the current research has paved the way for widening the research on investigating grinding of the silicon wafer in semiconductor manufacturing with ultrasonic vibration and high rotation speed. In semiconductor wafer manufacturing, grinding process is used to reduce the flatness but generate surface and subsurface damage. With further investigations, RUSM can contribute to reducing these damages.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 518-525"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unsupervised detection and mapping of sparks in the Electrochemical Discharge Machining (ECDM) process 电化学放电加工 (ECDM) 过程中火花的无监督检测和映射
IF 1.9 Q3 ENGINEERING, MANUFACTURING Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.052
Prayag Gore, Yu-Jen Chen, Murali Sundaram
Material removal in electrochemical discharge machining is caused by sparks generated in a tool immersed in an electrolytic solution. Being the primary machining agent in this non-contact machining process, mapping the locations of microscopic sparks is of great interest. The distribution of sparks around the tool surface could give insights into the machined hole properties like the size, surface finish, and depth as compared to the machining parameters such as applied voltage, tool size, rotation speed, and feed rate. This paper is focused on detecting sparks in photographs of the ECDM process captured using a high-speed camera. A novel approach of using a tri-planar reflective surface for capturing the location of sparks in 3D space using a 2D camera output is attempted. Traditional spark detection methods use neural network classifiers that need labeled data for training. This labeled data often comes from human intervention and contains inherent biases that could lead to misclassification. In this paper, an unsupervised spark detection methodology is demonstrated, which eliminates the need for human intervention and relies on the number of neighboring pixels detected in regions of interest (ROIs). The feasibility of using adaptive background modeling to classify thousands of images and identify the ones with sparks is demonstrated in this work. The masking technique combining effects of erosion followed by dilation is used to determine the exact boundaries of the spark contours in every image. Centroids for each of these contours are then transformed from the skewed coordinate system as observed in camera images, to a three-dimensional orthogonal coordinates system centered around the tool. The same procedure is repeated for various voltages to benchmark the distribution of sparks around a tool tip in an ECDM process.
电化学放电加工中的材料去除是由浸泡在电解溶液中的工具产生的火花引起的。作为这种非接触式加工过程中的主要加工剂,绘制微观火花位置图具有重大意义。与加工参数(如外加电压、刀具尺寸、旋转速度和进给速度)相比,刀具表面周围的火花分布可以让人深入了解加工孔的特性,如尺寸、表面光洁度和深度。本文的重点是在使用高速相机拍摄的 ECDM 过程照片中检测火花。本文尝试了一种新方法,即使用三平面反射面,利用二维相机输出捕捉三维空间中的火花位置。传统的火花检测方法使用神经网络分类器,需要标注数据进行训练。这些标注数据通常来自人工干预,并包含可能导致误分类的固有偏差。本文展示了一种无监督火花检测方法,该方法无需人工干预,而是依赖于感兴趣区域(ROI)中检测到的相邻像素数量。这项工作证明了使用自适应背景建模对数千张图像进行分类并识别出带有火花的图像的可行性。在每幅图像中,我们使用了结合侵蚀和扩张效果的遮蔽技术来确定火花轮廓的准确边界。然后将每个轮廓的中心点从相机图像中观察到的倾斜坐标系转换为以工具为中心的三维正交坐标系。在 ECDM 过程中,对不同的电压重复同样的过程,以确定刀尖周围火花的分布情况。
{"title":"Unsupervised detection and mapping of sparks in the Electrochemical Discharge Machining (ECDM) process","authors":"Prayag Gore,&nbsp;Yu-Jen Chen,&nbsp;Murali Sundaram","doi":"10.1016/j.mfglet.2024.09.052","DOIUrl":"10.1016/j.mfglet.2024.09.052","url":null,"abstract":"<div><div>Material removal in electrochemical discharge machining is caused by sparks generated in a tool immersed in an electrolytic solution. Being the primary machining agent in this non-contact machining process, mapping the locations of microscopic sparks is of great interest. The distribution of sparks around the tool surface could give insights into the machined hole properties like the size, surface finish, and depth as compared to the machining parameters such as applied voltage, tool size, rotation speed, and feed rate. This paper is focused on detecting sparks in photographs of the ECDM process captured using a high-speed camera. A novel approach of using a tri-planar reflective surface for capturing