This study employs an analysis of the per-electron potentials and the superposition of the electrostatic and kinetic force fields, Fes(r) and Fk(r), and the gradients of the potential energy and one-electron densities to investigate the binding mechanism in trimethylenemethane iron tricarbonyl complex (TMM)Fe(CO)3. Our approach permits the delineation of the “ligand-binding” force field generated by the metal nucleus but partially operating within the ligand atoms. A mechanical rationale for metal–ligand interactions is thus presented: In the corresponding area, the attractive force Fes(r) provides the backdrop against which the homotropic static force (r) and the heterotropic kinetic force Fk(r) exert attractive and repulsive influences, respectively, toward the metal nucleus on a portion of the electrons belonging to the ligand atoms. This area thus represents electron sharing, which emerges as a quantum chemical response against the metal-to-ligand electron transfer. It has been demonstrated that the response is facilitated by the decreased potential energy density in the vicinity of the interatomic surface. Our findings indicate that the polar coordination bonds in (TMM)Fe(CO)3 exhibit notable quantum chemical responses. However, the previously described nonbonded contact also features an unexpectedly pronounced response, despite the absence of a bond path. It can be proposed that the unforeseen response is a consequence of the formation of the 18-electron, closed valence shell, rather than an indication of the establishment of an organometallic chemical bond.
Oxychalcogenides are receiving increasing interest as nonlinear-optical (NLO) materials because of the possible combination of advantages from oxides and chalcogenides. Here, two new pentanary oxythiogermanates Eu2MGe2OS6 [M = Zn (1), Cd (2)] were obtained by the facile metal oxide–boron–sulfur solid-state route. They crystallize with a melilite-type structure and feature {[MGe2OS6]4–}∞ layers built by Ge2OS6 dimers and MS4 tetrahedra. Their optical band gaps are 2.37 and 2.38 eV. As the first NLO rare-earth (RE)/d10 dual-metal oxychalcogenides, they exhibit phase-matchable NLO responses and enhanced laser-induced damage thresholds. Theoretical calculations show that the NLO responses are predominantly contributed by the EuOS7 motifs. This work provides the potential of RE/d10 dual-metal-based NLO materials.
The immune system plays a pivotal role in maintaining physiological homeostasis and influencing disease processes. Dysregulated immune responses drive chronic inflammation, which in turn results in a range of diseases that are among the leading causes of death globally. Traditional immune interventions, which aim to regulate either insufficient or excessive inflammation, frequently entail lifelong comorbidities and the risk of severe side effects. In this context, intrinsic immunomodulatory hydrogels, designed to precisely control the local immune microenvironment, have recently attracted increasing attention. In particular, these advanced hydrogels not only function as delivery mechanisms but also actively engage in immune modulation, optimizing interactions with the immune system for enhanced tissue repair, thereby providing a sophisticated strategy for managing chronic inflammation. In this tutorial review, we outline key elements of chronic inflammation and subsequently explore the strategic design principles of intrinsic immunomodulatory hydrogels based on these elements. Finally, we examine the challenges and prospects of such immunomodulatory hydrogels, which are expected to inspire further preclinical research and clinical translation in addressing chronic inflammation.
Microenvironments in heterogeneous catalysis have been recognized as equally important as the types and amounts of active sites for regulating catalytic activity. Two-dimensional (2D) nanospaces between van der Waals (vdW) gaps of layered materials provide an ideal microenvironment to create novel functionalities. Here, we explore a facile method for fabricating g-C3N4/2H-MoS2 superlattice-like heterostructures based on thermochemical intercalation and polymerization reactions of formamide within enlarged vdW gaps of 2H-MoS2 nanosheets without any transfer process. DFT calculations demonstrate that the interlayer electron–electron correlations due to the intercalation effect of g-C3N4, rather than high-κ dielectric environments, lead to the improvement of intrinsic conductivity of 2H-MoS2 nanosheets. As the proof of concept in applications for the electrocatalysis field, the heterostructure for hydrogen electrochemical reaction (HER) exhibits high stability and catalytic activity in both acid and alkaline media, such as a quite low onset overpotential of 98 mV, a high exchange current density of 77.6 μA cm–2, and a small Tafel slope (52.9 mV dec–1) in an acid medium. The enhanced HER activity is attributed to the improved conductivity and nanoconfinement effect of 2D nanospaces that decrease the reaction activation energy and activate the inert basal planes.
