Pub Date : 2023-01-01DOI: 10.1016/j.pecs.2022.101044
Tasnim Eisa , Mohammad Ali Abdelkareem , Dipak A. Jadhav , Hend Omar Mohamed , Enas Taha Sayed , Abdul Ghani Olabi , Pedro Castaño , Kyu-Jung Chae
The shift in the energy sector toward green resources makes fuel cells increasingly relevant as a supplier of green and sustainable energy. However, factors such as expensive catalysts, anodic poisoning, and fuel crossover reduce the lifetime and performance of the fuel cells, necessitating catalysis improvement. This review article presents the unique capabilities of metal chalcogenides (MC) as tailored catalysts, elucidating their synthesis, testing techniques, and performance evaluations. MC catalysts are matured via various physical and chemical methods to control their morphology, quantity, dimension, and size. Upon synthesis, the catalyst performance is quantified using three-electrode cells, followed by tests in fuel-cell prototypes. As anodic catalysts, MCs oxidize various fuels such as methanol, ethanol, urea, and impure H2 at high current densities and low onset potentials, while hindering the poisoning species. As cathodic catalysts, MCs exhibit current values similar to that exhibited by their noble metal counterparts while reducing oxygen selectively in the vicinity of the fuels via four electron transfers at a wide range of potentials.
{"title":"Critical review on the synthesis, characterization, and application of highly efficient metal chalcogenide catalysts for fuel cells","authors":"Tasnim Eisa , Mohammad Ali Abdelkareem , Dipak A. Jadhav , Hend Omar Mohamed , Enas Taha Sayed , Abdul Ghani Olabi , Pedro Castaño , Kyu-Jung Chae","doi":"10.1016/j.pecs.2022.101044","DOIUrl":"https://doi.org/10.1016/j.pecs.2022.101044","url":null,"abstract":"<div><p>The shift in the energy sector toward green resources makes fuel cells increasingly relevant as a supplier of green and sustainable energy. However, factors such as expensive catalysts, anodic poisoning, and fuel crossover reduce the lifetime and performance of the fuel cells, necessitating catalysis improvement. This review article presents the unique capabilities of metal chalcogenides (MC) as tailored catalysts, elucidating their synthesis, testing techniques, and performance evaluations. MC catalysts are matured via various physical and chemical methods to control their morphology, quantity, dimension, and size. Upon synthesis, the catalyst performance is quantified using three-electrode cells, followed by tests in fuel-cell prototypes. As anodic catalysts, MCs oxidize various fuels such as methanol, ethanol, urea, and impure H<sub>2</sub> at high current densities and low onset potentials, while hindering the poisoning species. As cathodic catalysts, MCs exhibit current values similar to that exhibited by their noble metal counterparts while reducing oxygen selectively in the vicinity of the fuels via four electron transfers at a wide range of potentials.</p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"94 ","pages":"Article 101044"},"PeriodicalIF":29.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1886078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.pecs.2022.101024
Samuel J. Grauer , Khadijeh Mohri , Tao Yu , Hecong Liu , Weiwei Cai
This is a comprehensive, critical, and pedagogical review of volumetric emission tomography for combustion processes. Many flames that are of interest to scientists and engineers are turbulent and thus inherently three-dimensional, especially in practical combustors, which often contain multiple interacting flames. Fortunately, combustion leads to the emission of light, both spontaneously and in response to laser-based stimulation. Therefore, images of a flame convey path-integrated information about the source of light, and a tomography algorithm can be used to reconstruct the spatial distribution of the light source, called emission tomography. In a carefully designed experiment, reconstructions can be post-processed using chemical kinetic, spectroscopic, and/or transport models to extract quantitative information. This information can be invaluable for benchmarking numerical solutions, and volumetric emission tomography is increasingly relied upon to paint a more complete picture of combustion than point, linear, or planar tools. Steady reductions in the cost of optical equipment and computing power, improvements in imaging technology, and advances in reconstruction algorithms have enabled a suite of three-dimensional sensors that are regularly used to characterize combustion. Four emission modalities are considered in this review: chemiluminescence, laser-induced fluorescence, passive incandescence, and laser-induced incandescence. The review covers the reconstruction algorithms, imaging models, camera calibration techniques, signal physics, instrumentation, and post-processing methods needed to conduct volumetric emission tomography and interpret the results. Limitations of each method are discussed and a survey of key applications is presented. The future of volumetric combustion diagnostics is considered, with special attention paid to the advent and promise of machine learning as well as spectrally-resolved volumetric measurement techniques.