the location of sparks in 3D space using a 2D camera output is attempted. Traditional spark detection methods use neural network classifiers that need labeled data for training. This labeled data often comes from human intervention and contains inherent biases that could lead to misclassification. In this paper, an unsupervised spark detection methodology is demonstrated, which eliminates the need for human intervention and relies on the number of neighboring pixels detected in regions of interest (ROIs). The feasibility of using adaptive background modeling to classify thousands of images and identify the ones with sparks is demonstrated in this work. The masking technique combining effects of erosion followed by dilation is used to determine the exact boundaries of the spark contours in every image. Centroids for each of these contours are then transformed from the skewed coordinate system as observed in camera images, to a three-dimensional orthogonal coordinates system centered around the tool. The same procedure is repeated for various voltages to benchmark the distribution of sparks around a tool tip in an ECDM process.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 435-441"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of thermomechanical processes for tailored microstructures 设计用于定制微结构的热机械工艺
IF 1.9 Q3 ENGINEERING, MANUFACTURING Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.050
Lukas Kluy , Lina Klinge , Christopher Spiegel , Carsten Siemers , Peter Groche
Thermomechanical processes enable tailoring of material properties and microstructures for advanced products. In medical technology, next-generation titanium implants require tailored material properties to improve health and quality of life. However, the interaction correlation between process parameters and material properties poses a major challenge for the design of thermomechanical manufacturing processes.
In this paper, we present a methodology for the design of thermomechanical processes to achieve tailored microstructural properties through forming technology and heat treatments. The methodology consists of five systematic steps to address the complexity of multiphysical coupling relationships between temperature, stress, microstructure and alloy composition, and to provide a guideline for effective implementation. It is applied to the production of nanostructured Ti-13Nb-13Zr (NanoTNZ) alloy for dental implants. The designed process of severe plastic deformation, recrystallization treatment and aging lead to nanostructured microstructures smaller than 200 nm. The resulting mechanical properties (UTS > 980 MPa, Young’s modulus of 73 GPa) meet the desired goals for improved biomedical implant-bone interactions. The tailored material properties and microstructures of NanoTNZ are therefore highly promising for use as an implant material.
The case study demonstrates the importance of a systematic method to manage the complexity of multiphysical coupling relationships in the design of thermomechanical processes to enable tailored microstructures for advanced materials and products.
热机械工艺可为先进产品量身定制材料特性和微结构。在医疗技术领域,下一代钛植入物需要量身定制的材料特性,以改善健康和生活质量。然而,工艺参数与材料特性之间的相互作用关系对热机械制造工艺的设计构成了重大挑战。本文介绍了一种热机械工艺设计方法,通过成型技术和热处理实现量身定制的微观结构特性。该方法包括五个系统步骤,以解决温度、应力、微观结构和合金成分之间复杂的多物理耦合关系,并为有效实施提供指导。该方法被应用于生产用于牙科植入物的纳米结构 Ti-13Nb-13Zr (NanoTNZ) 合金。通过设计的剧烈塑性变形、再结晶处理和老化过程,形成了小于 200 nm 的纳米微结构。由此产生的机械性能(UTS > 980 MPa,杨氏模量 73 GPa)达到了改善生物医学植入物与骨相互作用的预期目标。该案例研究表明,在设计热机械过程时,必须采用系统的方法来管理多物理耦合关系的复杂性,从而为先进材料和产品量身定制微结构。
