Maintaining the peak temperature of a battery within limits is a mandate for the safer operation of electric vehicles. In two-wheeler electric vehicles, the options available for the battery thermal management system are minuscule due to the restrictions imposed by factors like weight, cost, availability, performance, and load. In this study, a multi-strategical cooling approach of forced convection and mist cooling over a single-cell 21,700 lithium-ion battery working under the condition of 4C is proposed. The chosen levels for air velocities (10, 15, 20 and 25 m/s) imitate real-world riding conditions, and for mist cooling implementation, injection pressure with three levels (3, 7 and 14 bar) is considered. The ANSYS fluent simulation is carried out using the volume of fluid in the discrete phase modelling transition using water mist as a working fluid. Initial breakup is considered for more accurate calculations. The battery’s state of health (SOH) is determined using PYTHON by adopting the Newton–Raphson estimation. The maximum temperature reduction potential by employing an airflow improviser (AFI) and additives (Tween 80, 1-heptanol, APG0810, Tween 20 and FS3100) is also explored. The simulation results revealed that an additional reduction of about 11% was possible by incorporating additives and AFI in the multi-strategical approach. The corresponding SOH improvement was about 2%. When the electric two-wheeler operated under 4C, the optimal condition (Max. SOH and Min. peak cell temp.) was achieved at an air velocity of 25 m/s, injection pressure of 7 bar with AFI and 3% (by wt.) Tween 80 and a 0.1% deformer.
{"title":"Multi-Strategical Thermal Management Approach for Lithium-Ion Batteries: Combining Forced Convection, Mist Cooling, Air Flow Improvisers and Additives","authors":"Anikrishnan Mohanan, K. Chidambaram","doi":"10.3390/wevj15050213","DOIUrl":"https://doi.org/10.3390/wevj15050213","url":null,"abstract":"Maintaining the peak temperature of a battery within limits is a mandate for the safer operation of electric vehicles. In two-wheeler electric vehicles, the options available for the battery thermal management system are minuscule due to the restrictions imposed by factors like weight, cost, availability, performance, and load. In this study, a multi-strategical cooling approach of forced convection and mist cooling over a single-cell 21,700 lithium-ion battery working under the condition of 4C is proposed. The chosen levels for air velocities (10, 15, 20 and 25 m/s) imitate real-world riding conditions, and for mist cooling implementation, injection pressure with three levels (3, 7 and 14 bar) is considered. The ANSYS fluent simulation is carried out using the volume of fluid in the discrete phase modelling transition using water mist as a working fluid. Initial breakup is considered for more accurate calculations. The battery’s state of health (SOH) is determined using PYTHON by adopting the Newton–Raphson estimation. The maximum temperature reduction potential by employing an airflow improviser (AFI) and additives (Tween 80, 1-heptanol, APG0810, Tween 20 and FS3100) is also explored. The simulation results revealed that an additional reduction of about 11% was possible by incorporating additives and AFI in the multi-strategical approach. The corresponding SOH improvement was about 2%. When the electric two-wheeler operated under 4C, the optimal condition (Max. SOH and Min. peak cell temp.) was achieved at an air velocity of 25 m/s, injection pressure of 7 bar with AFI and 3% (by wt.) Tween 80 and a 0.1% deformer.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140988963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hossam Hussein, S. S. H. Rafin, Mahmoud S. Abdelrahman, Osama A. Mohammed
A networked microgrid is composed of multiple nearby microgrids linked together to gain additional flexibility for resilient operations. Networked microgrids collaborate to prevent power shortages in microgrid clusters by sharing critical renewable and energy storage resources. However, controlling the local resources of each microgrid, including the energy storage systems’ charging and discharging, maintaining the DC bus voltage, and even overseeing the power shared by multiple microgrids, is challenging. Therefore, a microgrid control technique and distributed energy management are used cooperatively in this study to handle the shared power between a system of networked microgrids incorporating photovoltaics and battery energy storage systems. Numerical simulation results from a networked microgrid system verify the accuracy and soundness of the suggested distributed energy management under several operating conditions, including renewable uncertainties and sequential load variations in different zones. The applicability of the suggested technique is confirmed by hardware implementation, and several operational scenarios further evaluate the proposed system on a practical two-microgrid system located in the Florida International University (FIU) testbed.
