首页 > 最新文献

Manufacturing Letters最新文献

英文 中文
Thermal profile modeling and microstructural evolution in laser processing of Inconel 625 plates by comparison of analytical and numerical methods 通过比较分析和数值方法,建立因科镍合金 625 板材激光加工过程中的热曲线模型和微观结构演化
IF 1.9 Q3 ENGINEERING, MANUFACTURING Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.091
Stephanie B. Lawson, Milad Ghayoor, Xianzhe Fu, Ali Tabei, Andy Fan, Somayeh Pasebani
Microstructural evolution of materials under specified process conditions and parameters can be predicted by thermal modeling of additive manufacturing laser processes. The objective of this study was to develop, analyze and compare two methods for prediction: an analytical method and a numerical method for laser processing of Inconel 625 material. These methods were compared with experimental results for thermal profiling, and the effect of thermal profiles on microstructure of the experimental samples was explored. Maximum temperature and cooling rate of the numerical method were shown in good agreement, while the analytical method proved more challenging when compared to the experimental results for three laser parameters. Cooling curves were correlated with microstructure in terms of grain size, morphology, and orientation, with findings trending with parameter adjustments. This research supports the numerical modeling approach as a method for examining optimal laser processing conditions for Inconel 625 that is ideally suited for complex fluid flow analyses.
材料在特定工艺条件和参数下的微观结构演变可以通过激光增材制造工艺的热建模进行预测。本研究的目的是开发、分析和比较两种预测方法:一种是分析方法,另一种是用于 Inconel 625 材料激光加工的数值方法。这些方法与热剖面实验结果进行了比较,并探讨了热剖面对实验样品微观结构的影响。数值方法的最高温度和冷却速率显示出良好的一致性,而分析方法在三个激光参数上与实验结果相比更具挑战性。冷却曲线与晶粒大小、形态和取向方面的微观结构相关,研究结果随参数调整而变化。这项研究支持将数值建模方法作为检查 Inconel 625 最佳激光加工条件的一种方法,这种方法非常适合复杂的流体流动分析。
{"title":"Thermal profile modeling and microstructural evolution in laser processing of Inconel 625 plates by comparison of analytical and numerical methods","authors":"Stephanie B. Lawson,&nbsp;Milad Ghayoor,&nbsp;Xianzhe Fu,&nbsp;Ali Tabei,&nbsp;Andy Fan,&nbsp;Somayeh Pasebani","doi":"10.1016/j.mfglet.2024.09.091","DOIUrl":"10.1016/j.mfglet.2024.09.091","url":null,"abstract":"<div><div>Microstructural evolution of materials under specified process conditions and parameters can be predicted by thermal modeling of additive manufacturing laser processes. The objective of this study was to develop, analyze and compare two methods for prediction: an analytical method and a numerical method for laser processing of Inconel 625 material. These methods were compared with experimental results for thermal profiling, and the effect of thermal profiles on microstructure of the experimental samples was explored. Maximum temperature and cooling rate of the numerical method were shown in good agreement, while the analytical method proved more challenging when compared to the experimental results for three laser parameters. Cooling curves were correlated with microstructure in terms of grain size, morphology, and orientation, with findings trending with parameter adjustments. This research supports the numerical modeling approach as a method for examining optimal laser processing conditions for Inconel 625 that is ideally suited for complex fluid flow analyses.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 730-741"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical inspection of stator slots for electric motors 对电机定子槽进行光学检测
IF 1.9 Q3 ENGINEERING, MANUFACTURING Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.014
Sean Wagner, John Agapiou
An optical non-contact inspection system was developed for measuring the slots in stator lamination stacks. To avoid passing go/no-go gage blocks through the slots, a machine vision system is instead used to measure the stator core slots and identify the presence of burrs within the slots. Utilizing telecentric optics along with an alignment monitoring system configured to monitor and orient the stator core, the core slots can be oriented relative to the imaging axis for further metrology measurements. Among these measurements, the smallest opening dimensions (slot width and depth) of each slot due to misalignment of laminations and the detection of burrs along the edges of the slots throughout the length of the lamination stack are critical for full stator assembly. Advanced image processing algorithms were developed to obtain sub-pixel accuracy which is required to measure the slots. This, used in conjunction with a robust vision calibration technique, increases the feasibility of building a device that can be implemented as a production inspection system. Experiments show the reliability of the computer vision approach and how it can be used in the inspection of slots in lamination stacks.