{"title":"Volumetric emission tomography for combustion processes","authors":"Samuel J. Grauer , Khadijeh Mohri , Tao Yu , Hecong Liu , Weiwei Cai","doi":"10.1016/j.pecs.2022.101024","DOIUrl":"https://doi.org/10.1016/j.pecs.2022.101024","url":null,"abstract":"<div><p>This is a comprehensive, critical, and pedagogical review of volumetric emission tomography for combustion processes. Many flames that are of interest to scientists and engineers are turbulent and thus inherently three-dimensional, especially in practical combustors, which often contain multiple interacting flames. Fortunately, combustion leads to the emission of light, both spontaneously and in response to laser-based stimulation. Therefore, images of a flame convey path-integrated information about the source of light, and a tomography algorithm can be used to reconstruct the spatial distribution of the light source, called emission tomography. In a carefully designed experiment, reconstructions can be post-processed using chemical kinetic, spectroscopic, and/or transport models to extract quantitative information. This information can be invaluable for benchmarking numerical solutions, and volumetric emission tomography is increasingly relied upon to paint a more complete picture of combustion than point, linear, or planar tools. Steady reductions in the cost of optical equipment and computing power, improvements in imaging technology, and advances in reconstruction algorithms have enabled a suite of three-dimensional sensors that are regularly used to characterize combustion. Four emission modalities are considered in this review: chemiluminescence, laser-induced fluorescence, passive incandescence, and laser-induced incandescence. The review covers the reconstruction algorithms, imaging models, camera calibration techniques, signal physics, instrumentation, and post-processing methods needed to conduct volumetric emission tomography and interpret the results. Limitations of each method are discussed and a survey of key applications is presented. The future of volumetric combustion diagnostics is considered, with special attention paid to the advent and promise of machine learning as well as spectrally-resolved volumetric measurement techniques.</p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"94 ","pages":"Article 101024"},"PeriodicalIF":29.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3137476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1088/2516-1083/aca9b4
Sergio Castellanos, Jerry R. Potts, Helena R. Tiedmann, S. Alverson, Y. R. Glazer, A. Robison, Suzanne Russo, Dana Harmon, Bobuchi Ken-Opurum, Margo Weisz, Frances Acuna, K. Stephens, K. Faust, M. Webber
A severe winter storm in February 2021 impacted multiple infrastructure systems in Texas, leaving over 13 million people without electricity and/or water, potentially $100 billion in economic damages, and almost 250 lives lost. While the entire state was impacted by temperatures up to 10 °C colder than expected for this time of year, as well as levels of snow and ice accumulation not observed in decades, the responses and outcomes from communities were inconsistent and exacerbated prevailing social and infrastructure inequities that are still impacting those communities. In this contribution, we synthesize a subset of multiple documented inequities stemming from the interdependence of the water, housing, transportation, and communication sectors with the energy sector, and present a summary of actions to address the interdependency of infrastructure system inequities.