{"title":"Hardware Implementation of a Resilient Energy Management System for Networked Microgrids","authors":"Hossam Hussein, S. S. H. Rafin, Mahmoud S. Abdelrahman, Osama A. Mohammed","doi":"10.3390/wevj15050209","DOIUrl":"https://doi.org/10.3390/wevj15050209","url":null,"abstract":"A networked microgrid is composed of multiple nearby microgrids linked together to gain additional flexibility for resilient operations. Networked microgrids collaborate to prevent power shortages in microgrid clusters by sharing critical renewable and energy storage resources. However, controlling the local resources of each microgrid, including the energy storage systems’ charging and discharging, maintaining the DC bus voltage, and even overseeing the power shared by multiple microgrids, is challenging. Therefore, a microgrid control technique and distributed energy management are used cooperatively in this study to handle the shared power between a system of networked microgrids incorporating photovoltaics and battery energy storage systems. Numerical simulation results from a networked microgrid system verify the accuracy and soundness of the suggested distributed energy management under several operating conditions, including renewable uncertainties and sequential load variations in different zones. The applicability of the suggested technique is confirmed by hardware implementation, and several operational scenarios further evaluate the proposed system on a practical two-microgrid system located in the Florida International University (FIU) testbed.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140991147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In response to the limited accuracy of current three-dimensional (3D) object detection algorithms for small objects, this paper presents a multi-sensor 3D small object detection method based on LiDAR and a camera. Firstly, the LiDAR point cloud is projected onto the image plane to obtain a depth image. Subsequently, we propose a cascaded image fusion module comprising multi-level pooling layers and multi-level convolution layers. This module extracts features from both the camera image and the depth image, addressing the issue of insufficient depth information in the image feature. Considering the non-uniform distribution characteristics of the LiDAR point cloud, we introduce a multi-scale voxel fusion module composed of three sets of VFE (voxel feature encoder) layers. This module partitions the point cloud into grids of different sizes to improve detection ability for small objects. Finally, the multi-level fused point features are associated with the corresponding scale’s initial voxel features to obtain the fused multi-scale voxel features, and the final detection results are obtained based on this feature. To evaluate the effectiveness of this method, experiments are conducted on the KITTI dataset, achieving a 3D AP (average precision) of 73.81% for the hard level of cars and 48.03% for the hard level of persons. The experimental results demonstrate that this method can effectively achieve 3D detection of small objects.
{"title":"A Multi-Sensor 3D Detection Method for Small Objects","authors":"Yuekun Zhao, Suyun Luo, Xiaoci Huang, Dan Wei","doi":"10.3390/wevj15050210","DOIUrl":"https://doi.org/10.3390/wevj15050210","url":null,"abstract":"In response to the limited accuracy of current three-dimensional (3D) object detection algorithms for small objects, this paper presents a multi-sensor 3D small object detection method based on LiDAR and a camera. Firstly, the LiDAR point cloud is projected onto the image plane to obtain a depth image. Subsequently, we propose a cascaded image fusion module comprising multi-level pooling layers and multi-level convolution layers. This module extracts features from both the camera image and the depth image, addressing the issue of insufficient depth information in the image feature. Considering the non-uniform distribution characteristics of the LiDAR point cloud, we introduce a multi-scale voxel fusion module composed of three sets of VFE (voxel feature encoder) layers. This module partitions the point cloud into grids of different sizes to improve detection ability for small objects. Finally, the multi-level fused point features are associated with the corresponding scale’s initial voxel features to obtain the fused multi-scale voxel features, and the final detection results are obtained based on this feature. To evaluate the effectiveness of this method, experiments are conducted on the KITTI dataset, achieving a 3D AP (average precision) of 73.81% for the hard level of cars and 48.03% for the hard level of persons. The experimental results demonstrate that this method can effectively achieve 3D detection of small objects.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140993227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Digital Twin (DT) is widely regarded as a highly promising technology with the potential to revolutionize various industries, making it a key trend in the Industry 4.0 era. In a cost-effective and risk-free setting, digital twins facilitate the interaction and merging of the physical and informational realms. The application of digital twins spans across different sectors, including aerospace, healthcare, smart manufacturing, and smart cities. As electric vehicles have experienced rapid growth, there is a growing demand for the development of innovative technologies. One potential area for digital twins application is within the automotive sector. The powertrain system of electric vehicles (EVs) consists of three parts, power source, power electronic system, and electric motor, which are considered as the core components of electric vehicles. The focus of this paper is to conduct a methodical review regarding the use of digital twins in the powertrain of electric vehicles (EVs). While reviewing the development of digital twin technology, its main application scenarios and its use in electric vehicle powertrains are analysed. Finally, the digital twins currently encounter several challenges that need to be addressed, and so the future development of their application to electric vehicles are summarized.