{"title":"Design of thermomechanical processes for tailored microstructures","authors":"Lukas Kluy ,&nbsp;Lina Klinge ,&nbsp;Christopher Spiegel ,&nbsp;Carsten Siemers ,&nbsp;Peter Groche","doi":"10.1016/j.mfglet.2024.09.050","DOIUrl":"10.1016/j.mfglet.2024.09.050","url":null,"abstract":"<div><div>Thermomechanical processes enable tailoring of material properties and microstructures for advanced products. In medical technology, next-generation titanium implants require tailored material properties to improve health and quality of life. However, the interaction correlation between process parameters and material properties poses a major challenge for the design of thermomechanical manufacturing processes.</div><div>In this paper, we present a methodology for the design of thermomechanical processes to achieve tailored microstructural properties through forming technology and heat treatments. The methodology consists of five systematic steps to address the complexity of multiphysical coupling relationships between temperature, stress, microstructure and alloy composition, and to provide a guideline for effective implementation. It is applied to the production of nanostructured Ti-13Nb-13Zr (NanoTNZ) alloy for dental implants. The designed process of severe plastic deformation, recrystallization treatment and aging lead to nanostructured microstructures smaller than 200 nm. The resulting mechanical properties (UTS &gt; 980 MPa, Young’s modulus of 73 GPa) meet the desired goals for improved biomedical implant-bone interactions. The tailored material properties and microstructures of NanoTNZ are therefore highly promising for use as an implant material.</div><div>The case study demonstrates the importance of a systematic method to manage the complexity of multiphysical coupling relationships in the design of thermomechanical processes to enable tailored microstructures for advanced materials and products.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 421-428"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mass customization using hybrid manufacturing and smart assembly: An optimal configuration and platform design approach 利用混合制造和智能装配实现大规模定制:优化配置和平台设计方法
IF 1.9 Q3 ENGINEERING, MANUFACTURING Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.016
Hany Osman , Ahmed Azab , Rifat Bin Hasan , Fazle Baki
Hybrid Manufacturing (HM) and smart assembly stand as pivotal pillars in advanced smart manufacturing systems, offering manufacturers highly efficient and adaptable solutions for manufacturing. This paper delves into the configuration of a production line that integrates HM and assembly stages, each comprising multiple cells, with each cell housing one or more parallel stations. The objective is to manufacture a family of final assemblies, leveraging the platform concept to defer mass customization to later stages and thereby minimize processing costs. A mathematical programming model is proposed to identify the optimal configuration for such production lines, considering constraints such as an allowable capital cost and machine availabilities. In addition, the precedence, inclusion, and seclusion restrictions imposed on the part family are considered. The proposed mathematical programming model aims to delineate which HM features are processed in the part platform cell versus those processed in the mass customization (part variants) cells. Simultaneously, the model determines the components (variants from the HM stage) of final assemblies processed in the assembly platform cell, as well as components assembled or disassembled in the final assembly cells. Furthermore, the model seeks to determine the required number of stations in each cell to meet periodic demand. The overall objective of the model is to minimize the capital and the processing cost. A detailed case study illustrates the effectiveness of the proposed configuration approach and mathematical model. The proposed model is solvable in a few seconds by using commercial solvers.
混合制造(HM)和智能装配是先进智能制造系统的重要支柱,可为制造商提供高效、适应性强的制造解决方案。本文深入探讨了生产线的配置,该生产线集成了混合制造和装配阶段,每个阶段由多个单元组成,每个单元包含一个或多个并行工位。目标是利用平台概念,将大规模定制推迟到后期阶段,从而最大限度地降低加工成本,制造出一系列最终组件。考虑到可允许的资本成本和机器可用性等约束条件,我们提出了一个数学编程模型,以确定此类生产线的最佳配置。此外,还考虑了对零件系列施加的优先级、包含和隔离限制。所提出的数学编程模型旨在划定哪些 HM 特征在零件平台单元中处理,哪些在大规模定制(零件变体)单元中处理。同时,该模型还能确定在装配平台单元中加工的最终装配组件(HM 阶段的变体),以及在最终装配单元中装配或拆卸的组件。此外,该模型还能确定每个单元所需的工位数量,以满足周期性需求。该模型的总体目标是最大限度地降低资本和加工成本。一个详细的案例研究说明了建议的配置方法和数学模型的有效性。通过使用商业求解器,建议的模型可在几秒钟内求解。
