首页 > 最新文献

Progress in Crystal Growth and Characterization of Materials最新文献

英文 中文
In-situ observation of crystal growth and the mechanism 晶体生长的原位观察及其机理
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2016-06-01 DOI: 10.1016/j.pcrysgrow.2016.04.005
Katsuo Tsukamoto

The spatial and time resolution in the measurements of growth rates and the observation of surface morphologies and the associated transport phenomena reflecting their growth mechanism have been developed because advanced microscopes and interferometers have attained nano-scale resolution. The first part covers the historical background how in-situ observation of crystal growth at molecular-level by optical and other scanning methods had been developed for understanding of crystal growth by measuring crystal growth rates and by observing surface nano-topographies, such as growth steps and spiral hillocks, with the same vertical resolutions comparable to that of the scanning probe microscopic techniques. The potential of recently developed interferometric techniques, such as Phase-Shift Interferometry (PSI) is then reviewed with the principle of the optics. Capability of measuring growth rates of crystals as low as 10−5 nm/s (1 µm/year) is introduced. Second part of the article emphasizes basic interferometric technique for the understanding of crystal growth mechanism by measuring growth rate vs supersaturation. Utilization of these techniques not only in fundamental crystal growth fields but also in environmental sciences, space sciences and crystallization in microgravity would briefly be introduced. At the end, we select a few examples how growth mechanism was analyzed based on these kinetic measurements.

由于先进的显微镜和干涉仪已经达到了纳米级的分辨率,因此在测量生长速率和观察表面形态以及反映其生长机制的相关输运现象方面的空间和时间分辨率已经得到了发展。第一部分涵盖了历史背景,通过光学和其他扫描方法在分子水平上对晶体生长进行原位观察,通过测量晶体生长速率和观察表面纳米形貌(如生长台阶和螺旋丘)来了解晶体生长,其垂直分辨率与扫描探针显微镜技术相当。从光学原理出发,评述了近年来发展起来的干涉测量技术,如相移干涉测量(PSI)的潜力。介绍了测量晶体生长速率低至10−5 nm/s (1 μ m/年)的能力。第二部分着重介绍了通过测量晶体生长速率和过饱和度来了解晶体生长机理的基本干涉测量技术。简要介绍这些技术不仅在基本晶体生长领域,而且在环境科学、空间科学和微重力结晶方面的应用。最后,我们选择了几个例子来分析基于这些动力学测量的生长机理。
{"title":"In-situ observation of crystal growth and the mechanism","authors":"Katsuo Tsukamoto","doi":"10.1016/j.pcrysgrow.2016.04.005","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2016.04.005","url":null,"abstract":"<div><p><span><span>The spatial and time resolution in the measurements of growth rates and the observation of surface morphologies<span> and the associated transport phenomena reflecting their growth mechanism have been developed because advanced microscopes and interferometers have attained nano-scale resolution. The first part covers the historical background how in-situ observation of crystal growth at molecular-level by optical and other scanning methods had been developed for understanding of crystal growth by measuring crystal growth rates and by observing surface nano-topographies, such as growth steps and spiral hillocks, with the same vertical resolutions comparable to that of the scanning probe microscopic techniques. The potential of recently developed interferometric techniques, such as Phase-Shift </span></span>Interferometry<span> (PSI) is then reviewed with the principle of the optics. Capability of measuring growth rates of crystals as low as 10</span></span><sup>−5 </sup>nm/s (1 µm/year) is introduced. Second part of the article emphasizes basic interferometric technique for the understanding of crystal growth mechanism by measuring growth rate <em>vs</em><span><span> supersaturation. Utilization of these techniques not only in fundamental crystal growth fields but also in environmental sciences, space sciences and crystallization in </span>microgravity would briefly be introduced. At the end, we select a few examples how growth mechanism was analyzed based on these kinetic measurements.</span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"62 2","pages":"Pages 111-125"},"PeriodicalIF":5.1,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.04.005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2706065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Nucleation of protein crystals 蛋白质晶体的成核
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2016-06-01 DOI: 10.1016/j.pcrysgrow.2016.04.007
Peter G. Vekilov

