Pub Date : 2023-02-01DOI: 10.1051/jnwpu/20234110105
Chaofan Zhao, Xiukai Yuan, Jingqiang Chen
A global failure probability function estimation method based on the adaptive augmented line sampling method is proposed to solve the parameter failure probability functions in structural reliability analysis and design. The proposed method uses an adaptive strategy to carry out a series of local failure probability function estimations at specific values in the design parameter space by using the augmented line sampling method. Then an optimal combination algorithm based on the minimum variation of coefficient is proposed to integrate all the local failure probability function estimations into a global estimation. Compared with the existing methods, the proposed method further improves the accuracy and efficiency of estimating failure probability functions. Finally, numerical and engineering examples are provided to demonstrate the applicability and superiority of the proposed method in analyzing calculation accuracy and efficiency.
{"title":"Structural global failure probability function estimation based on adaptive augmented line sampling method","authors":"Chaofan Zhao, Xiukai Yuan, Jingqiang Chen","doi":"10.1051/jnwpu/20234110105","DOIUrl":"https://doi.org/10.1051/jnwpu/20234110105","url":null,"abstract":"A global failure probability function estimation method based on the adaptive augmented line sampling method is proposed to solve the parameter failure probability functions in structural reliability analysis and design. The proposed method uses an adaptive strategy to carry out a series of local failure probability function estimations at specific values in the design parameter space by using the augmented line sampling method. Then an optimal combination algorithm based on the minimum variation of coefficient is proposed to integrate all the local failure probability function estimations into a global estimation. Compared with the existing methods, the proposed method further improves the accuracy and efficiency of estimating failure probability functions. Finally, numerical and engineering examples are provided to demonstrate the applicability and superiority of the proposed method in analyzing calculation accuracy and efficiency.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47043389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1051/jnwpu/20234110039
Binbin Zhao, Xianping Li, Jie Li, Heng Zhang
The irregular characteristics and geometric randomness of horn-type ice are significant while the behaviors of separation are complex. The mechanism and factor leading to the essential change of stall performance are still not clear. According to actual requirements of airworthiness certification of a large passenger aircraft, a family of horn-type ice shapes with different parameters are constructed based on typical supercritical airfoil and icing environment. By combining with wind tunnel test and numerical simulation methods, the parameter sensitivity of airfoil stall characteristics to the change of ice height and angle is systematically analyzed and the essential influence mechanism of the ice shape parameters leading to the change of separation bubble development under stall process is summarized, which provides a theoretical basis for ice airworthiness certification of large passenger aircraft.
{"title":"Influence of geometric parameters of leading edge horn-ice on stall characteristics of airfoil","authors":"Binbin Zhao, Xianping Li, Jie Li, Heng Zhang","doi":"10.1051/jnwpu/20234110039","DOIUrl":"https://doi.org/10.1051/jnwpu/20234110039","url":null,"abstract":"The irregular characteristics and geometric randomness of horn-type ice are significant while the behaviors of separation are complex. The mechanism and factor leading to the essential change of stall performance are still not clear. According to actual requirements of airworthiness certification of a large passenger aircraft, a family of horn-type ice shapes with different parameters are constructed based on typical supercritical airfoil and icing environment. By combining with wind tunnel test and numerical simulation methods, the parameter sensitivity of airfoil stall characteristics to the change of ice height and angle is systematically analyzed and the essential influence mechanism of the ice shape parameters leading to the change of separation bubble development under stall process is summarized, which provides a theoretical basis for ice airworthiness certification of large passenger aircraft.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45690800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1051/jnwpu/20234110115
Jie Yang, Jun Zhan, Zhixiang Chen, Xianyi Liu, Zhiqing Zhou, Zhi Li
For evaluating the economy and feasibility about blast fragmentation warhead striking aircraft in aircraft shelter, taking a typical aircraft and single/double aircraft shelter as study objects, based on the thought of simple/quadratic surface fitting, the 3D surface models of aircraft and shelter are built. According to the velocity and position model of fragment, combined with the transformation relationship of coordinate system, the missile-target encounter algorithm is given. The ruin tree model of aircraft is constructed to calculate the ruin probability algorithm of aircraft. For reducing the computation of missile-target encounter, a mean ruin probability algorithm of aircraft based on integration method is proposed, which slices target area to grids and takes grids as alternative aim point. Taking maximum to entire ruin effect of all aircrafts as target, the optimizing algorithm to strike scheme about minimum missile consumption and find best aim point based on advanced PSO algorithm are proposed. The striking scheme optimizing about fragmentation warhead striking aircraft in single/double aircraft shelter is simulated. The result shows that, low blast height, small CEP, combination strike strategy with multiply aim points can reduce the minimum missile consumption effectively.