{"title":"A synthesis and review of exacerbated inequities from the February 2021 winter storm (Uri) in Texas and the risks moving forward","authors":"Sergio Castellanos, Jerry R. Potts, Helena R. Tiedmann, S. Alverson, Y. R. Glazer, A. Robison, Suzanne Russo, Dana Harmon, Bobuchi Ken-Opurum, Margo Weisz, Frances Acuna, K. Stephens, K. Faust, M. Webber","doi":"10.1088/2516-1083/aca9b4","DOIUrl":"https://doi.org/10.1088/2516-1083/aca9b4","url":null,"abstract":"A severe winter storm in February 2021 impacted multiple infrastructure systems in Texas, leaving over 13 million people without electricity and/or water, potentially $100 billion in economic damages, and almost 250 lives lost. While the entire state was impacted by temperatures up to 10 °C colder than expected for this time of year, as well as levels of snow and ice accumulation not observed in decades, the responses and outcomes from communities were inconsistent and exacerbated prevailing social and infrastructure inequities that are still impacting those communities. In this contribution, we synthesize a subset of multiple documented inequities stemming from the interdependence of the water, housing, transportation, and communication sectors with the energy sector, and present a summary of actions to address the interdependency of infrastructure system inequities.","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"51 1","pages":""},"PeriodicalIF":29.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90848079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-16DOI: 10.1088/2516-1083/acac5c
T. H. Ulucan, S. Akhade, Ajith Ambalakatte, T. Autrey, A. Cairns, Ping Chen, Y. Cho, F. Gallucci, Wenbo Gao, J. Grinderslev, Katarzyna Grubel, T. Jensen, P. D. de Jongh, J. Kothandaraman, K. Lamb, Young-Su Lee, C. Makhloufi, P. Ngene, Pierre Olivier, C. J. Webb, Berenger Wegman, B. Wood, C. Weidenthaler
Efficient storage of hydrogen is one of the biggest challenges towards a potential hydrogen economy. Hydrogen storage in liquid carriers is an attractive alternative to compression or liquefaction at low temperatures. Liquid carriers can be stored cost-effectively and transportation and distribution can be integrated into existing infrastructures. The development of efficient liquid carriers is part of the work of the International Energy Agency Task 40: Hydrogen-Based Energy Storage. Here, we report the state-of-the-art for ammonia and closed CO2-cycle methanol-based storage options as well for liquid organic hydrogen carriers.
{"title":"Hydrogen storage in liquid hydrogen carriers: recent activities and new trends","authors":"T. H. Ulucan, S. Akhade, Ajith Ambalakatte, T. Autrey, A. Cairns, Ping Chen, Y. Cho, F. Gallucci, Wenbo Gao, J. Grinderslev, Katarzyna Grubel, T. Jensen, P. D. de Jongh, J. Kothandaraman, K. Lamb, Young-Su Lee, C. Makhloufi, P. Ngene, Pierre Olivier, C. J. Webb, Berenger Wegman, B. Wood, C. Weidenthaler","doi":"10.1088/2516-1083/acac5c","DOIUrl":"https://doi.org/10.1088/2516-1083/acac5c","url":null,"abstract":"Efficient storage of hydrogen is one of the biggest challenges towards a potential hydrogen economy. Hydrogen storage in liquid carriers is an attractive alternative to compression or liquefaction at low temperatures. Liquid carriers can be stored cost-effectively and transportation and distribution can be integrated into existing infrastructures. The development of efficient liquid carriers is part of the work of the International Energy Agency Task 40: Hydrogen-Based Energy Storage. Here, we report the state-of-the-art for ammonia and closed CO2-cycle methanol-based storage options as well for liquid organic hydrogen carriers.","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"324 1","pages":""},"PeriodicalIF":29.5,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76640923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-14DOI: 10.1088/2516-1083/aca26a
Ting Liang, Tongtong Zhang, Xipeng Lin, Tafone Alessio, Mathieu Legrand, Xiufen He, H. Kildahl, Chang Lu, Haisheng Chen, A. Romagnoli, L. Wang, Qing He, Yongliang Li, Lizhong Yang, Yulong Ding
Liquid air energy storage (LAES) uses air as both the storage medium and working fluid, and it falls into the broad category of thermo-mechanical energy storage technologies. The LAES technology offers several advantages including high energy density and scalability, cost-competitiveness and non-geographical constraints, and hence has attracted a growing interest in recent years. As a result, several reviews have been published on the topic. However, these reviews covered little in the following aspects of LAES: dynamic simulation and optimisation, key components for LAES, LAES applications through integration, and unified economic and cost models for LAES. This article provides a comprehensive review on the LAES technology and fills the above gaps. Apart from applications in electrical grids such as peak-shaving, load shifting, and dealing with intermittency of renewable generation, the review also shows a diverse range of other LAES applications through integration, including waste heat and cold energy recovery and utilisation, multi-energy vector service provision, and sector coupling for chemical production and carbon capture. The review also leads to the recommendation of several areas for future research and development, including dynamic characteristics of whole LAES system integrated with renewables and end users; thermo-economic and dynamic optimization of stand-alone LAES and integrated systems; and experimental study on commercial systems.