Protein crystal nucleation is a central problem in biological crystallography and other areas of science, technology, and medicine. Recent studies have demonstrated that protein crystal nuclei form within crucial precursors. Data for several proteins provided by these methods have demonstrated that the nucleation precursors are clusters consisting of protein dense liquid, which are metastable with respect to the host protein solution. The clusters are several hundred nanometers in size, they occupy from 10−7 to 10−3 of the solution volume, and their properties in solutions supersaturated with respect to crystals are similar to those in homogeneous, i.e., undersaturated, solutions. The clusters exist due to the conformation flexibility of the protein molecules, leading to the exposure of hydrophobic surfaces and enhanced intermolecular binding. These results indicate that protein conformational flexibility might be the mechanism behind the metastable mesoscopic clusters and crystal nucleation. The investigations of the cluster properties are still in their infancy. Results on direct imaging of cluster behaviors and characterization of cluster mechanisms with a variety of proteins will soon lead to major breakthroughs in protein biophysics.

蛋白质晶体成核是生物晶体学和其他科学、技术和医学领域的核心问题。最近的研究表明,蛋白质晶体核在关键的前体中形成。这些方法提供的几种蛋白质的数据表明,成核前体是由蛋白质致密液体组成的簇,相对于宿主蛋白质溶液是亚稳态的。这些团簇的尺寸为几百纳米,它们占据了溶液体积的10−7到10−3,它们在过饱和溶液中的晶体性质与在不饱和溶液中的晶体性质相似。簇的存在是由于蛋白质分子的构象灵活性,导致疏水表面的暴露和增强分子间的结合。这些结果表明,蛋白质的构象柔韧性可能是亚稳介观团簇和晶体成核的机制。对星团性质的研究仍处于初级阶段。多种蛋白质的团簇行为的直接成像和团簇机制表征的结果将很快导致蛋白质生物物理学的重大突破。
{"title":"Nucleation of protein crystals","authors":"Peter G. Vekilov","doi":"10.1016/j.pcrysgrow.2016.04.007","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2016.04.007","url":null,"abstract":"<div><p><span>Protein crystal nucleation is a central problem in biological crystallography and other areas of science, technology, and medicine. Recent studies have demonstrated that protein crystal nuclei form within crucial precursors. Data for several proteins provided by these methods have demonstrated that the nucleation precursors are clusters consisting of protein dense liquid, which are metastable with respect to the host protein solution. The clusters are several hundred nanometers in size, they occupy from 10</span><sup>−7</sup> to 10<sup>−3</sup><span> of the solution volume, and their properties in solutions supersaturated with respect to crystals are similar to those in homogeneous, i.e., undersaturated, solutions. The clusters exist due to the conformation flexibility of the protein molecules, leading to the exposure of hydrophobic surfaces and enhanced intermolecular binding. These results indicate that protein conformational flexibility might be the mechanism behind the metastable mesoscopic clusters and crystal nucleation. The investigations of the cluster properties are still in their infancy. Results on direct imaging of cluster behaviors and characterization of cluster mechanisms with a variety of proteins will soon lead to major breakthroughs in protein biophysics.</span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"62 2","pages":"Pages 136-154"},"PeriodicalIF":5.1,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.04.007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2600875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 31
Observing crystal growth processes in computer simulations 用计算机模拟观察晶体生长过程
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2016-06-01 DOI: 10.1016/j.pcrysgrow.2016.04.023
Hiroki Nada , Hitoshi Miura , Jun Kawano , Toshiharu Irisawa

This paper presents the outline of a practical course on computer simulation that will be given at the 16th International Summer School on Crystal Growth (ISSCG-16). The aim of this course is to understand crystal growth processes from the molecular level to the macroscopic level through computer simulations. We will mainly study molecular-scale crystal growth and nucleation processes by using molecular dynamics simulations and macroscopic growth processes at crystal surfaces by using phase field simulations.

