Pub Date : 2023-04-01DOI: 10.1051/jnwpu/20234120428
Yi HUANG, Fangchi LIANG, Chengli FAN, Zhanfu SONG
Since traditional particle swarm optimization(PSO) is prone to premature phenomenon when solving complex functions in high-dimensional space, a particle swarm optimization algorithm with random variation and dynamic perception factors in terms of the movement laws and dispersion characteristics of particles in space is proposed. In order to encourage individual particles to explore their own neighborhoods and reduce the premature phenomenon of particles due to over-reliance on individual optimality and global optimality, a random mutation factor with a questioning strategy for neighborhoods is added to the basic algorithm to improve the speed update. At the same time, a perception factor is added to the particle position update, so that the particle can dynamically and adaptively control the spatial distance between itself and other particles in the same dimension, so as to avoid falling into local optimum. The algorithm has obvious superiority and robustness in solving complex functions in high-dimensional space through test function experiments, algorithm comparison analysis experiments, random parameter influence experiments and algorithm complexity experiments.
{"title":"Improved particle swarm optimization algorithm with random mutation and perception","authors":"Yi HUANG, Fangchi LIANG, Chengli FAN, Zhanfu SONG","doi":"10.1051/jnwpu/20234120428","DOIUrl":"https://doi.org/10.1051/jnwpu/20234120428","url":null,"abstract":"Since traditional particle swarm optimization(PSO) is prone to premature phenomenon when solving complex functions in high-dimensional space, a particle swarm optimization algorithm with random variation and dynamic perception factors in terms of the movement laws and dispersion characteristics of particles in space is proposed. In order to encourage individual particles to explore their own neighborhoods and reduce the premature phenomenon of particles due to over-reliance on individual optimality and global optimality, a random mutation factor with a questioning strategy for neighborhoods is added to the basic algorithm to improve the speed update. At the same time, a perception factor is added to the particle position update, so that the particle can dynamically and adaptively control the spatial distance between itself and other particles in the same dimension, so as to avoid falling into local optimum. The algorithm has obvious superiority and robustness in solving complex functions in high-dimensional space through test function experiments, algorithm comparison analysis experiments, random parameter influence experiments and algorithm complexity experiments.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":"483 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135673711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1051/jnwpu/20234120274
Renwei Tan, Juan Yang, Hao Mou, Xianming Wu
Electron cyclotron resonance ion thruster (ECRIT) with a diameter of 2 cm has the characteristics of no hot cathode and high specific impulse, which is suitable for the air-breathing electric propulsion system. In order to adapt to the atmospheric composition characteristics of nitrogen and oxygen in low orbit, the computational and experimental research on the performance of the ECRIT ion sourse with nitrogen propellant is an important basis for analyzing the feasibility of applying ECRIT to the air-breathing electric propulsion system. In this paper, the global model of the nitrogen ECRIT ion source with a diameter of 2 cm is established to calculate its performance. Then, the computational results are compared with the experimental results to analyze the difference. The research results show that when the input power of the ion source is 8 W and the gas flow rate is 2 ml/min, the computational and experimental results of the extracted ion beam current and thrust reach the maximum with the extracted beam current of 16.2 and 12.5 mA and the thrust of 476.6 and 368 μN, respectively. When the input power is 8 W and the gas flow rate is 0.6 ml/min, the computational and experimental results of the specific impulse are 2 095.8 and 1 855.6 s, both reaching the maximum value. The relative errors between the computational and experimental results of the extracted ion beam current, thrust and specific impulse all range from 2% to 32%. When the input power and gas flow rate used are 8 W and 1 ml/min in calculation, and 8 W and 0.8 ml/min in experiment, the ion source is on the optimal operating state. At this situation, the computational and experimental propellant utilization efficiencies with 17.8% and 16.2% respectively are high, and the ion energy loss with 443.9 and 596.2 W/A respectively is low.