{"title":"Liquid air energy storage technology: a comprehensive review of research, development and deployment","authors":"Ting Liang, Tongtong Zhang, Xipeng Lin, Tafone Alessio, Mathieu Legrand, Xiufen He, H. Kildahl, Chang Lu, Haisheng Chen, A. Romagnoli, L. Wang, Qing He, Yongliang Li, Lizhong Yang, Yulong Ding","doi":"10.1088/2516-1083/aca26a","DOIUrl":"https://doi.org/10.1088/2516-1083/aca26a","url":null,"abstract":"Liquid air energy storage (LAES) uses air as both the storage medium and working fluid, and it falls into the broad category of thermo-mechanical energy storage technologies. The LAES technology offers several advantages including high energy density and scalability, cost-competitiveness and non-geographical constraints, and hence has attracted a growing interest in recent years. As a result, several reviews have been published on the topic. However, these reviews covered little in the following aspects of LAES: dynamic simulation and optimisation, key components for LAES, LAES applications through integration, and unified economic and cost models for LAES. This article provides a comprehensive review on the LAES technology and fills the above gaps. Apart from applications in electrical grids such as peak-shaving, load shifting, and dealing with intermittency of renewable generation, the review also shows a diverse range of other LAES applications through integration, including waste heat and cold energy recovery and utilisation, multi-energy vector service provision, and sector coupling for chemical production and carbon capture. The review also leads to the recommendation of several areas for future research and development, including dynamic characteristics of whole LAES system integrated with renewables and end users; thermo-economic and dynamic optimization of stand-alone LAES and integrated systems; and experimental study on commercial systems.","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"51 1","pages":""},"PeriodicalIF":29.5,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75108243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-01DOI: 10.1016/j.pecs.2022.101040
Sonal K. Thengane , Kevin S. Kung , Alberto Gomez-Barea , Ahmed F. Ghoniem
Biomass is a promising renewable source that can reduce fossil fuel consumption and associated greenhouse gas emissions, but some of its characteristics make it difficult to use in its raw form. Torrefaction has been proposed as a thermochemical pretreatment to upgrade biomass for direct applications such as combustion and gasification, biochar and chemicals production, while reducing its transportation cost and increasing its shelf-life. Research, development, and demonstration of biomass torrefaction technologies have advanced during the last few decades, but many science and engineering fundamentals as well as technological challenges remain, especially in the areas of reaction thermodynamics and kinetics, reactor models and design, large-scale implementation, and environmental performance. In this paper we present a comprehensive review of recent developments in biomass torrefaction research and technology focusing on kinetics, particle and reactor scale models, and reactor designs. The impacts of torrefaction as a pretreatment of biomass on subsequent conversion processes, and the novel applications of torrefied biomass are discussed. The energy management, environmental impacts, economic and market potential of the technology as well as the deployment options are also addressed. There is no best universal torrefaction reactor and hence the choice should be made based on the biomass feedstock and the expected production rate and application. To reduce process costs and competition with other uses of biomass, the utilization of either waste or environmentally sustainable, more abundant, and faster growing biomass should be targeted for this technology. Torrefied biomass produced at higher temperatures resemble pyrolysis biochar in several properties thereby making it suitable for most biochar applications. Finally, considering the need to identify the bottlenecks that potentially could limit the use of torrefaction, and its preceding or subsequent processes, the future prospects, challenges, and opportunities of torrefaction technology are presented.