本文介绍了将在第16届国际晶体生长暑期学校(ISSCG-16)开设的计算机模拟实践课程大纲。本课程旨在透过电脑模拟,了解晶体从分子层面到宏观层面的生长过程。我们将主要通过分子动力学模拟来研究分子尺度的晶体生长和成核过程,通过相场模拟来研究晶体表面的宏观生长过程。
{"title":"Observing crystal growth processes in computer simulations","authors":"Hiroki Nada ,&nbsp;Hitoshi Miura ,&nbsp;Jun Kawano ,&nbsp;Toshiharu Irisawa","doi":"10.1016/j.pcrysgrow.2016.04.023","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2016.04.023","url":null,"abstract":"<div><p><span>This paper presents the outline of a practical course on computer simulation that will be given at the 16th International Summer School on Crystal Growth (ISSCG-16). The aim of this course is to understand crystal growth processes from the molecular level to the macroscopic level through computer simulations. We will mainly study molecular-scale crystal growth and nucleation processes by using molecular dynamics simulations and macroscopic growth processes at </span>crystal surfaces by using phase field simulations.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"62 2","pages":"Pages 404-407"},"PeriodicalIF":5.1,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.04.023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2392296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Microchannel epitaxy 微通道外延
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2016-06-01 DOI: 10.1016/j.pcrysgrow.2016.04.016
Shigeya Naritsuka

Microchannel epitaxy (MCE) is an outstanding technique for dislocation reduction during heteroepitaxial growth when there is a large lattice mismatch. This paper describes the MCE mechanism in detail together with experimental results. Directional growth is a principal concern of MCE, and is enabled through the assessment and control of the elementary processes of crystal growth. Vertical microchannel epitaxy (V-MCE) involves perpendicular growth relative to a substrate, from microchannels established as openings in a mask, while horizontal microchannel epitaxy (H-MCE) is growth parallel to the substrate surface. Even if many dislocations are present in the microchannels, directional growth vastly reduces their number in the grown crystal. MCE is beneficial for the fabrication of devices, as well as the quantitative study of the fundamental processes involved in crystal growth. This paper quantitatively discusses the growth mechanism involved in H-MCE of GaAs in the thickness direction. Fitting the forms of spiral steps observed on flat surfaces at an atomic level enables the accurate derivation of surface supersaturation at the time of growth. Moreover, since a simple mechanism for controlling growth in the vertical direction can be established for H-MCE with a single step source, quantitative discussion of crystal-growth mechanisms is now possible.

微通道外延(MCE)是在异质外延生长过程中减少位错的一种杰出技术。本文详细介绍了MCE的机理,并给出了实验结果。定向生长是MCE的主要关注点,通过对晶体生长基本过程的评估和控制来实现。垂直微通道外延(V-MCE)涉及相对于衬底的垂直生长,从微通道建立为掩膜中的开口,而水平微通道外延(H-MCE)是平行于衬底表面的生长。即使微通道中存在许多位错,定向生长也会大大减少其在生长晶体中的数量。MCE有利于器件的制造,也有利于晶体生长基本过程的定量研究。本文从厚度方向定量讨论了砷化镓H-MCE的生长机理。在原子水平上拟合在平面上观察到的螺旋台阶的形式,可以精确地推导生长时的表面过饱和。此外,由于可以用单步源建立控制H-MCE垂直方向生长的简单机制,现在可以定量讨论晶体生长机制。
{"title":"Microchannel epitaxy","authors":"Shigeya Naritsuka","doi":"10.1016/j.pcrysgrow.2016.04.016","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2016.04.016","url":null,"abstract":"<div><p><span>Microchannel epitaxy<span> (MCE) is an outstanding technique for dislocation reduction during heteroepitaxial growth when there is a large lattice mismatch. This paper describes the MCE mechanism in detail together with experimental results. Directional growth is a principal concern of MCE, and is enabled through the assessment and control of the elementary processes of crystal growth. Vertical microchannel epitaxy (V-MCE) involves perpendicular growth relative to a substrate, from microchannels established as openings in a mask, while horizontal microchannel epitaxy (H-MCE) is growth parallel to the substrate surface. Even if many dislocations are present in the microchannels, directional growth vastly reduces their number in the grown crystal. MCE is beneficial for the fabrication of devices, as well as the quantitative study of the fundamental processes involved in crystal growth. This paper quantitatively discusses the growth mechanism involved in H-MCE of GaAs in the thickness direction. Fitting the forms of spiral steps observed on flat surfaces at an atomic level enables the accurate derivation of surface </span></span>supersaturation at the time of growth. Moreover, since a simple mechanism for controlling growth in the vertical direction can be established for H-MCE with a single step source, quantitative discussion of crystal-growth mechanisms is now possible.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"62 2","pages":"Pages 302-316"},"PeriodicalIF":5.1,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.04.016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2600880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bulk and epitaxial growth of silicon carbide 碳化硅的体积和外延生长
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2016-06-01 DOI: 10.1016/j.pcrysgrow.2016.04.018
Tsunenobu Kimoto