{"title":"Computational and experimental research on the performance of ECRIT ion source with nitrogen propellant","authors":"Renwei Tan, Juan Yang, Hao Mou, Xianming Wu","doi":"10.1051/jnwpu/20234120274","DOIUrl":"https://doi.org/10.1051/jnwpu/20234120274","url":null,"abstract":"Electron cyclotron resonance ion thruster (ECRIT) with a diameter of 2 cm has the characteristics of no hot cathode and high specific impulse, which is suitable for the air-breathing electric propulsion system. In order to adapt to the atmospheric composition characteristics of nitrogen and oxygen in low orbit, the computational and experimental research on the performance of the ECRIT ion sourse with nitrogen propellant is an important basis for analyzing the feasibility of applying ECRIT to the air-breathing electric propulsion system. In this paper, the global model of the nitrogen ECRIT ion source with a diameter of 2 cm is established to calculate its performance. Then, the computational results are compared with the experimental results to analyze the difference. The research results show that when the input power of the ion source is 8 W and the gas flow rate is 2 ml/min, the computational and experimental results of the extracted ion beam current and thrust reach the maximum with the extracted beam current of 16.2 and 12.5 mA and the thrust of 476.6 and 368 μN, respectively. When the input power is 8 W and the gas flow rate is 0.6 ml/min, the computational and experimental results of the specific impulse are 2 095.8 and 1 855.6 s, both reaching the maximum value. The relative errors between the computational and experimental results of the extracted ion beam current, thrust and specific impulse all range from 2% to 32%. When the input power and gas flow rate used are 8 W and 1 ml/min in calculation, and 8 W and 0.8 ml/min in experiment, the ion source is on the optimal operating state. At this situation, the computational and experimental propellant utilization efficiencies with 17.8% and 16.2% respectively are high, and the ion energy loss with 443.9 and 596.2 W/A respectively is low.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41821892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1051/jnwpu/20234120439
Bo Wang, X. Hui, Xing Lu
Based on the NM propositional logic system of nilpotent minimum logic, the concept of the integral truth degree of the formula is firstly proposed by integrating the function induced by the formula, and the MP rule and HS rule of the integral truth degree are proved by means of the integral invariance. Secondly, in NM propositional logic the integral similarity and integral pseudo-distance are introduced into the set of general formulas of the system, and some good properties about the similarity and pseudo-distance are proved. Finally, in terms of the concept of divergence degrees and diameter, a new membership function for reflecting the consistency degrees of theories in NM propositional fuzzy logic is proposed, which is proved that of inconsistent theories are equal to 0 and that of completely consistent theories are equal to 1.
{"title":"Unified theory of integral true degrees in NM theory","authors":"Bo Wang, X. Hui, Xing Lu","doi":"10.1051/jnwpu/20234120439","DOIUrl":"https://doi.org/10.1051/jnwpu/20234120439","url":null,"abstract":"Based on the NM propositional logic system of nilpotent minimum logic, the concept of the integral truth degree of the formula is firstly proposed by integrating the function induced by the formula, and the MP rule and HS rule of the integral truth degree are proved by means of the integral invariance. Secondly, in NM propositional logic the integral similarity and integral pseudo-distance are introduced into the set of general formulas of the system, and some good properties about the similarity and pseudo-distance are proved. Finally, in terms of the concept of divergence degrees and diameter, a new membership function for reflecting the consistency degrees of theories in NM propositional fuzzy logic is proposed, which is proved that of inconsistent theories are equal to 0 and that of completely consistent theories are equal to 1.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41932981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1051/jnwpu/20234120379
Yufeng Cheng, Yong Li, F. Chen, Xiaobo Deng, Wei Cheng
Aiming at the problem that the non-stationary of airborne bistatic radar clutter reduces the performance of traditional clutter suppression algorithm, this paper first formulates airborne bistatic radar clutter model, and then analyzes the bistatic radar clutter characteristics in four typical combat scenarios. In addition, in order to reduce the computation burden of the STAP algorithm, a three-dimensional cross-beam clutter suppression algorithm is proposed, which uses the transformation matrix to convert the space-time two-dimensional data into azimuth-elevation-Doppler three-dimensional data. By eliminating auxiliary beam clutter data, only the main beam clutter data which plays a major role in dual-basis clutter suppression is retained to form a three-dimensional cross-beam for local adaptive clutter suppression. The proposed algorithm can greatly reduce the amount of calculation and the demand of training samples, while trying to ensure that the clutter suppression performance does not degrade. The effectiveness of the proposed algorithm is verified by analyzing the clutter suppression effect and computation amount of various algorithms in typical combat scenarios. Therefore, the algorithm has great potential in the applications of airborne bistatic and non-stationary clutter suppression.