{"title":"Optimization method of ballistic blast fragmentation warhead striking aircraft in aircraft shelter","authors":"Jie Yang, Jun Zhan, Zhixiang Chen, Xianyi Liu, Zhiqing Zhou, Zhi Li","doi":"10.1051/jnwpu/20234110115","DOIUrl":"https://doi.org/10.1051/jnwpu/20234110115","url":null,"abstract":"For evaluating the economy and feasibility about blast fragmentation warhead striking aircraft in aircraft shelter, taking a typical aircraft and single/double aircraft shelter as study objects, based on the thought of simple/quadratic surface fitting, the 3D surface models of aircraft and shelter are built. According to the velocity and position model of fragment, combined with the transformation relationship of coordinate system, the missile-target encounter algorithm is given. The ruin tree model of aircraft is constructed to calculate the ruin probability algorithm of aircraft. For reducing the computation of missile-target encounter, a mean ruin probability algorithm of aircraft based on integration method is proposed, which slices target area to grids and takes grids as alternative aim point. Taking maximum to entire ruin effect of all aircrafts as target, the optimizing algorithm to strike scheme about minimum missile consumption and find best aim point based on advanced PSO algorithm are proposed. The striking scheme optimizing about fragmentation warhead striking aircraft in single/double aircraft shelter is simulated. The result shows that, low blast height, small CEP, combination strike strategy with multiply aim points can reduce the minimum missile consumption effectively.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42861589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1051/jnwpu/20234110216
Haitao Pei, Jiming Chen, Daxiong Liao, B. Zhu, Shenghao Wu
Turbulence intensity in test section is an important index to evaluate the flow-field performance of wind tunnel, and provide guarantee for model's dynamics and accurate test. The prediction model should be established to evaluate the effect of rectification design to ensure the turbulence-intensity index. Two methods are introduced and used to predict the turbulence-intensity of a continuous and transonic wind tunnel comparing with test results. It was found that the turbulence-intensity variation trend obtained from the two methods is basically same, turbulence-intensity attenuation is mainly concentrated in the first three screens, about 65%, the result calculated by model-one is 21% larger than the measured value and the model-two result is much closer. These two methods can be used to optimize the design of rectifying device effectively although the results obtained by two methods are slightly different form the measured value.
{"title":"Calculation of flow turbulence and analysis on screens setting-up in continuous and transonic wind tunnel","authors":"Haitao Pei, Jiming Chen, Daxiong Liao, B. Zhu, Shenghao Wu","doi":"10.1051/jnwpu/20234110216","DOIUrl":"https://doi.org/10.1051/jnwpu/20234110216","url":null,"abstract":"Turbulence intensity in test section is an important index to evaluate the flow-field performance of wind tunnel, and provide guarantee for model's dynamics and accurate test. The prediction model should be established to evaluate the effect of rectification design to ensure the turbulence-intensity index. Two methods are introduced and used to predict the turbulence-intensity of a continuous and transonic wind tunnel comparing with test results. It was found that the turbulence-intensity variation trend obtained from the two methods is basically same, turbulence-intensity attenuation is mainly concentrated in the first three screens, about 65%, the result calculated by model-one is 21% larger than the measured value and the model-two result is much closer. These two methods can be used to optimize the design of rectifying device effectively although the results obtained by two methods are slightly different form the measured value.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47950399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1051/jnwpu/20234110065
Yuxin He, Yue Ma
TC4 alloy is widely used in the high temperature environment. This paper proposed an ununified viscoplastic constitutive model according to the uniaxial creep experiment and high temperature tensile experiment of TC4 alloy. The inelastic strain rate was decomposed into two parts: creep strain rate and plastic strain rate. The creep strain was calculated by multiaxial ductility exhaustion creep damage law, and the plastic strain was get from the yield function containing the damage and the kinematic hardening effect. The implicit stress integration algorithm and the consistent tangent modulus of this model were derived. The material constants of the proposed model were determined by using genetic algorithm. The proposed constitutive model was compiled in a UMAT subroutine of finite element software Abaqus and 3D eight nodes isoparametric brick element was employed to simulate the creep and the tensile behavior of TC4 alloy. Form the result, the proposed constitutive model can predict the three stages of creep curves and the softening stage of tensile curves accurately.