我们开发了一种光学非接触式检测系统,用于测量定子叠片中的槽。为了避免通过槽中的 "去/不去 "量块,该系统改用机器视觉系统来测量定子铁芯槽,并识别槽中是否存在毛刺。利用远心光学系统和对准监控系统(用于监控定子铁芯并确定其方向),可确定铁芯槽相对于成像轴的方向,以便进行进一步的计量测量。在这些测量中,由于层叠错位造成的每个槽的最小开口尺寸(槽宽和槽深),以及沿着整个层叠长度的槽边缘检测毛刺,对于定子的完整装配至关重要。我们开发了先进的图像处理算法,以获得测量槽所需的亚像素精度。该算法与强大的视觉校准技术结合使用,提高了制造可作为生产检测系统的设备的可行性。实验显示了计算机视觉方法的可靠性,以及如何将其用于层压堆栈的槽检查。
{"title":"Optical inspection of stator slots for electric motors","authors":"Sean Wagner,&nbsp;John Agapiou","doi":"10.1016/j.mfglet.2024.09.014","DOIUrl":"10.1016/j.mfglet.2024.09.014","url":null,"abstract":"<div><div>An optical non-contact inspection system was developed for measuring the slots in stator lamination stacks. To avoid passing go/no-go gage blocks through the slots, a machine vision system is instead used to measure the stator core slots and identify the presence of burrs within the slots. Utilizing telecentric optics along with an alignment monitoring system configured to monitor and orient the stator core, the core slots can be oriented relative to the imaging axis for further metrology measurements. Among these measurements, the smallest opening dimensions (slot width and depth) of each slot due to misalignment of laminations and the detection of burrs along the edges of the slots throughout the length of the lamination stack are critical for full stator assembly. Advanced image processing algorithms were developed to obtain sub-pixel accuracy which is required to measure the slots. This, used in conjunction with a robust vision calibration technique, increases the feasibility of building a device that can be implemented as a production inspection system. Experiments show the reliability of the computer vision approach and how it can be used in the inspection of slots in lamination stacks.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 103-112"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementation strategy for launch and performance improvement of high throughput manufacturing inspection systems 启动高产能制造检测系统并提高其性能的实施战略
IF 1.9 Q3 ENGINEERING, MANUFACTURING Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.018
J. Patrick Spicer , Debejyo Chakraborty , Michael Wincek , Jeffrey Abell
Product technologies are changing rapidly in advanced automotive propulsion systems. These products are driving the need for new manufacturing processes and new inspection methods. To keep new propulsion systems affordable and ensure these new products are introduced with high quality, automotive manufacturers are seeking automated inspection solutions with low cost and near-zero error rates to inspect 100% of the items. In this paper, a progressive deployment strategy of a hybrid inspection system is presented and studied in the context of technology development and rapid deployment. It enabled us to begin with human inspection and gradually phase-in automated inspection technology, while almost never failing to identify a bad item. This strategy was applied successfully to inspect ultrasonic welds in lithium ion battery packs. At the time of this study, a 75% reduction in human inspection was achieved with prospects for further reduction. Actual results from the implementation of this strategy in production are presented. Recommendations are made regarding the most appropriate time to employ this strategy and how it could increase the use of advanced automated in-line inspection technologies.
先进汽车推进系统的产品技术日新月异。这些产品推动了对新制造工艺和新检测方法的需求。为了使新的推进系统价格合理,并确保推出的新产品具有高质量,汽车制造商正在寻求成本低、误差率接近零的自动检测解决方案,以实现 100% 的项目检测。本文介绍了混合检测系统的渐进部署战略,并结合技术开发和快速部署进行了研究。它使我们能够从人工检测开始,逐步引入自动检测技术,同时几乎从未出现过无法识别不良物品的情况。这一策略已成功应用于锂离子电池组的超声波焊缝检测。在进行这项研究时,人工检测已减少 75%,并有望进一步减少。本文介绍了在生产中实施这一策略的实际结果。就采用该策略的最合适时间以及如何增加先进的自动在线检测技术的使用提出了建议。
{"title":"Implementation strategy for launch and performance improvement of high throughput manufacturing inspection systems","authors":"J. Patrick Spicer ,&nbsp;Debejyo Chakraborty ,&nbsp;Michael Wincek ,&nbsp;Jeffrey Abell","doi":"10.1016/j.mfglet.2024.09.018","DOIUrl":"10.1016/j.mfglet.2024.09.018","url":null,"abstract":"<div><div>Product technologies are changing rapidly in advanced automotive propulsion systems. These products are driving the need for new manufacturing processes and new inspection methods. To keep new propulsion systems affordable and ensure these new products are introduced with high quality, automotive manufacturers are seeking automated inspection solutions with low cost and near-zero error rates to inspect 100% of the items. In this paper, a progressive deployment strategy of a hybrid inspection system is presented and studied in the context of technology development and rapid deployment. It enabled us to begin with human inspection and gradually phase-in automated inspection technology, while almost never failing to identify a bad item. This strategy was applied successfully to inspect ultrasonic welds in lithium ion battery packs. At the time of this study, a 75% reduction in human inspection was achieved with prospects for further reduction. Actual results from the implementation of this strategy in production are presented. Recommendations are made regarding the most appropriate time to employ this strategy and how it could increase the use of advanced automated in-line inspection technologies.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 143-152"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feasibility of 5G-enabled process monitoring in milling operations 在制粉作业中实现 5G 工艺监控的可行性