{"title":"Dimensionality reduction bistatic radar clutter suppression technique based on three-dimensional cross-beam","authors":"Yufeng Cheng, Yong Li, F. Chen, Xiaobo Deng, Wei Cheng","doi":"10.1051/jnwpu/20234120379","DOIUrl":"https://doi.org/10.1051/jnwpu/20234120379","url":null,"abstract":"Aiming at the problem that the non-stationary of airborne bistatic radar clutter reduces the performance of traditional clutter suppression algorithm, this paper first formulates airborne bistatic radar clutter model, and then analyzes the bistatic radar clutter characteristics in four typical combat scenarios. In addition, in order to reduce the computation burden of the STAP algorithm, a three-dimensional cross-beam clutter suppression algorithm is proposed, which uses the transformation matrix to convert the space-time two-dimensional data into azimuth-elevation-Doppler three-dimensional data. By eliminating auxiliary beam clutter data, only the main beam clutter data which plays a major role in dual-basis clutter suppression is retained to form a three-dimensional cross-beam for local adaptive clutter suppression. The proposed algorithm can greatly reduce the amount of calculation and the demand of training samples, while trying to ensure that the clutter suppression performance does not degrade. The effectiveness of the proposed algorithm is verified by analyzing the clutter suppression effect and computation amount of various algorithms in typical combat scenarios. Therefore, the algorithm has great potential in the applications of airborne bistatic and non-stationary clutter suppression.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42148936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1051/jnwpu/20234120319
Rui Lu, Yongle Ding, Peixun Yu, Kun Tan, G. Pan
Flow-induced noise hybrid prediction method based on sound wave boundary condition is an effective numerical method to deal with a flow-induced noise problems of complex configuration. This method can not only finely simulate the sound source, but also analyze the noise propagation characteristics. In this paper, numerical methods such as space-time discrete scheme and boundary conditions involved in discrete solution of acoustic perturbation equations(APE) are developed, and strategies such as adding buffer layer are proposed to improve divergence caused by numerical discontinuity at the junction of sound source region and propagation region, so as to establish a high-precision flow-induced noise hybrid method. In order to study the rationality of flow-induced noise hybrid method, the numerical simulation of acoustic radiation at the trailing edge of NACA0012 airfoil in BANC experiment was carried out. Compared with the results of sound field solved by large eddy simulation method, the analysis shows that the high-precision flow-induced noise hybrid method based on sound wave boundary conditions can predict the spatial sound field distribution with high precision and directly reflect the interaction between sound waves. Compared with the results of large eddy simulation, the error of sound pressure level is less than 2 dB, and the noise directional distribution trend is consistent.
{"title":"Airfoil trailing-edge noise prediction based on CFD/CAA coupled boundary method","authors":"Rui Lu, Yongle Ding, Peixun Yu, Kun Tan, G. Pan","doi":"10.1051/jnwpu/20234120319","DOIUrl":"https://doi.org/10.1051/jnwpu/20234120319","url":null,"abstract":"Flow-induced noise hybrid prediction method based on sound wave boundary condition is an effective numerical method to deal with a flow-induced noise problems of complex configuration. This method can not only finely simulate the sound source, but also analyze the noise propagation characteristics. In this paper, numerical methods such as space-time discrete scheme and boundary conditions involved in discrete solution of acoustic perturbation equations(APE) are developed, and strategies such as adding buffer layer are proposed to improve divergence caused by numerical discontinuity at the junction of sound source region and propagation region, so as to establish a high-precision flow-induced noise hybrid method. In order to study the rationality of flow-induced noise hybrid method, the numerical simulation of acoustic radiation at the trailing edge of NACA0012 airfoil in BANC experiment was carried out. Compared with the results of sound field solved by large eddy simulation method, the analysis shows that the high-precision flow-induced noise hybrid method based on sound wave boundary conditions can predict the spatial sound field distribution with high precision and directly reflect the interaction between sound waves. Compared with the results of large eddy simulation, the error of sound pressure level is less than 2 dB, and the noise directional distribution trend is consistent.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46845927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1051/jnwpu/20234120329
Yonghong Zhang, Shuangquan Tang, Miao Wang, Chengmin Wang, W. Ge
As an important part of the wing, the skin deformation accuracy directly affect the aerodynamic performance of the aircraft in different environments. Based on the idea of easy processing and easy deformation, a method for designing variable section thickness skin for trailing edge of variable camber wings is proposed. In this paper, firstly, the thickness and length of each segment of 3~8 segments of trailing edge skin are optimized. Then the deformation results of different segments of skin are compared and analyzed. Finally, the correctness of the design results and the effectiveness of the method are verified by using stacked skin experiment.