{"title":"Advances in biomass torrefaction: Parameters, models, reactors, applications, deployment, and market","authors":"Sonal K. Thengane , Kevin S. Kung , Alberto Gomez-Barea , Ahmed F. Ghoniem","doi":"10.1016/j.pecs.2022.101040","DOIUrl":"https://doi.org/10.1016/j.pecs.2022.101040","url":null,"abstract":"<div><p>Biomass is a promising renewable source that can reduce fossil fuel consumption and associated greenhouse gas emissions, but some of its characteristics make it difficult to use in its raw form. Torrefaction<span> has been proposed as a thermochemical pretreatment<span><span> to upgrade biomass for direct applications such as combustion and gasification, biochar and chemicals production, while reducing its transportation cost and increasing its shelf-life. Research, development, and demonstration of biomass torrefaction technologies have advanced during the last few decades, but many science and engineering fundamentals as well as technological challenges remain, especially in the areas of reaction thermodynamics and kinetics, reactor models and design, large-scale implementation, and environmental performance. In this paper we present a comprehensive review of recent developments in biomass torrefaction research and technology focusing on kinetics, particle and reactor scale models, and reactor designs. The impacts of torrefaction as a pretreatment of biomass on subsequent conversion processes, and the novel applications of torrefied biomass are discussed. The </span>energy management<span>, environmental impacts, economic and market potential of the technology as well as the deployment options are also addressed. There is no best universal torrefaction reactor and hence the choice should be made based on the biomass feedstock<span> and the expected production rate and application. To reduce process costs and competition with other uses of biomass, the utilization of either waste or environmentally sustainable, more abundant, and faster growing biomass should be targeted for this technology. Torrefied biomass produced at higher temperatures resemble pyrolysis biochar in several properties thereby making it suitable for most biochar applications. Finally, considering the need to identify the bottlenecks that potentially could limit the use of torrefaction, and its preceding or subsequent processes, the future prospects, challenges, and opportunities of torrefaction technology are presented.</span></span></span></span></p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"93 ","pages":"Article 101040"},"PeriodicalIF":29.5,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1695771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-01DOI: 10.1016/j.pecs.2022.101028
Avinash K. Agarwal , Akhilendra P. Singh , Antonio García , Javier Monsalve-Serrano
<div><p><span><span><span>Several advanced low-temperature combustion (LTC) strategies have been developed to reduce the harmful emissions from diesel engines. These LTC strategies, such as </span>homogeneous charge compression ignition<span> (HCCI), premixed charge compression ignition (PCCI), and reactivity-controlled compression ignition (RCCI), can reduce engine-out </span></span>nitrogen oxides<span><span> (NOx) and soot emissions simultaneously. LTC investigations exhibit several limitations of HCCI and PCCI combustion modes<span><span>, such as lack of combustion control and other operational issues at higher engine loads, making their application in production-grade engines challenging. RCCI combustion mode exhibited promising results in combustion control, engine performance, and applicability at higher engine loads. The potential of the RCCI concept was demonstrated on different engine platforms, showing engine-out NOx levels below the limits proposed by the emissions regulations, together with ultra-low soot emissions, eliminating the need of after-treatment devices. However, the RCCI combustion mode has several challenges, such as excessive hydrocarbons (HC) and carbon monoxide (CO) emissions at low loads and excessive maximum </span>pressure rise rate (MPRR) at high loads, which limit its effective operating range and practical applications. This review article includes recent advancements in RCCI combustion mode, its potential for using </span></span>alternative fuels, the effects of different parameters on RCCI combustion mode and its optimization, and the ability of RCCI combustion mode to extend the engine operating limit to reach higher loads, which prevents the application of this concept in commercial applications. The findings of different optical diagnostics have also been included, which have been performed to understand the detailed chemical kinetics of the fuel-air mixtures and the effect of fuel reactivities on the RCCI combustion mode. The first part of this article focuses on these studies, which provide important outcomes that can be used for the practical implementation of RCCI combustion mode in production-grade engines. The second part of this article covers different RCCI combustion mode strategies that can be used to eliminate the restrictions of RCCI combustion mode at high loads. Among the different techniques, dual-mode concepts have been extensively investigated. The dual-mode concept is based on switching between two different combustion modes, typically an LTC mode and conventional compression ignition (CI) combustion mode, to cover the entire operational range of the engine. Many studies showed that the NOx and soot emissions from stationary engines with dual-mode RCCI/CI combustion had substantially improved versus a single-fueled CI combustion mode engine. Results related to the measurements of </span></span>emissions and performance in transient conditions and driving cycles have also been included, whi