IF 1.9 Q3 ENGINEERING, MANUFACTURING Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.024
Liwen Hu , Baihui Chen , ElHussein Shata , Shashank Shekhar , Charif Mahmoudi , Ivan Seskar , Qingze Zou , Y.B. Guo
5G monitoring holds immense potential for revolutionizing manufacturing processes by enabling real-time data transmission, remote control, enhanced quality control, and increased efficiency. However, it also presents challenges related to 5G monitoring infrastructure. To explore 5G’s potential for process monitoring, this study introduces a novel 5G-enabled architecture designed to address the challenges, enhancing the process monitoring’s efficiency, accuracy, and reliability in the case of milling operation. To investigate the feasibility of this sophisticated 5G network for process monitoring, two testbeds, i.e., the 5G robotic milling testbed and the 5G CNC milling testbed, have been developed. An accelerometer and a laser scanner have been retrofitted with 5G communications capability to capture critical process signals in the testbeds, respectively. It has shown that the sensor data can be upstreamed to a 5G edge server for data analytics and visualization in ultra-low latency. This work highlights the transformative impact of 5G communication on process monitoring for time-critical manufacturing.
5G 监控通过实现实时数据传输、远程控制、强化质量控制和提高效率,在彻底改变制造流程方面具有巨大的潜力。然而,它也带来了与 5G 监控基础设施相关的挑战。为了探索 5G 在流程监控方面的潜力,本研究介绍了一种新型 5G 架构,旨在应对挑战,提高铣削操作中流程监控的效率、准确性和可靠性。为了研究这种复杂的 5G 网络用于过程监控的可行性,我们开发了两个测试平台,即 5G 机器人铣削测试平台和 5G 数控铣削测试平台。加速度计和激光扫描仪加装了 5G 通信功能,可分别捕捉试验台中的关键过程信号。研究表明,传感器数据可以上传到 5G 边缘服务器,以超低延迟进行数据分析和可视化。这项工作凸显了 5G 通信对时间关键型制造过程监控的变革性影响。
{"title":"Feasibility of 5G-enabled process monitoring in milling operations","authors":"Liwen Hu ,&nbsp;Baihui Chen ,&nbsp;ElHussein Shata ,&nbsp;Shashank Shekhar ,&nbsp;Charif Mahmoudi ,&nbsp;Ivan Seskar ,&nbsp;Qingze Zou ,&nbsp;Y.B. Guo","doi":"10.1016/j.mfglet.2024.09.024","DOIUrl":"10.1016/j.mfglet.2024.09.024","url":null,"abstract":"<div><div>5G monitoring holds immense potential for revolutionizing manufacturing processes by enabling real-time data transmission, remote control, enhanced quality control, and increased efficiency. However, it also presents challenges related to 5G monitoring infrastructure. To explore 5G’s potential for process monitoring, this study introduces a novel 5G-enabled architecture designed to address the challenges, enhancing the process monitoring’s efficiency, accuracy, and reliability in the case of milling operation. To investigate the feasibility of this sophisticated 5G network for process monitoring, two testbeds, i.e., the 5G robotic milling testbed and the 5G CNC milling testbed, have been developed. An accelerometer and a laser scanner have been retrofitted with 5G communications capability to capture critical process signals in the testbeds, respectively. It has shown that the sensor data can be upstreamed to a 5G edge server for data analytics and visualization in ultra-low latency. This work highlights the transformative impact of 5G communication on process monitoring for time-critical manufacturing.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 200-207"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stereolithography-assisted sodium alginate-collagen hydrogel scaffold with molded internal channels 立体光刻辅助海藻酸钠-胶原蛋白水凝胶支架与模塑内部通道
IF 1.9 Q3 ENGINEERING, MANUFACTURING Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.045
Chi Wang, Yingge Zhou
Fabricating internal vascular networks within a hydrogel scaffold is essential for facilitating the supply of nutrients, oxygen, and metabolism exchange required by the encapsulated cells. The challenges in current hydrogel scaffold fabrication involve the difficulty of building adequate internal channels, poor scaffold geometry precision, and low cell viability caused by the fabrication process and polymer material properties. Stereolithography (SLA) stands out as a 3D printing technique distinguished by its superior production efficiency, advanced precision, and remarkable resolution in crafting intricate custom geometries. These attributes establish it as an innovative approach for templates in scaffold fabrication, potentially surpassing the fused deposition modeling (FDM)-based template strategy. Meanwhile, it exerts less shear stress on the cells compared to the direct bioprinting process. This novel strategy enables the fabrication of hydrogel vascular structure within the precision of 500 µm in both channel diameter and wall thickness. In this paper, various sodium alginate and collagen (SA-Col) composite hydrogels with varying collagen concentrations have been investigated to identify the optimal ratio for fabricating hydrogel scaffolds with channels.