{"title":"A skin design method of variable camber wing trailing edge","authors":"Yonghong Zhang, Shuangquan Tang, Miao Wang, Chengmin Wang, W. Ge","doi":"10.1051/jnwpu/20234120329","DOIUrl":"https://doi.org/10.1051/jnwpu/20234120329","url":null,"abstract":"As an important part of the wing, the skin deformation accuracy directly affect the aerodynamic performance of the aircraft in different environments. Based on the idea of easy processing and easy deformation, a method for designing variable section thickness skin for trailing edge of variable camber wings is proposed. In this paper, firstly, the thickness and length of each segment of 3~8 segments of trailing edge skin are optimized. Then the deformation results of different segments of skin are compared and analyzed. Finally, the correctness of the design results and the effectiveness of the method are verified by using stacked skin experiment.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42839293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1051/jnwpu/20234120338
Jingang Li, Ye He, Shijun Yuan, D. Qiao, Deshui Yu, Zhiyuan Li
Electrostatic MEMS micromirrors usually work in resonant state to obtain large amplitude of torsion angle. The real-time prediction of MEMS micromirror torsion angle is calculated according to the measured resonant amplitude and phase under the assumption that the relationship between the torsion angle and time is sinusoidal. However, there are few reports on the deviation of this torsion angle predication based on sinusoidal assumption. In this paper, the real resonant torsion trajectory of C1100 MEMS micromirror under different driving frequencies and voltages is measured by using microscopic laser Doppler method, and the deviation between the real trajectory and the trajectory fitted by sinusoidal curve is compared. The results show that the real trajectory of the MEMS micromirror driven by square wave is not completely consistent with the sinusoidal estimation, and the deviation increases with the increase of the torsional angle amplitude. By obtaining the frequency domain components of the torsion angle signal using FFT method, the main reason of this prediction deviation is due to composition of harmonic signals on base frequency signal. The research results reveal that the sinusoidal assumption method is only suitable for situations when the optical angle accuracy is less than 0.1°.
{"title":"Study on sinusoidal estimation deviation of electrostatic actuated MEMS mirror torsion angle","authors":"Jingang Li, Ye He, Shijun Yuan, D. Qiao, Deshui Yu, Zhiyuan Li","doi":"10.1051/jnwpu/20234120338","DOIUrl":"https://doi.org/10.1051/jnwpu/20234120338","url":null,"abstract":"Electrostatic MEMS micromirrors usually work in resonant state to obtain large amplitude of torsion angle. The real-time prediction of MEMS micromirror torsion angle is calculated according to the measured resonant amplitude and phase under the assumption that the relationship between the torsion angle and time is sinusoidal. However, there are few reports on the deviation of this torsion angle predication based on sinusoidal assumption. In this paper, the real resonant torsion trajectory of C1100 MEMS micromirror under different driving frequencies and voltages is measured by using microscopic laser Doppler method, and the deviation between the real trajectory and the trajectory fitted by sinusoidal curve is compared. The results show that the real trajectory of the MEMS micromirror driven by square wave is not completely consistent with the sinusoidal estimation, and the deviation increases with the increase of the torsional angle amplitude. By obtaining the frequency domain components of the torsion angle signal using FFT method, the main reason of this prediction deviation is due to composition of harmonic signals on base frequency signal. The research results reveal that the sinusoidal assumption method is only suitable for situations when the optical angle accuracy is less than 0.1°.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41656234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1051/jnwpu/20234120241
Yu Zhang, J. Bai, Feng Qu
Considering the drag-divergence performance as a constraint, this paper presents a multi-point aero-structural design optimization of wings on a wing-body-tail-engine configuration of long-range dual-aisle civil aircraft by using a gradient-based method based on the discrete adjoint method. Firstly, the accuracy of the coupled aero-structural analysis method used in this paper was validated with DLR-F6 wing-body configuration. Then a wing aero-structural design optimization based on a dual-aisle civil aircraft is offered. The drag coefficient of the optimized configuration in every state decreased, which was reduced by 13.67 counts at the cruise condition, the difference in drag coefficient from Mach 0.85 to Mach 0.87 was decreased from 28.52 counts to 18.98 counts, indicating its drag-divergence performance has been improved undoubtedly. Finally, we compared the performance among the multi-point aero-structural optimized configuration, the single-point aerodynamic optimized configuration and the single-point structural optimized configuration. The results show that the multi-point aero-structural design optimization considering drag-divergence performance has great potential to gain a design configuration with better comprehensive and practical performance compared with a single-point optimization in a single discipline.