Silicon carbide (SiC) is a wide bandgap semiconductor having high critical electric field strength, making it especially attractive for high-power and high-temperature devices. Recent development of SiC devices relies on rapid progress in bulk and epitaxial growth technology of high-quality SiC crystals. At present, the standard technique for SiC bulk growth is the seeded sublimation method. In spite of difficulties in the growth at very high temperature above 2300 °C, 150-mm-diameter SiC wafers are currently produced. Through extensive growth simulation studies and minimizing thermal stress during sublimation growth, the dislocation density of SiC wafers has been reduced to 3000–5000 cm−2 or lower. Homoepitaxial growth of SiC by chemical vapor deposition has shown remarkable progress, with polytype replication and wide range control of doping densities (1014–1019 cm−3) in both n- and p-type materials, which was achieved using step-flow growth and controlling the C/Si ratio, respectively. Types and structures of major extended and point defects in SiC epitaxial layers have been investigated, and basic phenomena of defect generation and reduction during SiC epitaxy have been clarified. In this paper, the fundamental aspects and technological developments involved in SiC bulk and homoepitaxial growth are reviewed.

碳化硅(SiC)是一种具有高临界电场强度的宽禁带半导体,对大功率和高温器件特别有吸引力。近年来SiC器件的发展依赖于高质量SiC晶体的块状和外延生长技术的快速发展。目前,SiC体生长的标准技术是种子升华法。尽管在2300°C以上的高温下难以生长,但目前已生产出直径为150 mm的SiC晶圆。通过广泛的生长模拟研究和最小化升华生长过程中的热应力,SiC晶圆的位错密度降低到3000-5000 cm−2或更低。化学气相沉积SiC的同外延生长取得了显著的进展,在n型和p型材料中分别通过步进流生长和控制C/Si比实现了多型复制和宽范围的掺杂密度(1014-1019 cm−3)。研究了SiC外延层中主要扩展缺陷和点缺陷的类型和结构,阐明了SiC外延过程中缺陷产生和减少的基本现象。本文综述了碳化硅体生长和同外延生长的基本方面和技术进展。
{"title":"Bulk and epitaxial growth of silicon carbide","authors":"Tsunenobu Kimoto","doi":"10.1016/j.pcrysgrow.2016.04.018","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2016.04.018","url":null,"abstract":"<div><p><span>Silicon carbide<span><span> (SiC) is a wide bandgap semiconductor having high critical electric field </span>strength<span>, making it especially attractive for high-power and high-temperature devices. Recent development of SiC devices relies on rapid progress in bulk and epitaxial growth<span> technology of high-quality SiC crystals. At present, the standard technique for SiC bulk growth is the seeded sublimation method. In spite of difficulties in the growth at very high temperature above 2300 °C, 150-mm-diameter SiC wafers are currently produced. Through extensive growth simulation studies and minimizing thermal stress during sublimation growth, the dislocation density of SiC wafers has been reduced to 3000–5000 cm</span></span></span></span><sup>−2</sup><span> or lower. Homoepitaxial growth of SiC by chemical vapor deposition<span> has shown remarkable progress, with polytype replication and wide range control of doping densities (10</span></span><sup>14</sup>–10<sup>19</sup> cm<sup>−3</sup><span>) in both n- and p-type materials, which was achieved using step-flow growth and controlling the C/Si ratio, respectively. Types and structures of major extended and point defects<span> in SiC epitaxial layers have been investigated, and basic phenomena of defect generation and reduction during SiC epitaxy have been clarified. In this paper, the fundamental aspects and technological developments involved in SiC bulk and homoepitaxial growth are reviewed.</span></span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"62 2","pages":"Pages 329-351"},"PeriodicalIF":5.1,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.04.018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2343844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 94
In-situ observation of crystal surfaces by optical microscopy 用光学显微镜对晶体表面进行原位观察
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2016-06-01 DOI: 10.1016/j.pcrysgrow.2016.04.024
Gen Sazaki, Ken Nagashima, Ken-ichiro Murata, Yoshinori Furukawa