{"title":"The viscoplastic constitutive model of TC4 alloy under high temperature","authors":"Yuxin He, Yue Ma","doi":"10.1051/jnwpu/20234110065","DOIUrl":"https://doi.org/10.1051/jnwpu/20234110065","url":null,"abstract":"TC4 alloy is widely used in the high temperature environment. This paper proposed an ununified viscoplastic constitutive model according to the uniaxial creep experiment and high temperature tensile experiment of TC4 alloy. The inelastic strain rate was decomposed into two parts: creep strain rate and plastic strain rate. The creep strain was calculated by multiaxial ductility exhaustion creep damage law, and the plastic strain was get from the yield function containing the damage and the kinematic hardening effect. The implicit stress integration algorithm and the consistent tangent modulus of this model were derived. The material constants of the proposed model were determined by using genetic algorithm. The proposed constitutive model was compiled in a UMAT subroutine of finite element software Abaqus and 3D eight nodes isoparametric brick element was employed to simulate the creep and the tensile behavior of TC4 alloy. Form the result, the proposed constitutive model can predict the three stages of creep curves and the softening stage of tensile curves accurately.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45279655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1051/jnwpu/20234110160
Changxi Wang, Wei Tang, Qiguo Liu, Xuan Zhang
Standard requirement generation method is a core technique of standard formation. Due to the lack of systems approach, missing of standard technical elements, weak correlation between standards and research and development(R & D) activities are appeared frequently. Deficiencies in integrity, applicability and traceability of standards can be observed noticeably, which makes the equipment standards cannot bring into full play of cost reduction and efficiency improvement, cannot promote the equipment technology development effectively. According to the positive development requirements of independent and controllable standards, an activity-based standard requirement capture scene model is defined, a mechanization of standard requirement identification is described, a standard configuration, standard element definition and standard requirement integration methods are provided, a mapping matrices of activities, tools, database and standard requirement are established, a process-oriented standard requirements generation method for equipment R & D is finally proposed. By applying in aircraft engine compressor aerodynamic design field, the proposed method shows that the effectiveness of the building relationships between the standards and equipment R & D activities, which can ensure the integrity, availability and uniqueness of standard requirements, support equipment standard systems independent and controllable development.
{"title":"Research on process-oriented standard requirements generation technique for equipment research & development","authors":"Changxi Wang, Wei Tang, Qiguo Liu, Xuan Zhang","doi":"10.1051/jnwpu/20234110160","DOIUrl":"https://doi.org/10.1051/jnwpu/20234110160","url":null,"abstract":"Standard requirement generation method is a core technique of standard formation. Due to the lack of systems approach, missing of standard technical elements, weak correlation between standards and research and development(R & D) activities are appeared frequently. Deficiencies in integrity, applicability and traceability of standards can be observed noticeably, which makes the equipment standards cannot bring into full play of cost reduction and efficiency improvement, cannot promote the equipment technology development effectively. According to the positive development requirements of independent and controllable standards, an activity-based standard requirement capture scene model is defined, a mechanization of standard requirement identification is described, a standard configuration, standard element definition and standard requirement integration methods are provided, a mapping matrices of activities, tools, database and standard requirement are established, a process-oriented standard requirements generation method for equipment R & D is finally proposed. By applying in aircraft engine compressor aerodynamic design field, the proposed method shows that the effectiveness of the building relationships between the standards and equipment R & D activities, which can ensure the integrity, availability and uniqueness of standard requirements, support equipment standard systems independent and controllable development.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47573068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1051/jnwpu/20234110170
F. Lin, Xiang-xi Wen, Minggong Wu, Yuming Heng
Sector partition is an important task of air traffic control, and a reasonable sector partition can improve the utilization rate of airspace and protect the flight safety of aircrafts. Since the sector partition during flat hours is not well suited to the complex air situation, this paper proposes a sector optimization method based on Voronoi diagram and improved K-means. Firstly, a conflict network is constructed based on the air situation, and a comprehensive sector control workload measurement method is proposed by combining aircraft velocity obstacle relationship and complex network theory. Based on the workload value, a cluster center is determined as the generating element of Voronoi diagram by using the improved K-means method, and then the sector is optimized by using the division method of Voronoi diagram. In this paper, the data of Xiamen airspace control sectors are collected as a simulation scenario for calculation and analysis. The simulation results show that the average variance of the optimized sector control workload is reduced by 66.04% during the peak hours and 13.88% during the flat hours compared with the original sector. The method achieves the purpose of balancing the sector workload, verifies the effectiveness of the sector optimization method, and provides a reference basis for the existing sector partition work.