{"title":"Multi-point aero-structural design optimization of wings considering drag-divergence constraints","authors":"Yu Zhang, J. Bai, Feng Qu","doi":"10.1051/jnwpu/20234120241","DOIUrl":"https://doi.org/10.1051/jnwpu/20234120241","url":null,"abstract":"Considering the drag-divergence performance as a constraint, this paper presents a multi-point aero-structural design optimization of wings on a wing-body-tail-engine configuration of long-range dual-aisle civil aircraft by using a gradient-based method based on the discrete adjoint method. Firstly, the accuracy of the coupled aero-structural analysis method used in this paper was validated with DLR-F6 wing-body configuration. Then a wing aero-structural design optimization based on a dual-aisle civil aircraft is offered. The drag coefficient of the optimized configuration in every state decreased, which was reduced by 13.67 counts at the cruise condition, the difference in drag coefficient from Mach 0.85 to Mach 0.87 was decreased from 28.52 counts to 18.98 counts, indicating its drag-divergence performance has been improved undoubtedly. Finally, we compared the performance among the multi-point aero-structural optimized configuration, the single-point aerodynamic optimized configuration and the single-point structural optimized configuration. The results show that the multi-point aero-structural design optimization considering drag-divergence performance has great potential to gain a design configuration with better comprehensive and practical performance compared with a single-point optimization in a single discipline.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48749801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The intake distortion experiment is one of the important methods for aero-engine aerodynamic stability assessment. In this paper, in order to overcome the shortcomings of traditional design methods such as low accuracy in approximating the target distortion map and many experimental iterations, a design system is proposed to design the target map distortion network using Fluent based on the mapping relationship between screen distance and porous media. Finally, the steady-state total pressure test system is designed, and the physical design of the distortion generator and wind tunnel test are completed, with the error of distortion index of less than 1.5%. The test results show that the design system can simulate the distortion requirements with high accuracy and efficiency.
{"title":"A new intake distortion design system for research","authors":"Jiahang Cui, Jianghong Li, Xiaoyu Li, Suyan Dong, Feichao Cai, Wei Fan","doi":"10.1051/jnwpu/20234120363","DOIUrl":"https://doi.org/10.1051/jnwpu/20234120363","url":null,"abstract":"The intake distortion experiment is one of the important methods for aero-engine aerodynamic stability assessment. In this paper, in order to overcome the shortcomings of traditional design methods such as low accuracy in approximating the target distortion map and many experimental iterations, a design system is proposed to design the target map distortion network using Fluent based on the mapping relationship between screen distance and porous media. Finally, the steady-state total pressure test system is designed, and the physical design of the distortion generator and wind tunnel test are completed, with the error of distortion index of less than 1.5%. The test results show that the design system can simulate the distortion requirements with high accuracy and efficiency.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45383287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1051/jnwpu/20234120370
Yang Liu, Yangyu Fan, Haoyue Ma, Guoyun Lyu, Shiya Liu
In the reconstruction process from 2D images to 3D face models, texture completion still suffers from pixel blurring and color inconsistency when face images are under different perspectives. In this paper, we propose a method based on visibility weights for face texture fusion. Meanwhile, for the complex geometric structure of the ear region where the traditional texture mapping algorithm is inapplicable, a skin color probability method with Gaussian model is used for pixel completion, and jointly optimized with the texture fusion band. Finally, we generate a complete and high-fidelity face texture model. The simulation experiment shows that the novel face texture fusion and completion method generates the perfect texture under multiple viewpoints. Our face texture model outperforms state-of-the-art techniques under the same rendering conditions.
{"title":"A method of face texture fusion based on visibility weight","authors":"Yang Liu, Yangyu Fan, Haoyue Ma, Guoyun Lyu, Shiya Liu","doi":"10.1051/jnwpu/20234120370","DOIUrl":"https://doi.org/10.1051/jnwpu/20234120370","url":null,"abstract":"In the reconstruction process from 2D images to 3D face models, texture completion still suffers from pixel blurring and color inconsistency when face images are under different perspectives. In this paper, we propose a method based on visibility weights for face texture fusion. Meanwhile, for the complex geometric structure of the ear region where the traditional texture mapping algorithm is inapplicable, a skin color probability method with Gaussian model is used for pixel completion, and jointly optimized with the texture fusion band. Finally, we generate a complete and high-fidelity face texture model. The simulation experiment shows that the novel face texture fusion and completion method generates the perfect texture under multiple viewpoints. Our face texture model outperforms state-of-the-art techniques under the same rendering conditions.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44695275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}