In this experimental course, attendees will learn how to obtain useful information about growth processes of crystals using ordinary optical microscopes, which are usually available in laboratories. We will demonstrate how thicknesses of crystals can be estimated from interference colors. We will also show in-situ observations of spiral steps and strain distributions by differential interference contrast microscopy and polarizing microscopy, respectively.

在本实验课程中,参加者将学习如何使用实验室常用的普通光学显微镜获得晶体生长过程的有用信息。我们将演示如何通过干涉色来估计晶体的厚度。我们还将分别用差干涉对比显微镜和偏光显微镜对螺旋台阶和应变分布进行现场观察。
{"title":"In-situ observation of crystal surfaces by optical microscopy","authors":"Gen Sazaki,&nbsp;Ken Nagashima,&nbsp;Ken-ichiro Murata,&nbsp;Yoshinori Furukawa","doi":"10.1016/j.pcrysgrow.2016.04.024","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2016.04.024","url":null,"abstract":"<div><p>In this experimental course, attendees will learn how to obtain useful information about growth processes of crystals using ordinary optical microscopes, which are usually available in laboratories. We will demonstrate how thicknesses of crystals can be estimated from interference colors. We will also show in-situ observations of spiral steps and strain distributions by differential interference contrast microscopy and polarizing microscopy, respectively.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"62 2","pages":"Pages 408-412"},"PeriodicalIF":5.1,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.04.024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2392297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
In-situ liquid phase TEM observations of nucleation and growth processes 原位液相TEM观察成核和生长过程
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2016-06-01 DOI: 10.1016/j.pcrysgrow.2016.04.003
James J. De Yoreo

Nucleation and growth of crystals is a pervasive phenomenon in the synthesis of man-made materials, as well as mineral formation within geochemical and biological environments. Over the past two decades, numerous ex situ studies of crystallization have concluded that nucleation and growth pathways are more complex than envisioned within classical models. The recent development of in situ liquid phase TEM (LP-TEM) has led to new insights into such pathways by enabling direct, real-time observations of nucleation and growth events. Here we report results from LP-TEM studies of Au nanoparticle, CaCO3 and iron oxide formation. We show how these in situ data can be used to obtain direct evidence for the mechanisms underlying crystallization, as well as dynamic information that provides constraints on important kinetic and thermodynamic parameters not available through ex situ methods.

晶体成核和生长是人造材料合成中普遍存在的现象,也是地球化学和生物环境中矿物形成的普遍现象。在过去的二十年里,大量的非原位结晶研究已经得出结论,成核和生长途径比经典模型所设想的要复杂得多。原位液相透射电镜(LP-TEM)的最新发展通过直接、实时地观察成核和生长事件,为这些途径提供了新的见解。本文报告了金纳米粒子、CaCO3和氧化铁形成的LP-TEM研究结果。我们展示了这些原位数据如何用于获得结晶机制的直接证据,以及动态信息,这些信息提供了通过非原位方法无法获得的重要动力学和热力学参数的约束。
{"title":"In-situ liquid phase TEM observations of nucleation and growth processes","authors":"James J. De Yoreo","doi":"10.1016/j.pcrysgrow.2016.04.003","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2016.04.003","url":null,"abstract":"<div><p>Nucleation and growth of crystals is a pervasive phenomenon in the synthesis of man-made materials, as well as mineral formation within geochemical and biological environments. Over the past two decades, numerous <em>ex situ</em> studies of crystallization have concluded that nucleation and growth pathways are more complex than envisioned within classical models. The recent development of <em>in situ</em><span> liquid phase TEM (LP-TEM) has led to new insights into such pathways by enabling direct, real-time observations of nucleation and growth events. Here we report results from LP-TEM studies of Au nanoparticle, CaCO</span><sub>3</sub><span> and iron oxide formation. We show how these </span><em>in situ</em> data can be used to obtain direct evidence for the mechanisms underlying crystallization, as well as dynamic information that provides constraints on important kinetic and thermodynamic parameters not available through <em>ex situ</em> methods.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"62 2","pages":"Pages 69-88"},"PeriodicalIF":5.1,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.04.003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3385830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 37
Fundamentals and engineering of defects 缺陷的基础和工程
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2016-06-01 DOI: 10.1016/j.pcrysgrow.2016.04.004
Peter Rudolph