{"title":"Challenges and Opportunities for Application of Reactivity-Controlled Compression Ignition Combustion in Commercially Viable Transport Engines","authors":"Avinash K. Agarwal , Akhilendra P. Singh , Antonio García , Javier Monsalve-Serrano","doi":"10.1016/j.pecs.2022.101028","DOIUrl":"https://doi.org/10.1016/j.pecs.2022.101028","url":null,"abstract":"<div><p><span><span><span>Several advanced low-temperature combustion (LTC) strategies have been developed to reduce the harmful emissions from diesel engines. These LTC strategies, such as </span>homogeneous charge compression ignition<span> (HCCI), premixed charge compression ignition (PCCI), and reactivity-controlled compression ignition (RCCI), can reduce engine-out </span></span>nitrogen oxides<span><span> (NOx) and soot emissions simultaneously. LTC investigations exhibit several limitations of HCCI and PCCI combustion modes<span><span>, such as lack of combustion control and other operational issues at higher engine loads, making their application in production-grade engines challenging. RCCI combustion mode exhibited promising results in combustion control, engine performance, and applicability at higher engine loads. The potential of the RCCI concept was demonstrated on different engine platforms, showing engine-out NOx levels below the limits proposed by the emissions regulations, together with ultra-low soot emissions, eliminating the need of after-treatment devices. However, the RCCI combustion mode has several challenges, such as excessive hydrocarbons (HC) and carbon monoxide (CO) emissions at low loads and excessive maximum </span>pressure rise rate (MPRR) at high loads, which limit its effective operating range and practical applications. This review article includes recent advancements in RCCI combustion mode, its potential for using </span></span>alternative fuels, the effects of different parameters on RCCI combustion mode and its optimization, and the ability of RCCI combustion mode to extend the engine operating limit to reach higher loads, which prevents the application of this concept in commercial applications. The findings of different optical diagnostics have also been included, which have been performed to understand the detailed chemical kinetics of the fuel-air mixtures and the effect of fuel reactivities on the RCCI combustion mode. The first part of this article focuses on these studies, which provide important outcomes that can be used for the practical implementation of RCCI combustion mode in production-grade engines. The second part of this article covers different RCCI combustion mode strategies that can be used to eliminate the restrictions of RCCI combustion mode at high loads. Among the different techniques, dual-mode concepts have been extensively investigated. The dual-mode concept is based on switching between two different combustion modes, typically an LTC mode and conventional compression ignition (CI) combustion mode, to cover the entire operational range of the engine. Many studies showed that the NOx and soot emissions from stationary engines with dual-mode RCCI/CI combustion had substantially improved versus a single-fueled CI combustion mode engine. Results related to the measurements of </span></span>emissions and performance in transient conditions and driving cycles have also been included, whi","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"93 ","pages":"Article 101028"},"PeriodicalIF":29.5,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1867847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-01DOI: 10.1016/j.pecs.2022.101038
Wei-Qiang Pang , Richard A. Yetter , Luigi T. DeLuca , Vladimir Zarko , Alon Gany , Xiao-Hong Zhang
Metal fuels are attractive for solid/hybrid rocket propulsion and energy-conversion applications, because of their high energy densities. Boron powder (B), due to its high gravimetric (58.30 MJ·kg−1) and volumetric heats of combustion (136.44 kJ·cm−3), is ideally one of the most promising fuel candidates for fuel-rich solid propellant (SP). However, from an application perspective, amorphous B has drawbacks of high ignition temperatures and incomplete combustion, resulting in low energy-release rate and efficiency. Thus, there is growing interest in employing B-based composite energetic materials (B-CEMs) in SP, explosives, and pyrotechnics. The present work provides a comprehensive review of the advances made over the past few decades in the areas of preparation, combustion, and applications of B-CEMs. The preparation methods of various types of B-CEMs are introduced, and the physicochemical properties of B-CEMs are systematically discussed particularly with regards to achieving advantages over B and other metal powders in a broad range of applications. The ignition and combustion behavior of different energetic formulations with B-CEMs are reviewed. Finally, the existing problems and future challenges in our understanding of the field (prospects) are discussed.