在水凝胶支架内构建内部血管网络对于促进包裹细胞所需的营养、氧气供应和新陈代谢交换至关重要。目前水凝胶支架制造所面临的挑战包括:难以建立足够的内部通道、支架几何精度差,以及制造工艺和聚合物材料特性导致的细胞存活率低。立体光刻(SLA)作为一种三维打印技术,以其卓越的生产效率、先进的精度和出色的分辨率在制作复杂的定制几何形状方面脱颖而出。这些特性使其成为支架制造模板的创新方法,有可能超越基于熔融沉积建模(FDM)的模板策略。同时,与直接生物打印工艺相比,它对细胞施加的剪切应力更小。这种新颖的策略使水凝胶血管结构的通道直径和壁厚精度都控制在 500 微米以内。本文研究了不同浓度的海藻酸钠和胶原蛋白(SA-Col)复合水凝胶,以确定制造带通道水凝胶支架的最佳比例。
{"title":"Stereolithography-assisted sodium alginate-collagen hydrogel scaffold with molded internal channels","authors":"Chi Wang,&nbsp;Yingge Zhou","doi":"10.1016/j.mfglet.2024.09.045","DOIUrl":"10.1016/j.mfglet.2024.09.045","url":null,"abstract":"<div><div>Fabricating internal vascular networks within a hydrogel scaffold is essential for facilitating the supply of nutrients, oxygen, and metabolism exchange required by the encapsulated cells. The challenges in current hydrogel scaffold fabrication involve the difficulty of building adequate internal channels, poor scaffold geometry precision, and low cell viability caused by the fabrication process and polymer material properties. Stereolithography (SLA) stands out as a 3D printing technique distinguished by its superior production efficiency, advanced precision, and remarkable resolution in crafting intricate custom geometries. These attributes establish it as an innovative approach for templates in scaffold fabrication, potentially surpassing the fused deposition modeling (FDM)-based template strategy. Meanwhile, it exerts less shear stress on the cells compared to the direct bioprinting process. This novel strategy enables the fabrication of hydrogel vascular structure within the precision of 500 µm in both channel diameter and wall thickness. In this paper, various sodium alginate and collagen (SA-Col) composite hydrogels with varying collagen concentrations have been investigated to identify the optimal ratio for fabricating hydrogel scaffolds with channels.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 375-383"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metallurgical characteristics and mechanical properties of dissimilar friction stir welded DH36 steel and UNS G10080 steel joints DH36 钢和 UNS G10080 钢异种摩擦搅拌焊接接头的冶金特性和机械性能
IF 1.9 Q3 ENGINEERING, MANUFACTURING Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.046
Pardeep Pankaj , Pankaj Biswas , Dave Kim
The present study expanded the scientific comprehension of the friction stir welding process for dissimilar steels, namely high-strength shipbuilding grade DH36 steel and UNS G10080 steel. The effect of tool traverse speed and plunge depth on temperature history, microstructure characteristics, and mechanical properties is investigated experimentally. The metallographic characterizations were examined through an optical microscope and field emission scanning electron microscopy equipped with an energy-dispersive X-ray system. Microhardness, impact, and tensile tests were carried out on the friction-stir-welded specimens. Increasing the plunge depth and reducing the traversal speed resulted in an augmentation of the peak temperature, primarily attributable to higher heat generation. Within the range of process parameters used, the tool produced complex material movement, resulting in swirl-like and vortex-intercalated features, particularly adjacent to the stir zone/workpiece interface. These vortex-like features exhibited dynamically recrystallized fine-grained microstructures. The grain size in the stir zone and the thermo-mechanically affected zone is reduced by increasing the plunge depth and decreasing the traverse speed due to enhanced dynamic recrystallization, subsequently improving the hardness and toughness values. In the stir zone, the microstructure revealed the acicular-shaped bainite ferrite in the DH36 steel and the Widmanstatten ferrite in the UNS G10080 steel. The microhardness contours revealed the uneven hardness distribution across the weld cross-section due to the microstructural heterogeneity in the dissimilar steels. The maximum welding efficiency of 106 % and toughness of 46 J are obtained at 40 mm/min traverse speed with a plunge depth of 0.2 mm, which is attributed to sufficient heat generation and grain refinement.