{"title":"Research on airspace sector optimization based on Voronoi diagram and improved K-means algorithm","authors":"F. Lin, Xiang-xi Wen, Minggong Wu, Yuming Heng","doi":"10.1051/jnwpu/20234110170","DOIUrl":"https://doi.org/10.1051/jnwpu/20234110170","url":null,"abstract":"Sector partition is an important task of air traffic control, and a reasonable sector partition can improve the utilization rate of airspace and protect the flight safety of aircrafts. Since the sector partition during flat hours is not well suited to the complex air situation, this paper proposes a sector optimization method based on Voronoi diagram and improved K-means. Firstly, a conflict network is constructed based on the air situation, and a comprehensive sector control workload measurement method is proposed by combining aircraft velocity obstacle relationship and complex network theory. Based on the workload value, a cluster center is determined as the generating element of Voronoi diagram by using the improved K-means method, and then the sector is optimized by using the division method of Voronoi diagram. In this paper, the data of Xiamen airspace control sectors are collected as a simulation scenario for calculation and analysis. The simulation results show that the average variance of the optimized sector control workload is reduced by 66.04% during the peak hours and 13.88% during the flat hours compared with the original sector. The method achieves the purpose of balancing the sector workload, verifies the effectiveness of the sector optimization method, and provides a reference basis for the existing sector partition work.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44497623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1051/jnwpu/20234110136
F. Peng, Wei Huang, Yu’e Ma, Wenxuan Guo
In this paper, a three-dimensional numerical framework for modeling growth of swellable soft materials at large deformation is established based on the cell-based smooth finite element method, and the multiplicative decomposition scheme of deformation gradient is given. The second P-K stress and Green's strain tensor are selected as work conjugate pairs, and the corresponding mathematical expressions of stiffness matrix and geometric stiffness matrix are derived. The numerical method is implemented based on Matlab platform, and the isotropic and anisotropic growth behaviors of swellable soft materials are simulated respectively. The results show that anisotropic growth will inhibit the deformation of expandable soft materials compared with isotropic growth. The simulation results are compared with the calculation results in the existing literature. The comparison results show that the characteristics and the morphological mode are in good agreement, which proves the effectiveness of the numerical framework in simulating the growth behavior of expandable soft materials at large deformation, and is able to reveal the mechanical mechanism of the plant growth phenomenon in nature.
{"title":"Three-dimensional growth simulation of swellable soft materials based on CS-FEM","authors":"F. Peng, Wei Huang, Yu’e Ma, Wenxuan Guo","doi":"10.1051/jnwpu/20234110136","DOIUrl":"https://doi.org/10.1051/jnwpu/20234110136","url":null,"abstract":"In this paper, a three-dimensional numerical framework for modeling growth of swellable soft materials at large deformation is established based on the cell-based smooth finite element method, and the multiplicative decomposition scheme of deformation gradient is given. The second P-K stress and Green's strain tensor are selected as work conjugate pairs, and the corresponding mathematical expressions of stiffness matrix and geometric stiffness matrix are derived. The numerical method is implemented based on Matlab platform, and the isotropic and anisotropic growth behaviors of swellable soft materials are simulated respectively. The results show that anisotropic growth will inhibit the deformation of expandable soft materials compared with isotropic growth. The simulation results are compared with the calculation results in the existing literature. The comparison results show that the characteristics and the morphological mode are in good agreement, which proves the effectiveness of the numerical framework in simulating the growth behavior of expandable soft materials at large deformation, and is able to reveal the mechanical mechanism of the plant growth phenomenon in nature.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43138080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1051/jnwpu/20234110097
Xiaowen Guo, Yonghua Fan, Minghuan Zhang, Jie Yan, Baoyuan Wu
For cooperative mid-course guidance problem of multiple unmanned target drone aircrafts(UTDA), a novel cooperative guidance law with impact angle constraints is proposed in this study. Firstly, the relative motion equation of UTDAs and target, and the multiple-UTDA cooperative guidance model with impact angle constraints are constructed. Then, the process of cooperative guidance law design is divided into two stages. In the first stage, the acceleration command on the LOS direction is designed based on the fixed-time consensus theory, the speed dimension is introduced which can guarantee the consensus of all UTDAs' impact times in fixed time. In the second stage, an impact-angle-control guidance law is proposed based on the approaches of variable coefficients sliding mode control and finite-time convergence theory to reach the virtual targets, the acceleration command on the direction of perpendicular to the LOS is developed, which can ensure that all the LOS angles converge to the desired terminal LOS angle in finite-time and some mobility when approaching the virtual targets is achieved, and the Lyapunov stability is adopted. Finally, numerical simulations express that the cooperative mid-course guidance law designed in this study can make each UTDA reach the virtual target at the same time with small miss distance and meet the LOS constraint, and demonstrate the effectiveness of the proposed mid-course guidance law.