{"title":"Mass customization using hybrid manufacturing and smart assembly: An optimal configuration and platform design approach","authors":"Hany Osman ,&nbsp;Ahmed Azab ,&nbsp;Rifat Bin Hasan ,&nbsp;Fazle Baki","doi":"10.1016/j.mfglet.2024.09.016","DOIUrl":"10.1016/j.mfglet.2024.09.016","url":null,"abstract":"<div><div>Hybrid Manufacturing (HM) and smart assembly stand as pivotal pillars in advanced smart manufacturing systems, offering manufacturers highly efficient and adaptable solutions for manufacturing. This paper delves into the configuration of a production line that integrates HM and assembly stages, each comprising multiple cells, with each cell housing one or more parallel stations. The objective is to manufacture a family of final assemblies, leveraging the platform concept to defer mass customization to later stages and thereby minimize processing costs. A mathematical programming model is proposed to identify the optimal configuration for such production lines, considering constraints such as an allowable capital cost and machine availabilities. In addition, the precedence, inclusion, and seclusion restrictions imposed on the part family are considered. The proposed mathematical programming model aims to delineate which HM features are processed in the part platform cell versus those processed in the mass customization (part variants) cells. Simultaneously, the model determines the components (variants from the HM stage) of final assemblies processed in the assembly platform cell, as well as components assembled or disassembled in the final assembly cells. Furthermore, the model seeks to determine the required number of stations in each cell to meet periodic demand. The overall objective of the model is to minimize the capital and the processing cost. A detailed case study illustrates the effectiveness of the proposed configuration approach and mathematical model. The proposed model is solvable in a few seconds by using commercial solvers.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 124-132"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinical-relevant sized tubular capillary mimicries by sacrificial core-sheath electrospinning 通过牺牲芯鞘电纺丝技术制造临床相关尺寸的管状毛细管仿制品
IF 1.9 Q3 ENGINEERING, MANUFACTURING Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.056
Yan Chen, Yingge Zhou
Electrospinning is a versatile technique that is often used to fabricate ultra-fine fibers. With the help of a coaxial spinneret, microtubes can be fabricated as potential biomimetic capillary vessels. However, the sizes of electrospun microtubes in recent research were around 5 μm which is smaller to native capillary vessels (5–10 μm). The electrospun microtube diameter can be determined by various electrospinning parameters such as spinning materials, solvent, spinning distance, solution pump rate, applied voltage, etc. In this research, we explored the effects of spinning distance and core/sheath pump rate ratio on microtube diameter and wall thickness. Viscosity, wettability, and tensile tests were also conducted for microtube characterization. The results indicated that the microtube diameters range from 5 μm to 12 μm, which provides a promising direction for the fabrication of biomimetic capillary vessels.
电纺丝是一种多功能技术,通常用于制造超细纤维。在同轴喷丝板的帮助下,微管可被制造成潜在的仿生物毛细血管。不过,近期研究中电纺微管的尺寸约为 5 μm,小于原生毛细血管(5-10 μm)。电纺微管的直径可由各种电纺参数决定,如纺丝材料、溶剂、纺丝距离、溶液泵速、施加电压等。本研究探讨了纺丝距离和芯/鞘泵率比对微管直径和壁厚的影响。此外,还进行了粘度、润湿性和拉伸测试,以确定微管的特性。结果表明,微管直径在 5 μm 至 12 μm 之间,这为制造仿生物毛细管容器提供了一个很好的方向。
{"title":"Clinical-relevant sized tubular capillary mimicries by sacrificial core-sheath electrospinning","authors":"Yan Chen,&nbsp;Yingge Zhou","doi":"10.1016/j.mfglet.2024.09.056","DOIUrl":"10.1016/j.mfglet.2024.09.056","url":null,"abstract":"<div><div>Electrospinning is a versatile technique that is often used to fabricate ultra-fine fibers. With the help of a coaxial spinneret, microtubes can be fabricated as potential biomimetic capillary vessels. However, the sizes of electrospun microtubes in recent research were around 5 μm which is smaller to native capillary vessels (5–10 μm). The electrospun microtube diameter can be determined by various electrospinning parameters such as spinning materials, solvent, spinning distance, solution pump rate, applied voltage, etc. In this research, we explored the effects of spinning distance and core/sheath pump rate ratio on microtube diameter and wall thickness. Viscosity, wettability, and tensile tests were also conducted for microtube characterization. The results indicated that the microtube diameters range from 5 μm to 12 μm, which provides a promising direction for the fabrication of biomimetic capillary vessels.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 462-468"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of drying temperature on binder/current collector interfacial adhesion in electrode manufacturing of Li-ion batteries 干燥温度对锂离子电池电极制造中粘合剂/集流体界面粘附力的影响