The past decades have witnessed great strides in phototherapy as an experimental option or regulation-approved treatment in numerous cancer indications. Of particular interest is nanoscale photosensitizer-based phototherapy, which has been established as a prominent candidate for advanced tumor treatment by virtue of its high efficacy and safety. Despite considerable research progress on materials, methods and devices in nanoscale photosensitizing agent-based phototherapy, their mechanisms of action are not always clear, which impedes their practical application in cancer treatment. Hence, from a new perspective, this review elaborates the working mechanisms, involving impairment and moderation effects, of diverse phototherapies on cells, organelles, organs, and tissues. Furthermore, the most current available phototherapy modalities are categorized as photodynamic, photothermal, photo-immune, photo-gas, and radio therapies in this review. A comprehensive understanding of the inferiority and superiority of various phototherapies will facilitate the advent of a new era of cancer phototherapy.
Oncogenic RET alteration is an important, tissue-agnostic therapeutic target across diverse cancers. We conducted a first-in-human phase 1 study on SY-5007, a potent and selective RET inhibitor, in patients with RET-altered solid tumors. Primary endpoints were safety, maximum tolerated dose (MTD), and recommended phase 2 dose (RP2D). Secondary endpoints included pharmacokinetics and preliminary anti-tumor activity. A total of 122 patients were enrolled (17 in dose-escalation phase and 105 in dose-expansion phase), including 91 with non-small cell lung cancer, 23 with medullary thyroid cancer, 7 with papillary thyroid cancer and 1 with gastric cancer. Treatment-related adverse events (TRAEs) were reported in 96.7% of patients, with the most common grade ≥ 3 TRAEs being hypertension (22.1%), diarrhea (16.4%), hypertriglyceridemia (6.6%), and neutropenia (6.6%). The exposure to SY-5007 was dose proportional. Among the 116 efficacy-evaluable patients, the overall objective response rate (ORR) was 57.8%, with 70.0% in treatment-naïve patients and 51.3% in previously treated patients. The median progression-free survival (PFS) was 21.1 months. Efficacy was observed regardless of tumor types and previous therapies. Biomarker analysis of 61 patients with circulating tumor DNA (ctDNA)-detectable RET alterations showed an ORR of 57.4% and median PFS of 13.8 months. Rapid ctDNA clearance of RET alteration correlated with faster responses and improved outcomes. In relapsed patients, off-target induced resistance was observed in 57.1% (12/21), with no on-target RET alterations identified. In conclusion, SY-5007 was well-tolerated and showed promising efficacy in patients with RET-altered solid tumors. Serial ctDNA monitoring may unveil treatment response and potential resistance mechanisms (NCT05278364).
Electrochemistry plays a pivotal role in a vast number of domains spanning from sensing and manufacturing to energy storage, environmental conservation, and healthcare. Electrochemical applications encompassing gaseous or organic substrates encounter shortcomings ascribed to high mass transfer/internal resistances and low solubility in aqueous electrolytes, resulting in high overpotentials. In practice, strong acids and expensive organic electrolytes are required to promote charge transfer in electrochemical cells, resulting in a high carbon footprint. Liquid-liquid (L-L) and gas-liquid (G-L) dispersions involve the dispersion of a nano/micro gas or liquid into a continuous liquid phase such as micelles, (macro)emulsions, microemulsions, and microfoams stabilised by surface-active agents such as surfactants and colloidal particles. These dispersions hold promise in addressing the drawbacks of electrochemical reactions by fostering the interfacial surface area between immiscible reagents and mass transfer of electroactive organic and gas reactants and products from/to the bulk to/from the electrode surface. This tutorial review provides a taxonomy of liquid-liquid and gas-liquid dispersions for applications in electrochemistry, with emphasis on their assets and challenges in industrially relevant reactions for fine chemistry and depollution.