{"title":"Application of Digital Twin in Electric Vehicle Powertrain: A Review","authors":"Xiaokang Li, Wenxu Niu, Haobin Tian","doi":"10.3390/wevj15050208","DOIUrl":"https://doi.org/10.3390/wevj15050208","url":null,"abstract":"Digital Twin (DT) is widely regarded as a highly promising technology with the potential to revolutionize various industries, making it a key trend in the Industry 4.0 era. In a cost-effective and risk-free setting, digital twins facilitate the interaction and merging of the physical and informational realms. The application of digital twins spans across different sectors, including aerospace, healthcare, smart manufacturing, and smart cities. As electric vehicles have experienced rapid growth, there is a growing demand for the development of innovative technologies. One potential area for digital twins application is within the automotive sector. The powertrain system of electric vehicles (EVs) consists of three parts, power source, power electronic system, and electric motor, which are considered as the core components of electric vehicles. The focus of this paper is to conduct a methodical review regarding the use of digital twins in the powertrain of electric vehicles (EVs). While reviewing the development of digital twin technology, its main application scenarios and its use in electric vehicle powertrains are analysed. Finally, the digital twins currently encounter several challenges that need to be addressed, and so the future development of their application to electric vehicles are summarized.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140991491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the rapid development of electric vehicles (EVs) in Chinese cities, accurately forecasting the number of EVs used by urban residents in the next five years and more long term is beneficial for the government to adjust industrial policies of EVs, guide the rational planning of urban charging facilities and supporting distribution network, and achieve the rational and orderly development of the EV industry. The paper considers the advantages of using the grey GM(1,1) prediction model to predict the short-term ownership of EVs by urban residents. Then, by forecasting the number of EV users in a certain city in the future and predicting the number of private vehicles in the future, the boundary conditions for long-term year ownership of EVs by residents are determined. Combined with historical data and short-term forecast data generated by the grey prediction model, the model parameters that include the innovation coefficient and imitation coefficient of the Bass model are trained using a genetic algorithm. Finally, the Bass model is used for medium- to long-term ownership forecasting from 2023 to 2040. The prediction error for the target year is provided. The simulation results indicate that the ownership of resident EVs in this city will experience rapid growth in the next five years.
{"title":"Medium- and Long-Term Electric Vehicle Ownership Forecasting for Urban Residents","authors":"Zhao-Xia Xiao, Jiang-Wei Jia, Xiang-Yu Liu, Hong-Kun Bai, Qiu-Yan Li, Yuan-Peng Hua","doi":"10.3390/wevj15050212","DOIUrl":"https://doi.org/10.3390/wevj15050212","url":null,"abstract":"With the rapid development of electric vehicles (EVs) in Chinese cities, accurately forecasting the number of EVs used by urban residents in the next five years and more long term is beneficial for the government to adjust industrial policies of EVs, guide the rational planning of urban charging facilities and supporting distribution network, and achieve the rational and orderly development of the EV industry. The paper considers the advantages of using the grey GM(1,1) prediction model to predict the short-term ownership of EVs by urban residents. Then, by forecasting the number of EV users in a certain city in the future and predicting the number of private vehicles in the future, the boundary conditions for long-term year ownership of EVs by residents are determined. Combined with historical data and short-term forecast data generated by the grey prediction model, the model parameters that include the innovation coefficient and imitation coefficient of the Bass model are trained using a genetic algorithm. Finally, the Bass model is used for medium- to long-term ownership forecasting from 2023 to 2040. The prediction error for the target year is provided. The simulation results indicate that the ownership of resident EVs in this city will experience rapid growth in the next five years.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140991098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oliver Heilmann, Britta Bocho, Alexander Frieß, Sven Cortès, Ulrich Schrade, André Casal Kulzer, Michael Schlick
This paper examines the extent to which it is possible to replace conventional light commercial vehicles in the heating, ventilation and air conditioning and plumbing trade with battery electric vehicles with an unchanged usage profile. GPS trackers are used to record the position data of 22 craft vehicles with combustion engines from eleven companies over the duration of one working week. Within this paper, various assumptions (battery capacity and average consumption) are made for battery electric vehicles and the charging power on the company premises. The potential of battery electric vehicles is evaluated based on the assumption that they are charged only on company premises. Using the collected data and the assumptions made, theoretical state of charge curves are calculated for the vehicles. The driving profiles of the individual vehicles differ greatly, and the suitability of battery electric vehicles should be considered individually. Battery capacity, vehicle energy consumption and charging power at the company have a substantial influence on the suitability of battery electric vehicles. Furthermore, there are differences between vehicles that can charge on the company premises at night and those that cannot or can only do so on some days.