本研究拓展了对异种钢(即高强度造船级 DH36 钢和 UNS G10080 钢)搅拌摩擦焊接工艺的科学理解。实验研究了工具移动速度和切入深度对温度历史、微观结构特征和机械性能的影响。金相特征通过光学显微镜和配备能量色散 X 射线系统的场发射扫描电子显微镜进行了检查。对摩擦搅拌焊接试样进行了显微硬度、冲击和拉伸试验。增加切入深度和降低横移速度导致峰值温度升高,这主要归因于发热量增加。在所使用的工艺参数范围内,工具产生了复杂的材料运动,形成了漩涡状和涡流交错的特征,尤其是在搅拌区/工件界面附近。这些漩涡状特征表现出动态再结晶的细粒微结构。由于动态再结晶的增强,通过增加切入深度和降低横移速度,可减小搅拌区和热机械影响区的晶粒尺寸,从而提高硬度和韧性值。在搅拌区,显微组织显示 DH36 钢中存在针状贝氏体铁素体,而 UNS G10080 钢中存在维德曼铁素体。显微硬度轮廓显示,由于异种钢的显微结构异质性,整个焊接截面的硬度分布不均匀。在横移速度为 40 mm/min、切入深度为 0.2 mm 时,焊接效率达到 106 %,韧性达到 46 J,这归功于充分的发热和晶粒细化。
{"title":"Metallurgical characteristics and mechanical properties of dissimilar friction stir welded DH36 steel and UNS G10080 steel joints","authors":"Pardeep Pankaj ,&nbsp;Pankaj Biswas ,&nbsp;Dave Kim","doi":"10.1016/j.mfglet.2024.09.046","DOIUrl":"10.1016/j.mfglet.2024.09.046","url":null,"abstract":"<div><div>The present study expanded the scientific comprehension of the friction stir welding process for dissimilar steels, namely high-strength shipbuilding grade DH36 steel and UNS G10080 steel. The effect of tool traverse speed and plunge depth on temperature history, microstructure characteristics, and mechanical properties is investigated experimentally. The metallographic characterizations were examined through an optical microscope and field emission scanning electron microscopy equipped with an energy-dispersive X-ray system. Microhardness, impact, and tensile tests were carried out on the friction-stir-welded specimens. Increasing the plunge depth and reducing the traversal speed resulted in an augmentation of the peak temperature, primarily attributable to higher heat generation. Within the range of process parameters used, the tool produced complex material movement, resulting in swirl-like and vortex-intercalated features, particularly adjacent to the stir zone/workpiece interface. These vortex-like features exhibited dynamically recrystallized fine-grained microstructures. The grain size in the stir zone and the thermo-mechanically affected zone is reduced by increasing the plunge depth and decreasing the traverse speed due to enhanced dynamic recrystallization, subsequently improving the hardness and toughness values. In the stir zone, the microstructure revealed the acicular-shaped bainite ferrite in the DH36 steel and the Widmanstatten ferrite in the UNS G10080 steel. The microhardness contours revealed the uneven hardness distribution across the weld cross-section due to the microstructural heterogeneity in the dissimilar steels. The maximum welding efficiency of 106 % and toughness of 46 J are obtained at 40 mm/min traverse speed with a plunge depth of 0.2 mm, which is attributed to sufficient heat generation and grain refinement.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 384-394"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase formation and mechanical analysis of sintered Ni25Al25Co15Fe15Mn8Ti7Cr5 high entropy alloy 烧结 Ni25Al25Co15Fe15Mn8Ti7Cr5 高熵合金的相形成和力学分析
IF 1.9 Q3 ENGINEERING, MANUFACTURING Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.019
Emmanuel Olorundaisi , Bukola J. Babalola , Ufoma S. Anamu , Moipone L. Teffo , Ngeleshi Michel Kibambe , Anthony O. Ogunmefun , Peter Odetola , Peter A. Olubambi
In recent years, the pursuit of cutting-edge materials has intensified, with a focus on affordability, lightweight characteristics, and exceptional performance under high-temperature conditions, to serve as alternatives to Ni-base superalloys and other conventional alloys. Potential materials suitable for high-temperature structural applications with lightweight characteristics are intermetallics such as NiAl, and TiAl, but pose numerous fabrication challenges and poor ductility behaviour at room temperature. In view of this, a novel Ni25Al25Co15Fe15 Mn8Ti7Cr5 high entropy alloy (HEA) was fabricated using spark plasma sintering (SPS). The alloy was developed at a sintering temperature of 850 °C, a heating rate of 90 °C/min, a pressure of 50 MPa, and a dwelling time of 5 min. X-ray diffraction, scanning electron microscopy, and Vickers hardness tester were used to investigate the phase formation, microstructure, and mechanical properties of the HEA, respectively. The microstructure of the sintered HEA shows a homogenous dispersion of the alloying metals. The sintered microstructures showed a mixture of simple and complex phases. The grain size analysis shows that the sintered HEA exhibited a lower grain size of 2.28 µm and a refined crystallite size of 3.159 µm. The microhardness value and relative density of the sintered HEA are 135.8 HV and 99.56 %, respectively.