An overview of the important defect types, their origins and interactions during the bulk crystal growth from the melt and selected epitaxial processes is given. The equilibrium and nonequilibrium thermodynamics, kinetics and interaction principles are considered as driving forces of defect generation, incorporation and assembling. Results of modeling and practical in situ control are presented. Strong emphasis is given to semiconductor crystal growth since it is from this class of materials that most has been first learned, the resulting knowledge then having been applied to other classes of material. The treatment starts with melt-structure considerations and zero-dimensional defect types, i.e. native and extrinsic point defects. Their generation and incorporation mechanisms are discussed. Micro- and macro-segregation phenomena – striations and the effect of constitutional supercooling – are added. Dislocations and their patterning are discussed next. The role of high-temperature dislocation dynamics for collective interactions, like cell structuring and bunching, is specified. Additionally, some features of epitaxial dislocation kinetics and engineering are illustrated. Next the grain boundary formation mechanisms, such as dynamic polygonization and interface instabilities, are discussed. The interplay between facets, inhomogeneous dopant incorporations and twinning is shown. Finally, second phase precipitation and inclusion trapping are discussed. The importance of in situ stoichiometry control is underlined. Generally, selected measures of defect engineering are given at the end of each sub-chapter.

概述了熔体晶体生长过程中重要的缺陷类型、它们的来源和相互作用。平衡和非平衡热力学、动力学和相互作用原理被认为是缺陷产生、合并和组装的驱动力。给出了建模和现场实际控制的结果。重点是半导体晶体的生长,因为从这类材料中获得的知识最多,然后将所得知识应用于其他类型的材料。处理从熔体结构考虑和零维缺陷类型开始,即原生和外部点缺陷。讨论了它们的产生和结合机制。添加了微观和宏观偏析现象——晶化和本构过冷效应。接下来将讨论位错及其模式。高温位错动力学在集体相互作用中的作用,如细胞结构和聚束,被指定。此外,还说明了外延位错动力学和工程的一些特点。然后讨论了晶界的形成机制,如动态多边形化和界面不稳定性。显示了晶面、非均匀掺杂和孪晶之间的相互作用。最后讨论了第二相析出和夹杂物捕获。强调了原位化学计量控制的重要性。一般来说,缺陷工程的选择措施是在每个分章的末尾给出的。
{"title":"Fundamentals and engineering of defects","authors":"Peter Rudolph","doi":"10.1016/j.pcrysgrow.2016.04.004","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2016.04.004","url":null,"abstract":"<div><p><span>An overview of the important defect types, their origins and interactions during the bulk crystal growth from the melt and selected epitaxial processes is given. The equilibrium and nonequilibrium thermodynamics, kinetics and interaction principles are considered as driving forces of defect generation, incorporation and assembling. Results of modeling and practical in situ control are presented. Strong emphasis is given to semiconductor crystal growth since it is from this class of materials that most has been first learned, the resulting knowledge then having been applied to other classes of material. The treatment starts with melt-structure considerations and zero-dimensional defect types, i.e. native and extrinsic </span>point defects<span>. Their generation and incorporation mechanisms are discussed. Micro- and macro-segregation phenomena – striations and the effect of constitutional supercooling – are added. Dislocations and their patterning are discussed next. The role of high-temperature dislocation dynamics<span><span> for collective interactions, like cell structuring and bunching, is specified. Additionally, some features of epitaxial dislocation kinetics and engineering are illustrated. Next the grain boundary formation mechanisms, such as dynamic polygonization and interface instabilities, are discussed. The interplay between facets, inhomogeneous </span>dopant<span> incorporations and twinning is shown. Finally, second phase precipitation and inclusion trapping are discussed. The importance of in situ stoichiometry control is underlined. Generally, selected measures of defect engineering are given at the end of each sub-chapter.</span></span></span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"62 2","pages":"Pages 89-110"},"PeriodicalIF":5.1,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.04.004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3385831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 25
III-V compound semiconductors: Growth and structures III-V型化合物半导体:生长与结构
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2016-06-01 DOI: 10.1016/j.pcrysgrow.2016.04.019
Thomas F. Kuech