{"title":"Driving Profiles of Light Commercial Vehicles of Craftsmen and the Potential of Battery Electric Vehicles When Charging on Company Premises","authors":"Oliver Heilmann, Britta Bocho, Alexander Frieß, Sven Cortès, Ulrich Schrade, André Casal Kulzer, Michael Schlick","doi":"10.3390/wevj15050211","DOIUrl":"https://doi.org/10.3390/wevj15050211","url":null,"abstract":"This paper examines the extent to which it is possible to replace conventional light commercial vehicles in the heating, ventilation and air conditioning and plumbing trade with battery electric vehicles with an unchanged usage profile. GPS trackers are used to record the position data of 22 craft vehicles with combustion engines from eleven companies over the duration of one working week. Within this paper, various assumptions (battery capacity and average consumption) are made for battery electric vehicles and the charging power on the company premises. The potential of battery electric vehicles is evaluated based on the assumption that they are charged only on company premises. Using the collected data and the assumptions made, theoretical state of charge curves are calculated for the vehicles. The driving profiles of the individual vehicles differ greatly, and the suitability of battery electric vehicles should be considered individually. Battery capacity, vehicle energy consumption and charging power at the company have a substantial influence on the suitability of battery electric vehicles. Furthermore, there are differences between vehicles that can charge on the company premises at night and those that cannot or can only do so on some days.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140993724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Xiao, Kangwei Wang, Zhi Geng, K. Ni, Mingdi Fan, Yong Yang
This paper presents a new electric drive-reconfigured on-board charger and initial electromagnetic torque suppression method. This proposed reconfigured on-board charger does not need many components added to the original electric drive system: only a connector is needed, which is easy to add. Specifically, the inverter for propulsion is reconfigured as a buck chopper and a conduction path to match the reconfigured windings. Two of the machine phase windings serve as inductors, while the third phase winding is reutilized as a common-mode inductor. In addition, the initial charging torque is generated at the outset of the charging process, which may cause an instant shock or even rotational movement. In order to prevent vehicle movement, the reason for the charging torque and suppression method were analyzed. Further, predictive control of the model based on mutual inductance analysis was adopted, where the charging torque was directly used as a control object in the cost function. Finally, experimental performances were applied to verify the proposed reconfigured on-board charger under constant current and constant voltage charging.