近年来,人们对尖端材料的追求不断加强,重点关注材料的经济性、轻质特性以及在高温条件下的优异性能,以替代镍基超级合金和其他传统合金。适合高温结构应用且具有轻质特性的潜在材料是镍铝和钛铝等金属间化合物,但它们在制造方面存在诸多挑战,而且在室温下延展性能较差。有鉴于此,一种新型 Ni25Al25Co15Fe15 Mn8Ti7Cr5 高熵合金(HEA)采用火花等离子烧结(SPS)技术制成。该合金的烧结温度为 850 °C,加热速度为 90 °C/分钟,压力为 50 兆帕,停留时间为 5 分钟。利用 X 射线衍射、扫描电子显微镜和维氏硬度计分别研究了 HEA 的相形成、微观结构和机械性能。烧结 HEA 的微观结构显示出合金金属的均匀分散。烧结微结构显示出简单相和复杂相的混合。晶粒度分析表明,烧结 HEA 的晶粒度较低,为 2.28 µm,晶粒度较细,为 3.159 µm。烧结 HEA 的显微硬度值和相对密度分别为 135.8 HV 和 99.56 %。
{"title":"Phase formation and mechanical analysis of sintered Ni25Al25Co15Fe15Mn8Ti7Cr5 high entropy alloy","authors":"Emmanuel Olorundaisi ,&nbsp;Bukola J. Babalola ,&nbsp;Ufoma S. Anamu ,&nbsp;Moipone L. Teffo ,&nbsp;Ngeleshi Michel Kibambe ,&nbsp;Anthony O. Ogunmefun ,&nbsp;Peter Odetola ,&nbsp;Peter A. Olubambi","doi":"10.1016/j.mfglet.2024.09.019","DOIUrl":"10.1016/j.mfglet.2024.09.019","url":null,"abstract":"<div><div>In recent years, the pursuit of cutting-edge materials has intensified, with a focus on affordability, lightweight characteristics, and exceptional performance under high-temperature conditions, to serve as alternatives to Ni-base superalloys and other conventional alloys. Potential materials suitable for high-temperature structural applications with lightweight characteristics are intermetallics such as NiAl, and TiAl, but pose numerous fabrication challenges and poor ductility behaviour at room temperature. In view of this, a novel Ni<sub>25</sub>Al<sub>25</sub>Co<sub>15</sub>Fe<sub>15</sub> Mn<sub>8</sub>Ti<sub>7</sub>Cr<sub>5</sub> high entropy alloy (HEA) was fabricated using spark plasma sintering (SPS). The alloy was developed at a sintering temperature of 850 °C, a heating rate of 90 °C/min, a pressure of 50 MPa, and a dwelling time of 5 min. X-ray diffraction, scanning electron microscopy, and Vickers hardness tester were used to investigate the phase formation, microstructure, and mechanical properties of the HEA, respectively. The microstructure of the sintered HEA shows a homogenous dispersion of the alloying metals. The sintered microstructures showed a mixture of simple and complex phases. The grain size analysis shows that the sintered HEA exhibited a lower grain size of 2.28 µm and a refined crystallite size of 3.159 µm. The microhardness value and relative density of the sintered HEA are 135.8 HV and 99.56 %, respectively.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 153-159"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermo-mechanical and phase prediction of Ni25Al25Co14Fe14Ti9Mn8Cr5 high entropy alloys system using THERMO-CALC 使用 THERMO-CALC 对 Ni25Al25Co14Fe14Ti9Mn8Cr5 高熵合金体系进行热力学和相位预测
IF 1.9 Q3 ENGINEERING, MANUFACTURING Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.020
Emmanuel Olorundaisi , Bukola J Babalola , Ufoma S. Anamu , Moipone L. Teffo , Ngeleshi M. Kibambe , Anthony O. Ogunmefun , Peter Odetola , Peter A. Olubambi
This study focuses on predicting phases and thermo-mechanical properties of NiAl-Ti-Mn-Co-Fe-Cr High Entropy Alloys (HEAs) using THERMOCALC software version 2021b with the TCHEA5 HEAs database. The thermodynamic simulation was used to investigate the phase formation and total hardness of the HEAs. The thermodynamic simulation result shows the presence of three major phases at room temperature, namely, BCC, SIGMA, and HEUSLER phases, with the BCC having a higher percentage of volume fraction of 62.4%. The activity of all components at high temperatures was studied, and the study shows Ni and Al to be stable at high temperatures, implying excellent mechanical properties are expected at high temperatures. The predicted total hardness is given as 96.2 HV.