{"title":"Boron-based composite energetic materials (B-CEMs): Preparation, combustion and applications","authors":"Wei-Qiang Pang , Richard A. Yetter , Luigi T. DeLuca , Vladimir Zarko , Alon Gany , Xiao-Hong Zhang","doi":"10.1016/j.pecs.2022.101038","DOIUrl":"https://doi.org/10.1016/j.pecs.2022.101038","url":null,"abstract":"<div><p><span>Metal fuels are attractive for solid/hybrid rocket propulsion<span> and energy-conversion applications, because of their high energy densities. Boron powder (B), due to its high gravimetric (58.30 MJ·kg</span></span><sup>−1</sup><span>) and volumetric heats of combustion (136.44 kJ·cm</span><sup>−3</sup><span>), is ideally one of the most promising fuel candidates for fuel-rich solid propellant (SP). However, from an application perspective, amorphous B has drawbacks of high ignition temperatures<span> and incomplete combustion<span>, resulting in low energy-release rate and efficiency. Thus, there is growing interest in employing B-based composite energetic materials (B-CEMs) in SP, explosives, and pyrotechnics. The present work provides a comprehensive review of the advances made over the past few decades in the areas of preparation, combustion, and applications of B-CEMs. The preparation methods of various types of B-CEMs are introduced, and the physicochemical properties of B-CEMs are systematically discussed particularly with regards to achieving advantages over B and other metal powders in a broad range of applications. The ignition and combustion behavior of different energetic formulations with B-CEMs are reviewed. Finally, the existing problems and future challenges in our understanding of the field (prospects) are discussed.</span></span></span></p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"93 ","pages":"Article 101038"},"PeriodicalIF":29.5,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3340408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-01DOI: 10.1016/j.pecs.2022.101026
Saeid Sinehbaghizadeh , Agus Saptoro , Amir H. Mohammadi
Global warming is one of the most pressing environmental concerns which correlates strongly with anthropogenic CO2 emissions so that the CO2 decreasing strategies have been meaningful worldwide attention. As an option, natural gas hydrate reservoirs have steadily emerged as a potent source of energy which would simultaneously be the proper places for CO2 sequestration if the method of CO2/CH4 replacement could be developed. On the flip side, CO2 hydrates as safe and non-flammable solid compounds without an irreversible chemical reaction would contribute to different industrial processes if their approaches could be improved. Toward developing substantial applications of CO2 hydrates, laboratory experiments, process modelling, and molecular dynamics (MD) simulations can aid to understand their characteristics and mechanisms involved. Therefore, the current review has been organized in form of four distinct sections. The first part reviews the studies on sequestering CO2 into the natural gas hydrate reservoirs. The next section gives an overview of process flow diagrams of CO2 hydrate-based techniques in favour of CO2 Capture and Sequestration & Utilization (CCS&U). The third section summarizes the merits, flaws, and different effects of hydrate promoters as well as porous media on CO2 hydrate systems at macroscopic and mesoscopic levels, and also how these components can improve CO2 hydrate properties, progressing toward the more feasibility of CO2 hydrate industrial applications. The final sector recapitulates the MD frameworks of CO2 clathrate and semiclathrate hydrates in terms of new insights and research findings to elucidate the fundamental properties of CO2 hydrates at the molecular level.
{"title":"CO2 hydrate properties and applications: A state of the art","authors":"Saeid Sinehbaghizadeh , Agus Saptoro , Amir H. Mohammadi","doi":"10.1016/j.pecs.2022.101026","DOIUrl":"https://doi.org/10.1016/j.pecs.2022.101026","url":null,"abstract":"<div><p>Global warming is one of the most pressing environmental concerns which correlates strongly with anthropogenic CO<sub>2</sub> emissions so that the CO<sub>2</sub> decreasing strategies have been meaningful worldwide attention. As an option, natural gas hydrate reservoirs have steadily emerged as a potent source of energy which would simultaneously be the proper places for CO<sub>2</sub> sequestration if the method of CO<sub>2</sub>/CH<sub>4</sub> replacement could be developed. On the flip side, CO<sub>2</sub> hydrates as safe and non-flammable solid compounds without an irreversible chemical reaction would contribute to different industrial processes if their approaches could be improved. Toward developing substantial applications of CO<sub>2</sub> hydrates, laboratory experiments, process modelling, and molecular dynamics (MD) simulations can aid to understand their characteristics and mechanisms involved. Therefore, the current review has been organized in form of four distinct sections. The first part reviews the studies on sequestering CO<sub>2</sub> into the natural gas hydrate reservoirs. The next section gives an overview of process flow diagrams of CO<sub>2</sub> hydrate-based techniques in favour of CO<sub>2</sub> Capture and Sequestration & Utilization (CCS&U). The third section summarizes the merits, flaws, and different effects of hydrate promoters as well as porous media on CO<sub>2</sub> hydrate systems at macroscopic and mesoscopic levels, and also how these components can improve CO<sub>2</sub> hydrate properties, progressing toward the more feasibility of CO<sub>2</sub> hydrate industrial applications. The final sector recapitulates the MD frameworks of CO<sub>2</sub> clathrate and semiclathrate hydrates in terms of new insights and research findings to elucidate the fundamental properties of CO<sub>2</sub> hydrates at the molecular level.