IF 1.9 Q3 ENGINEERING, MANUFACTURING Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.036
Xiaowei Yu , Mengyuan Chen , Ming Wang , Jennifer Bracey , Bradley Frieberg , Roland Koestner , Wai Ping Gloria Tam , David Titmuss , Nicholas Ware
Li-ion battery manufacturing process parameters are critical to the electrode properties and the final cell electrochemical performance. During the electrode drying process, the drying temperature plays a critical role on the binder migration, which affects the interfacial adhesion between the electrode and the current collector. However, the influence of the temperature on the properties of the binder material and the binder/current collector interface is yet unknown. In this work, we studied the effect of drying temperature on the interfacial adhesion between the binder and the current collector by direct coating of polyvinylidene fluoride (PVDF) solution on Al foil and then drying at various temperatures. The interfacial adhesion strength between the PVDF and the Al foil was significantly increased, from 9.72 N/m (dried at room temperature) to > 665.80 N/m (dried at 200 ℃) with increased temperature. DSC and XRD analyses showed the changes in the crystalline forms of PVDF under different drying temperature. This work revealed that the drying temperature during electrode manufacturing should be considered from the aspects of both binder migration in mid-stage and PVDF crystalline properties in late-stage solvent drying.
锂离子电池制造工艺参数对电极特性和最终电池的电化学性能至关重要。在电极干燥过程中,干燥温度对粘结剂的迁移起着至关重要的作用,而粘结剂的迁移会影响电极与集流体之间的界面粘附力。然而,温度对粘结剂材料和粘结剂/集流器界面性能的影响尚不清楚。在这项工作中,我们通过在铝箔上直接涂覆聚偏二氟乙烯(PVDF)溶液,然后在不同温度下干燥,研究了干燥温度对粘合剂和集流器之间界面粘附力的影响。随着温度的升高,聚偏二氟乙烯(PVDF)与铝箔之间的界面粘附强度显著增加,从 9.72 N/m(室温下干燥)增加到 > 665.80 N/m(200 ℃ 下干燥)。DSC 和 XRD 分析表明了不同干燥温度下 PVDF 晶体形态的变化。这项工作揭示了电极制造过程中的干燥温度应从中期粘合剂迁移和后期溶剂干燥时的 PVDF 结晶特性两方面加以考虑。
{"title":"Effect of drying temperature on binder/current collector interfacial adhesion in electrode manufacturing of Li-ion batteries","authors":"Xiaowei Yu ,&nbsp;Mengyuan Chen ,&nbsp;Ming Wang ,&nbsp;Jennifer Bracey ,&nbsp;Bradley Frieberg ,&nbsp;Roland Koestner ,&nbsp;Wai Ping Gloria Tam ,&nbsp;David Titmuss ,&nbsp;Nicholas Ware","doi":"10.1016/j.mfglet.2024.09.036","DOIUrl":"10.1016/j.mfglet.2024.09.036","url":null,"abstract":"<div><div>Li-ion battery manufacturing process parameters are critical to the electrode properties and the final cell electrochemical performance. During the electrode drying process, the drying temperature plays a critical role on the binder migration, which affects the interfacial adhesion between the electrode and the current collector. However, the influence of the temperature on the properties of the binder material and the binder/current collector interface is yet unknown. In this work, we studied the effect of drying temperature on the interfacial adhesion between the binder and the current collector by direct coating of polyvinylidene fluoride (PVDF) solution on Al foil and then drying at various temperatures. The interfacial adhesion strength between the PVDF and the Al foil was significantly increased, from 9.72 N/m (dried at room temperature) to &gt; 665.80 N/m (dried at 200 ℃) with increased temperature. DSC and XRD analyses showed the changes in the crystalline forms of PVDF under different drying temperature. This work revealed that the drying temperature during electrode manufacturing should be considered from the aspects of both binder migration in mid-stage and PVDF crystalline properties in late-stage solvent drying.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 304-309"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigations on ironing parameters in screw extrusion additive manufacturing (SEAM) 螺杆挤出增材制造(SEAM)中的熨烫参数研究