本研究的重点是利用 THERMOCALC 软件 2021b 版和 TCHEA5 高熵合金(HEAs)数据库预测 NiAl-Ti-Mn-Co-Fe-Cr 高熵合金(HEAs)的相和热机械性能。热力学模拟用于研究 HEA 的相形成和总硬度。热力学模拟结果表明,室温下存在三个主要相,即 BCC 相、SIGMA 相和 HEUSLER 相,其中 BCC 相的体积分数百分比较高,为 62.4%。对所有成分在高温下的活性进行了研究,研究结果表明,镍和铝在高温下是稳定的,这意味着在高温下有望获得优异的机械性能。预测的总硬度为 96.2 HV。
{"title":"Thermo-mechanical and phase prediction of Ni25Al25Co14Fe14Ti9Mn8Cr5 high entropy alloys system using THERMO-CALC","authors":"Emmanuel Olorundaisi ,&nbsp;Bukola J Babalola ,&nbsp;Ufoma S. Anamu ,&nbsp;Moipone L. Teffo ,&nbsp;Ngeleshi M. Kibambe ,&nbsp;Anthony O. Ogunmefun ,&nbsp;Peter Odetola ,&nbsp;Peter A. Olubambi","doi":"10.1016/j.mfglet.2024.09.020","DOIUrl":"10.1016/j.mfglet.2024.09.020","url":null,"abstract":"<div><div>This study focuses on predicting phases and thermo-mechanical properties of NiAl-Ti-Mn-Co-Fe-Cr High Entropy Alloys (HEAs) using THERMOCALC software version 2021b with the TCHEA5 HEAs database. The thermodynamic simulation was used to investigate the phase formation and total hardness of the HEAs. The thermodynamic simulation result shows the presence of three major phases at room temperature, namely, BCC, SIGMA, and HEUSLER phases, with the BCC having a higher percentage of volume fraction of 62.4%. The activity of all components at high temperatures was studied, and the study shows Ni and Al to be stable at high temperatures, implying excellent mechanical properties are expected at high temperatures. The predicted total hardness is given as 96.2 HV.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 160-169"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of oscillatory magnetic field-assisted finishing of directed energy deposition NASA HR-1 integral channels 振荡磁场辅助整理定向能量沉积 NASA HR-1 积分通道的特征
IF 1.9 Q3 ENGINEERING, MANUFACTURING Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.085
Kateland Hutt , Justin Rietberg , Paul Gradl , Hitomi Yamaguchi
Additive manufacturing (AM), such as directed energy deposition (DED), enables fabrication of complex geometries for critical parts at near-net shape, but creates a need for post-processing to achieve desired geometry and performance. In particular, parts made using DED are sometimes printed with a high initial surface roughness, requiring post-processing to meet application-dependent requirements. Magnetic field-assisted finishing (MAF), in which a magnetic polishing tool is manipulated by magnetic force and generates relative motion against a target surface, has been applied to smooth AM parts. An advantage of MAF is that the magnetically manipulated polishing tools can finish both external part surfaces and part interiors. In this paper, an oscillating magnetic polishing tool is proposed to smooth the inner surfaces of rectangular NASA HR-1 alloy channels made using DED. Because effective tool motion allows reduction of surface roughness and waviness, parameters that control polishing-tool motion are of great interest. This paper describes three parameters that control polishing-tool motion: number of polishing tools, magnetic field, and abrasive slurry. The effects of tool motion on the polishing characteristics are demonstrated, showing that the roughness of the interior channel surface can be reduced from several tens of micron to a sub-micron level.