Cerium and lanthanum dialkyl complexes [η5-1,2,4-(Me3C)3C5H2]Ln(CH2C6H4-o-NMe2)2 (Ln = Ce 1 and La 2), supported by a tri-tert-butylcyclopentadienyl ligand, have been successfully synthesized. Studies demonstrate that these complexes possess diverse reactivity toward various small molecules. For example, the reaction of complexes 1 and 2 with diphenyl dichalcogenides PhEEPh (E = S, Se) results in the formation of lanthanide thiolates [(η5-1,2,4-(Me3C)3C5H2)Ln(SPh)(μ-SPh)]2 (Ln = Ce 3 and La 4) and selenolates [(η5-1,2,4-(Me3C)3C5H2)Ln(SePh)(μ-SePh)]2 (Ln = Ce 5 and La 6), concomitantly releasing PhE(CH2C6H4-o-NMe2). Furthermore, complexes 1 and 2, upon reaction with dibenzyl disulfide, yield tetranuclear rare-earth metallomacrocyclic compounds {[(η5-1,2,4-(Me3C)3C5H2)Ln(μ-SCH2C6H5)]2(μ–η3:η3-SCHC6H5)}2 (Ln = Ce 7 and La 8). This reaction may involve a process of σ-bond metathesis and C–H activation. While the reaction of 1 and 2 with dibenzyl diselenide in the presence of LiCH2C6H4-o-NMe2 leads to the formation of lanthanide-lithium selenido clusters [(η5-1,2,4-(Me3C)3C5H2)La(μ-SeCH2C6H5)]3(μ3-Se)[μ3-SeLi(THF)3] (Ln = Ce 9 and La 10). Meanwhile, lanthanide selenido clusters [(η5-1,2,4-(Me3C)3C5H2)La(μ-SeCH2C6H4-o-NMe2)]4(μ3-Se)2 (Ln = Ce 11 and La 12) can be obtained by treating 1 and 2 with elemental selenium in a 1:2 molar ratio. Additionally, the treatment of 1 and 2 with benzoxazole generates ring-opening/C–C coupling/C–N coupling products {(η5-1,2,4-(Me3C)3C5H2)La[μ-OC6H4-o-N═CHN(CH(CH2C6H4-o-NMe2)2C6H4-o-O]}2 (Ln = Ce 13 and La 14). All new compounds were characterized by various spectroscopic methods, and their solid-state structures were confirmed by single-crystal X-ray diffraction analyses.
In this work, a dual-ligand functionalized lanthanide-encapsulated selenotungstate [H2N(CH3)2]16Na2H10[Ho6(H2O)10(HPACA)4W10O28(Ac)2][SeW9O33]6 · 60H2O (1, HPACA = 2-pyrazinecarboxylic acid, HAc = acetic acid) was successfully acquired by simultaneously incorporating rigid HPACA and flexible Ac– ligands to one reaction system. Interestingly, the polyanion [Ho6(H2O)10(HPACA)4W10O28(Ac)2][SeW9O33]628– of 1 is composed of six trivacant Keggin-type [B-α-SeW9O33]8– units interconnected through an organic–inorganic hybrid dual-ligand bimetallic [Ho6(H2O)10(HPACA)4W10O28(Ac)2]20+ cluster. Moreover, the 1@PNMPy film (PNMPy = poly(N-methylpyrrole)) was successfully prepared through an electrochemical polymerization strategy. The doping of 1 significantly narrows the bandgap in the 1@PNMPy film, which enables the 1@PNMPy film to exhibit remarkable conductivity and rapid electron transfer capability. Then, the 1@PNMPy film-modified glassy carbon electrode was used to construct a 1@PNMPy-based electrochemical biosensor (ECBS), which achieves sensitive electrochemical detection (a low limit of detection of 0.108 fM and a wide concentration detection range of 10–8–10–15 M) for broad-spectrum tumor marker microRNA-155. Also, the 1@PNMPy-based ECBS has a good specific recognition performance for microRNA-155 in a variety of interfering media. The research not only contributes to a deeper understanding of the synthetic chemistry of multicomponent polyoxometalate (POM)-based materials but also can further expand innovative applications of multicomponent POM-based materials in electrochemical detection and electrochemical devices.