{"title":"Suppression of Initial Charging Torque for Electric Drive-Reconfigured On-Board Charger","authors":"Yang Xiao, Kangwei Wang, Zhi Geng, K. Ni, Mingdi Fan, Yong Yang","doi":"10.3390/wevj15050207","DOIUrl":"https://doi.org/10.3390/wevj15050207","url":null,"abstract":"This paper presents a new electric drive-reconfigured on-board charger and initial electromagnetic torque suppression method. This proposed reconfigured on-board charger does not need many components added to the original electric drive system: only a connector is needed, which is easy to add. Specifically, the inverter for propulsion is reconfigured as a buck chopper and a conduction path to match the reconfigured windings. Two of the machine phase windings serve as inductors, while the third phase winding is reutilized as a common-mode inductor. In addition, the initial charging torque is generated at the outset of the charging process, which may cause an instant shock or even rotational movement. In order to prevent vehicle movement, the reason for the charging torque and suppression method were analyzed. Further, predictive control of the model based on mutual inductance analysis was adopted, where the charging torque was directly used as a control object in the cost function. Finally, experimental performances were applied to verify the proposed reconfigured on-board charger under constant current and constant voltage charging.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140994840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In Thailand, diesel buses are notorious for their poor energy efficiency and contribution to air pollution. To combat these issues, battery electric buses (BEBs) have emerged as a promising alternative. However, their high initial costs have posed challenges for fleet management, especially for agencies such as the Bangkok Mass Transit Authority (BMTA). This study aims to revolutionize BEB fleet management by developing an energy model tailored to the BMTA’s needs. The methodology consists of two crucial steps: analyzing BMTA bus routes and designing fleet management and charging systems. Through this process, the study seeks to determine the maximum number of BEBs that can be operated on each route with the fewest chargers possible. The results reveal exciting possibilities. Within the city bus landscape, two out of five BMTA bus routes show potential for transitioning to BEBs, provided they meet a maximum energy requirement of 200 kWh every two rounds. This analysis identifies routes ripe for BEB adoption while considering the limitations of battery size. In the next step, the study unveils a game-changing strategy: a maximum of 13 BEBs can operate on two routes with just four chargers requiring 150 kW each. This means fewer chargers and more efficient operations. Plus, the charging profile peaks at 600 kW from 4:00 to 8:00 p.m., showing when and where the fleet needs power the most. However, the real eye-opener? Significant energy savings of THB 10.44 million per year compared to diesel buses, with an initial investment cost savings of over 37%. These findings underscore the potential for BEB fleet management to revolutionize public transportation and save money in the long run. However, there is more work to be done. The study highlights the need for real-time passenger considerations, the development of post-service charging strategies, and a deeper dive into total lifetime costs. These areas of improvement promise even greater strides in the future of sustainable urban transportation.
{"title":"Modeling an Investment Framework for BMTA Electric Bus Fleet Development","authors":"Sorawit Wanitanukul, K. Kubaha, R. Songprakorp","doi":"10.3390/wevj15050206","DOIUrl":"https://doi.org/10.3390/wevj15050206","url":null,"abstract":"In Thailand, diesel buses are notorious for their poor energy efficiency and contribution to air pollution. To combat these issues, battery electric buses (BEBs) have emerged as a promising alternative. However, their high initial costs have posed challenges for fleet management, especially for agencies such as the Bangkok Mass Transit Authority (BMTA). This study aims to revolutionize BEB fleet management by developing an energy model tailored to the BMTA’s needs. The methodology consists of two crucial steps: analyzing BMTA bus routes and designing fleet management and charging systems. Through this process, the study seeks to determine the maximum number of BEBs that can be operated on each route with the fewest chargers possible. The results reveal exciting possibilities. Within the city bus landscape, two out of five BMTA bus routes show potential for transitioning to BEBs, provided they meet a maximum energy requirement of 200 kWh every two rounds. This analysis identifies routes ripe for BEB adoption while considering the limitations of battery size. In the next step, the study unveils a game-changing strategy: a maximum of 13 BEBs can operate on two routes with just four chargers requiring 150 kW each. This means fewer chargers and more efficient operations. Plus, the charging profile peaks at 600 kW from 4:00 to 8:00 p.m., showing when and where the fleet needs power the most. However, the real eye-opener? Significant energy savings of THB 10.44 million per year compared to diesel buses, with an initial investment cost savings of over 37%. These findings underscore the potential for BEB fleet management to revolutionize public transportation and save money in the long run. However, there is more work to be done. The study highlights the need for real-time passenger considerations, the development of post-service charging strategies, and a deeper dive into total lifetime costs. These areas of improvement promise even greater strides in the future of sustainable urban transportation.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140994636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The idea of electric-drive-reconstructed onboard charger (EDROC) systems, along with the concept of dual-channel charging, offers a novel design, thought to enhance the integration and fault tolerance of the charging system of electric vehicles (EVs). This article investigates a dual-channel EDROC incorporating an asymmetrical six-phase permanent magnet synchronous machine (ASPMSM). A unique operation mode, called the unbalanced charging voltage operation mode, exists in this topology, in case the voltages of the two batteries are unequal. This unbalance results in different winding currents following through two channels, leading to an undesired charging torque in the machine. To ensure the safety of the system, an effective charging torque elimination method, based on dual-channel winding current balance, is proposed, which achieves a dot-shaped current path of torque generation-associated subspace (i.e., α–β subspace) by balancing the dual-channel charging power. Eventually, a controller is designed for the system and a prototype is created, to validate the effectiveness of the proposed method.