增材制造(AM),如定向能沉积(DED),能以接近净形的方式制造复杂几何形状的关键零件,但需要进行后处理,以实现所需的几何形状和性能。特别是,使用定向能沉积技术制造的零件有时会打印出较高的初始表面粗糙度,这就需要进行后处理,以满足与应用相关的要求。磁场辅助精加工(MAF)是通过磁力操纵磁性抛光工具,使其产生与目标表面的相对运动,已被应用于光滑的 AM 零件。磁场辅助抛光的优点是磁力操纵的抛光工具既能抛光零件外表面,也能抛光零件内部。本文提出了一种摆动磁性抛光工具,用于平滑使用 DED 制作的矩形 NASA HR-1 合金通道的内表面。由于有效的工具运动可以减少表面粗糙度和波纹,因此控制抛光工具运动的参数非常重要。本文介绍了控制抛光工具运动的三个参数:抛光工具数量、磁场和研磨浆。结果表明,抛光工具运动对抛光特性的影响可以将通道内表面的粗糙度从几十微米降低到亚微米级。
{"title":"Characterization of oscillatory magnetic field-assisted finishing of directed energy deposition NASA HR-1 integral channels","authors":"Kateland Hutt ,&nbsp;Justin Rietberg ,&nbsp;Paul Gradl ,&nbsp;Hitomi Yamaguchi","doi":"10.1016/j.mfglet.2024.09.085","DOIUrl":"10.1016/j.mfglet.2024.09.085","url":null,"abstract":"<div><div>Additive manufacturing (AM), such as directed energy deposition (DED), enables fabrication of complex geometries for critical parts at near-net shape, but creates a need for post-processing to achieve desired geometry and performance. In particular, parts made using DED are sometimes printed with a high initial surface roughness, requiring post-processing to meet application-dependent requirements. Magnetic field-assisted finishing (MAF), in which a magnetic polishing tool is manipulated by magnetic force and generates relative motion against a target surface, has been applied to smooth AM parts. An advantage of MAF is that the magnetically manipulated polishing tools can finish both external part surfaces and part interiors. In this paper, an oscillating magnetic polishing tool is proposed to smooth the inner surfaces of rectangular NASA HR-1 alloy channels made using DED. Because effective tool motion allows reduction of surface roughness and waviness, parameters that control polishing-tool motion are of great interest. This paper describes three parameters that control polishing-tool motion: number of polishing tools, magnetic field, and abrasive slurry. The effects of tool motion on the polishing characteristics are demonstrated, showing that the roughness of the interior channel surface can be reduced from several tens of micron to a sub-micron level.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 670-678"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A qualitative validation of an in-situ monitoring system for EHD inkjet printing via laser diffraction 通过激光衍射对 EHD 喷墨打印原位监测系统进行定性验证
IF 1.9 Q3 ENGINEERING, MANUFACTURING Pub Date : 2024-10-01 DOI: 10.1016/j.mfglet.2024.09.029
Xuepeng Jiang, Pengyu Zhang, Hantang Qin
Electrohydrodynamic inkjet printing enables high-resolution patterning for nano features. In-flight dynamics of EHD inkjet printing play an essential role in the quality control of printing results. We applied a laser diffraction/scattering in-situ analyzing setup for the EHD inkjet printing system to replace the zoom lens and high-speed camera imaging system. In contrast to conventional imaging systems, the laser diffraction/scattering system is based on analyzing the diffraction pattern and scattering intensity, respectively, which provided higher resolution for micro-scale jetting measurement and enabled sub-micron level jetting correlation between the voltage applied to the electrode and printing results. Furthermore, Taylor cone information from the nozzle head could also be analyzed in real-time to make adjustments to the printing process. In this work, we successfully validated the feasibility of laser diffraction analysis in-situ monitoring for EHD inkjet printing at micron and sub-micron levels.
电流体动力喷墨打印可实现纳米特征的高分辨率图案化。电流体动力喷墨打印的飞行动力学对打印结果的质量控制起着至关重要的作用。我们将激光衍射/散射原位分析装置用于 EHD 喷墨打印系统,以取代变焦镜头和高速摄像成像系统。与传统成像系统相比,激光衍射/散射系统分别基于对衍射图样和散射强度的分析,为微米尺度的喷射测量提供了更高的分辨率,并实现了施加在电极上的电压与打印结果之间的亚微米级喷射相关性。此外,还可以实时分析喷嘴头的泰勒锥信息,以便对打印过程进行调整。在这项工作中,我们成功验证了激光衍射分析原位监测在微米和亚微米级 EHD 喷墨打印中的可行性。
{"title":"A qualitative validation of an in-situ monitoring system for EHD inkjet printing via laser diffraction","authors":"Xuepeng Jiang,&nbsp;Pengyu Zhang,&nbsp;Hantang Qin","doi":"10.1016/j.mfglet.2024.09.029","DOIUrl":"10.1016/j.mfglet.2024.09.029","url":null,"abstract":"<div><div>Electrohydrodynamic inkjet printing enables high-resolution patterning for nano features. In-flight dynamics of EHD inkjet printing play an essential role in the quality control of printing results. We applied a laser diffraction/scattering in-situ analyzing setup for the EHD inkjet printing system to replace the zoom lens and high-speed camera imaging system. In contrast to conventional imaging systems, the laser diffraction/scattering system is based on analyzing the diffraction pattern and scattering intensity, respectively, which provided higher resolution for micro-scale jetting measurement and enabled sub-micron level jetting correlation between the voltage applied to the electrode and printing results. Furthermore, Taylor cone information from the nozzle head could also be analyzed in real-time to make adjustments to the printing process. In this work, we successfully validated the feasibility of laser diffraction analysis in-situ monitoring for EHD inkjet printing at micron and sub-micron levels.</div></div>","PeriodicalId":38186,"journal":{"name":"Manufacturing Letters","volume":"41 ","pages":"Pages 248-252"},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Manufacturing Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1