The semiconductors formed from group 13 metals and from group 15 anions, referred to as the III-V semiconductors, have found use in a broad range of technologies. Their versatility arises from the wide range of optical and electronic properties accessed through the formation of multi-component alloys. These alloys can be synthesized using the epitaxial growth techniques for devices consisting of several-to-hundreds of highly controlled individual layers monolithically formed into a nearly defect-free structure. This ability to design and fabricate such detailed structures, whose dimensions can be at the nanometer scale, has been driven by an understanding of the crystal growth and materials technology. The paper introduces key features of these materials, their materials science and crystal growth.

由13族金属和15族阴离子形成的半导体,被称为III-V族半导体,已在广泛的技术中得到应用。它们的多功能性源于通过形成多组分合金而获得的广泛的光学和电子特性。这些合金可以使用外延生长技术合成,用于由几到数百个高度控制的单个层组成的器件,单片形成几乎无缺陷的结构。这种设计和制造如此精细结构的能力,其尺寸可以在纳米尺度上,是由对晶体生长和材料技术的理解所驱动的。本文介绍了这些材料的主要特点、材料学和晶体生长。
{"title":"III-V compound semiconductors: Growth and structures","authors":"Thomas F. Kuech","doi":"10.1016/j.pcrysgrow.2016.04.019","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2016.04.019","url":null,"abstract":"<div><p>The semiconductors formed from group 13 metals and from group 15 anions, referred to as the III-V semiconductors, have found use in a broad range of technologies. Their versatility arises from the wide range of optical and electronic properties accessed through the formation of multi-component alloys. These alloys can be synthesized using the epitaxial growth techniques for devices consisting of several-to-hundreds of highly controlled individual layers monolithically formed into a nearly defect-free structure. This ability to design and fabricate such detailed structures, whose dimensions can be at the nanometer scale, has been driven by an understanding of the crystal growth and materials technology. The paper introduces key features of these materials, their materials science and crystal growth.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"62 2","pages":"Pages 352-370"},"PeriodicalIF":5.1,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.04.019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2600882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 40
Polymorphism of edible fat crystals 食用脂肪晶体的多态性
IF 5.1 2区 材料科学 Q1 CRYSTALLOGRAPHY Pub Date : 2016-06-01 DOI: 10.1016/j.pcrysgrow.2016.04.021
Hironori Hondoh, Satoru Ueno

The course focuses on the polymorphism and polymorphic transformation of edible fat crystals, such as chocolate. The morphology, crystallization behavior and polymorphic transformation will be observed under optical microscopy, and melting point of each polymorph will be determined.

本课程的重点是食用脂肪晶体的多态性和多态转化,如巧克力。将在光学显微镜下观察形貌、结晶行为和多晶转变,并确定每种多晶的熔点。
{"title":"Polymorphism of edible fat crystals","authors":"Hironori Hondoh,&nbsp;Satoru Ueno","doi":"10.1016/j.pcrysgrow.2016.04.021","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2016.04.021","url":null,"abstract":"<div><p>The course focuses on the polymorphism and polymorphic transformation of edible fat crystals, such as chocolate. The morphology, crystallization behavior and polymorphic transformation will be observed under optical microscopy, and melting point of each polymorph will be determined.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"62 2","pages":"Pages 398-399"},"PeriodicalIF":5.1,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.04.021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3385835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
期刊
Progress in Crystal Growth and Characterization of Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1