{"title":"An Effective Charging Torque Elimination Method for Dual-Channel Electric-Drive-Reconstructed Onboard Chargers","authors":"Xunhui Cheng, Feng Yu, Linhao Qiu","doi":"10.3390/wevj15050205","DOIUrl":"https://doi.org/10.3390/wevj15050205","url":null,"abstract":"The idea of electric-drive-reconstructed onboard charger (EDROC) systems, along with the concept of dual-channel charging, offers a novel design, thought to enhance the integration and fault tolerance of the charging system of electric vehicles (EVs). This article investigates a dual-channel EDROC incorporating an asymmetrical six-phase permanent magnet synchronous machine (ASPMSM). A unique operation mode, called the unbalanced charging voltage operation mode, exists in this topology, in case the voltages of the two batteries are unequal. This unbalance results in different winding currents following through two channels, leading to an undesired charging torque in the machine. To ensure the safety of the system, an effective charging torque elimination method, based on dual-channel winding current balance, is proposed, which achieves a dot-shaped current path of torque generation-associated subspace (i.e., α–β subspace) by balancing the dual-channel charging power. Eventually, a controller is designed for the system and a prototype is created, to validate the effectiveness of the proposed method.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141001885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiang Geng, Wenhao Du, Xuefeng Jin, Guozheng Zhang, Zhanqing Zhou
This research proposes a strategy to diagnose open-phase faults (OPF) and open-switching faults (OSF) in dual three-phase permanent magnet synchronous motor (DTP-PMSM) inverters. The method is based on the dual d–q predictive current model and involves establishing a mathematical model and utilizing the finite control set model predictive current extraction technique to predict the motor current. It then analyzes the characteristics of the switching-tube current under both normal and fault conditions. Finally, a fault predictive current model is introduced and the residual is calculated based on the predicted fault current value and the actual measured current value to diagnose the inverter fault. The proposed method effectively overcomes misjudgment issues encountered in traditional open-circuit fault diagnosis of inverters. It enhances the system’s response speed during dynamic processes and strengthens the robustness of diagnosis algorithm parameters. The experimental results demonstrate that the proposed method can rapidly, effectively, and accurately diagnose open-circuit faults presented in this paper fastest within one-fifth of a current cycle. It achieves a diagnostic accuracy rate of 97% in the dual three-phase permanent magnet synchronous motor drive system.
{"title":"Online Fault Detection of Open-Circuit Faults in a DTP-PMSM Using Double DQ Current Prediction","authors":"Qiang Geng, Wenhao Du, Xuefeng Jin, Guozheng Zhang, Zhanqing Zhou","doi":"10.3390/wevj15050204","DOIUrl":"https://doi.org/10.3390/wevj15050204","url":null,"abstract":"This research proposes a strategy to diagnose open-phase faults (OPF) and open-switching faults (OSF) in dual three-phase permanent magnet synchronous motor (DTP-PMSM) inverters. The method is based on the dual d–q predictive current model and involves establishing a mathematical model and utilizing the finite control set model predictive current extraction technique to predict the motor current. It then analyzes the characteristics of the switching-tube current under both normal and fault conditions. Finally, a fault predictive current model is introduced and the residual is calculated based on the predicted fault current value and the actual measured current value to diagnose the inverter fault. The proposed method effectively overcomes misjudgment issues encountered in traditional open-circuit fault diagnosis of inverters. It enhances the system’s response speed during dynamic processes and strengthens the robustness of diagnosis algorithm parameters. The experimental results demonstrate that the proposed method can rapidly, effectively, and accurately diagnose open-circuit faults presented in this paper fastest within one-fifth of a current cycle. It achieves a diagnostic accuracy rate of 97% in the dual three-phase permanent magnet synchronous motor drive system.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141002063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}