{"title":"Design of finite time cooperative mid-course guidance law for unmanned target drone aircrafts","authors":"Xiaowen Guo, Yonghua Fan, Minghuan Zhang, Jie Yan, Baoyuan Wu","doi":"10.1051/jnwpu/20234110097","DOIUrl":"https://doi.org/10.1051/jnwpu/20234110097","url":null,"abstract":"For cooperative mid-course guidance problem of multiple unmanned target drone aircrafts(UTDA), a novel cooperative guidance law with impact angle constraints is proposed in this study. Firstly, the relative motion equation of UTDAs and target, and the multiple-UTDA cooperative guidance model with impact angle constraints are constructed. Then, the process of cooperative guidance law design is divided into two stages. In the first stage, the acceleration command on the LOS direction is designed based on the fixed-time consensus theory, the speed dimension is introduced which can guarantee the consensus of all UTDAs' impact times in fixed time. In the second stage, an impact-angle-control guidance law is proposed based on the approaches of variable coefficients sliding mode control and finite-time convergence theory to reach the virtual targets, the acceleration command on the direction of perpendicular to the LOS is developed, which can ensure that all the LOS angles converge to the desired terminal LOS angle in finite-time and some mobility when approaching the virtual targets is achieved, and the Lyapunov stability is adopted. Finally, numerical simulations express that the cooperative mid-course guidance law designed in this study can make each UTDA reach the virtual target at the same time with small miss distance and meet the LOS constraint, and demonstrate the effectiveness of the proposed mid-course guidance law.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42619796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1051/jnwpu/20234110144
Dianwei Wang, Wang Liu, Jie Fang, Zhijie Xu
To address the issue of low brightness, high noise and obscure details of UAV aerial low-light images, this paper proposes an UAV aerial low-light image enhancement algorithm based on dual-path inspired by the dual-path model in human vision system. Firstly, a U-Net network based on residual element is constructed to decompose UAV aerial low-light image into structural path and detail path. Then, an improved generative adversarial network (GAN) is proposed to enhance the structural path, and edge enhancement module is added to enhance the edge information of the image. Secondly, the noise suppression strategy is adopted in detail path to reduce the influence of noise on image. Finally, the output of the two paths is fused to obtain the enhanced image. The experimental results show that the proposed algorithm visually improves the brightness and detail information of the image, and the objective evaluation index is better than the other comparison algorithms. In addition, this paper also verifies the influence of the proposed algorithm on the target detection algorithm under low illumination conditions, and the experimental results show that the proposed algorithm can effectively improve the performance of the target detection algorithm.
{"title":"Enhancement algorithm of low illumination image for UAV images inspired by biological vision","authors":"Dianwei Wang, Wang Liu, Jie Fang, Zhijie Xu","doi":"10.1051/jnwpu/20234110144","DOIUrl":"https://doi.org/10.1051/jnwpu/20234110144","url":null,"abstract":"To address the issue of low brightness, high noise and obscure details of UAV aerial low-light images, this paper proposes an UAV aerial low-light image enhancement algorithm based on dual-path inspired by the dual-path model in human vision system. Firstly, a U-Net network based on residual element is constructed to decompose UAV aerial low-light image into structural path and detail path. Then, an improved generative adversarial network (GAN) is proposed to enhance the structural path, and edge enhancement module is added to enhance the edge information of the image. Secondly, the noise suppression strategy is adopted in detail path to reduce the influence of noise on image. Finally, the output of the two paths is fused to obtain the enhanced image. The experimental results show that the proposed algorithm visually improves the brightness and detail information of the image, and the objective evaluation index is better than the other comparison algorithms. In addition, this paper also verifies the influence of the proposed algorithm on the target detection algorithm under low illumination conditions, and the experimental results show that the proposed algorithm can effectively improve the performance of the target detection algorithm.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49524853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}