IF 1.9 Q3 ENGINEERING, MANUFACTURING Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.102
Yash Gopal Mittal , Gopal Gote , Yogesh Patil , Avinash Kumar Mehta , Pushkar Kamble , K.P. Karunakaran
Additive Manufacturing (AM) is a novel manufacturing process that enables the physical realization of a given 3D model via layered deposition. Material extrusion (MEX) is one of the most widely used forms of the various AM techniques, in which the screw extrusion-based AM (SEAM) processing offers the most versatile characteristics, in terms of material handling and flow rate capacities. It involves continuous extrusion of the semi-solid material via an extruder screw. Ironing is a common practice in MEX techniques, to maintain z-height and improve the surface morphologies while deposition. Most commercially used nozzles for MEX are thin-walled, such that the ratio of the nozzle width to the diameter (w/d) is close to 1. In this research, investigations on the ironing effect during screw extrusion-based material deposition are explored using a set of wider nozzles (w/d as high as 40). Special emphasis is laid on the deposited surface finish, interlayer strength, and geometrical conformance of the extrusion. The nozzle diameter and the stand-off distance (SOD) are also independently varied. It is found that the best dimensional stability is achieved when the SOD is set between 75 % and 100 % of the nozzle diameter. Ironing improved the surface finish and the interlayer strength in all instances, with an average improvement of 50 % and 200 %, respectively.
增材制造(AM)是一种新型制造工艺,可通过分层沉积实现特定三维模型的物理实现。材料挤压(MEX)是各种增材制造技术中应用最广泛的一种,其中基于螺杆挤压的增材制造(SEAM)工艺在材料处理和流速能力方面具有最通用的特性。它包括通过挤出机螺杆连续挤出半固态材料。熨烫是 MEX 技术中的常见做法,目的是在沉积时保持 Z 高度并改善表面形态。大多数用于 MEX 的商用喷嘴都是薄壁喷嘴,因此喷嘴宽度与直径之比(w/d)接近 1。 在本研究中,我们使用一组更宽(w/d 高达 40)的喷嘴,探索了螺杆挤压材料沉积过程中的熨烫效应。特别强调了挤压过程中的沉积表面光洁度、层间强度和几何一致性。喷嘴直径和间距(SOD)也是独立变化的。结果发现,当 SOD 设置在喷嘴直径的 75 % 到 100 % 之间时,可获得最佳的尺寸稳定性。在所有情况下,熨烫都能改善表面光洁度和层间强度,平均改善幅度分别为 50 % 和 200 %。
{"title":"Investigations on ironing parameters in screw extrusion additive manufacturing (SEAM)","authors":"Yash Gopal Mittal ,&nbsp;Gopal Gote ,&nbsp;Yogesh Patil ,&nbsp;Avinash Kumar Mehta ,&nbsp;Pushkar Kamble ,&nbsp;K.P. Karunakaran","doi":"10.1016/j.mfglet.2024.09.102","DOIUrl":"10.1016/j.mfglet.2024.09.102","url":null,"abstract":"<div><div><em>Additive Manufacturing</em> (AM) is a novel manufacturing process that enables the physical realization of a given 3D model via layered deposition. <em>Material extrusion</em> (MEX) is one of the most widely used forms of the various AM techniques, in which the <em>screw extrusion</em>-based AM (SEAM) processing offers the most versatile characteristics, in terms of material handling and flow rate capacities. It involves continuous extrusion of the semi-solid material via an extruder screw. Ironing is a common practice in MEX techniques, to maintain <em>z</em>-height and improve the surface morphologies while deposition. Most commercially used nozzles for MEX are thin-walled, such that the ratio of the nozzle width to the diameter (<em>w/d</em>) is close to 1. In this research, investigations on the ironing effect during screw extrusion-based material deposition are explored using a set of wider nozzles (<em>w/d</em> as high as 40). Special emphasis is laid on the deposited surface finish, interlayer strength, and geometrical conformance of the extrusion. The nozzle diameter and the <em>stand-off distance</em> (SOD) are also independently varied. It is found that the best dimensional stability is achieved when the SOD is set between 75 % and 100 % of the nozzle diameter. Ironing improved the surface finish and the interlayer strength in all instances, with an average improvement of 50 % and 200 %, respectively.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 822-831"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Manufacturing Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1