</p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"93 ","pages":"Article 101026"},"PeriodicalIF":29.5,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1695770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-01DOI: 10.1016/j.pecs.2022.101020
Jee Young Kim , Jong-Min Jung , Sungyup Jung , Young-Kwon Park , Yiu Fai Tsang , Kun-Yi Andrew Lin , Yoon-E Choi , Eilhann E. Kwon
High lipid content and excellent CO2 fixation capability of microalgae by photosynthesis have made microalgal biodiesel (BD) a promising carbon-neutral fuel. Nonetheless, the commercialization of BD has not yet been realized because of expensive and energy-intensive cultivation, pretreatment, and BD conversion processes in reference to 1st generation BD production. To resolve the issues, this study comprehensively reviewed the current technical developments of microalgal BD production process and suggested promising future studies. Current microalgal BD production processes highly rely on the processes developed from 1st generation BD process, namely base-catalyzed transesterifications. However, the base-catalyzed suffers from saponification reaction and low production yield due to high water and free fatty acid contents in microalgae. Vigorous pretreatments such as dewatering, drying, esterification of free fatty acid, and purification are required for high yield of microalgal BD production, making this process economically not attractive. As efforts to construct new transesterification platform, novel approaches tolerant to impurities such as thermally induced non-catalytic transesterifications were suggested. The thermally induced reactions allowed in situ conversion of microalgal lipid into BD (≥ 95 wt.% yield) within 1 min of reaction at ≥ 350 ˚C. This process resists to presence of water and free fatty acids and does not require lipid extraction process. To make this process more promising, it was suggested lowering reaction temperature for thermally induced transesterifications. In addition, pilot study, in-depth life cycle assessment, and economic analysis were suggested to assess economic viability and environmental impacts.
{"title":"Biodiesel from microalgae: Recent progress and key challenges","authors":"Jee Young Kim , Jong-Min Jung , Sungyup Jung , Young-Kwon Park , Yiu Fai Tsang , Kun-Yi Andrew Lin , Yoon-E Choi , Eilhann E. Kwon","doi":"10.1016/j.pecs.2022.101020","DOIUrl":"https://doi.org/10.1016/j.pecs.2022.101020","url":null,"abstract":"<div><p>High lipid content and excellent CO<sub>2</sub><span><span> fixation capability of microalgae by photosynthesis have made microalgal biodiesel (BD) a promising carbon-neutral fuel. Nonetheless, the </span>commercialization<span> of BD has not yet been realized because of expensive and energy-intensive cultivation, pretreatment, and BD conversion processes in reference to 1</span></span><sup>st</sup><span> generation BD production. To resolve the issues, this study comprehensively reviewed the current technical developments of microalgal BD production process and suggested promising future studies. Current microalgal BD production processes highly rely on the processes developed from 1</span><sup>st</sup><span> generation BD process, namely base-catalyzed transesterifications. However, the base-catalyzed suffers from saponification reaction and low production yield due to high water and free fatty acid contents in microalgae. Vigorous pretreatments such as dewatering, drying, esterification of free fatty acid, and purification are required for high yield of microalgal BD production, making this process economically not attractive. As efforts to construct new transesterification platform, novel approaches tolerant to impurities such as thermally induced non-catalytic transesterifications were suggested. The thermally induced reactions allowed </span><em>in situ</em><span><span> conversion of microalgal lipid into BD (≥ 95 wt.% yield) within 1 min of reaction at ≥ 350 ˚C. This process resists to presence of water and free fatty acids and does not require lipid extraction process. To make this process more promising, it was suggested lowering reaction temperature for thermally induced transesterifications. In addition, pilot study, in-depth </span>life cycle assessment, and economic analysis were suggested to assess economic viability and environmental impacts.</span></p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"93 ","pages":"Article 101020"},"PeriodicalIF":29.5,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1752266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}