MOSFET devices have developed significantly over the past few years to become the number one choice for high-power applications in power electronics and electronic communication. Commercially available devices (such as the IXYS RF manufactured) now operate into the VHF range with output RF powers of up to 300 W. They are optimized for linear operation and suitable for broadcast and communication applications. This paper presents the heat transfer out of an IXZ210N50L MOSFET which is sandwiched between two identical heatsinks. The results reveal a linear decrease in heat flowing away from the top of the MOSFET when compared to the bottom of the MOSFET for each step increase of drain current. Two graphs (representing the top and bottom heatsinks connected to the MOSFET device) contrast the temperature rise for the Bisink technique when the drain current through the IXZ210N50L MOSFET is kept constant at 5 A. The Bisink technique has the advantages of lower on-state resistances and higher output powers when compared to the traditional mounting using only one heatsink, resulting in improved reliability and performance. Results further reveal that the ambient temperature must be measured in the vicinity of the heatsink.
{"title":"Heat Transfer of DE-Series MOSFETs","authors":"A. Swart","doi":"10.1155/2011/164286","DOIUrl":"https://doi.org/10.1155/2011/164286","url":null,"abstract":"MOSFET devices have developed significantly over the past few years to become the number one choice for high-power applications in power electronics and electronic communication. Commercially available devices (such as the IXYS RF manufactured) now operate into the VHF range with output RF powers of up to 300 W. They are optimized for linear operation and suitable for broadcast and communication applications. This paper presents the heat transfer out of an IXZ210N50L MOSFET which is sandwiched between two identical heatsinks. The results reveal a linear decrease in heat flowing away from the top of the MOSFET when compared to the bottom of the MOSFET for each step increase of drain current. Two graphs (representing the top and bottom heatsinks connected to the MOSFET device) contrast the temperature rise for the Bisink technique when the drain current through the IXZ210N50L MOSFET is kept constant at 5 A. The Bisink technique has the advantages of lower on-state resistances and higher output powers when compared to the traditional mounting using only one heatsink, resulting in improved reliability and performance. Results further reveal that the ambient temperature must be measured in the vicinity of the heatsink.","PeriodicalId":412593,"journal":{"name":"Advances in Power Electronic","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126493624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hysteresis Current Control (HCC) is widely used due to its simplicity in implementation, fast and accurate response. However, the main issue is its variable switching frequency which leads to extraswitching losses and injecting high-frequency harmonics into the system current. To solve this problem, adaptive hysteresis current control (AHCC) has been introduced which produces hysteresis bandwidth which instantaneously results in smoother and constant switching frequency. In this paper the instantaneous power theory is used to extract the harmonic components of system current. Then fixed-band hysteresis current control is explained. Because of fixed-band variable frequency disadvantages, the adaptive hysteresis current control is explained that leads to fixing the switching frequency and reducing the high-frequency components in source current waveform. Due to these advantages of AHCC, the switching frequency and switching losses will be diminished appropriately. Some simulations are done in MATLAB/Simulink. The Fourier Transform and THD results of source and load currents and the instantaneous switching frequency diagram are discussed to prove the efficiency of this method. The Fourier Transform and THD results of source and load currents are discussed to prove the validity of this method.
{"title":"Review and Simulation of Fixed and Adaptive Hysteresis Current Control Considering Switching Losses and High-Frequency Harmonics","authors":"H. Vahedi, A. Sheikholeslami, M. Bina, M. Vahedi","doi":"10.1155/2011/397872","DOIUrl":"https://doi.org/10.1155/2011/397872","url":null,"abstract":"Hysteresis Current Control (HCC) is widely used due to its simplicity in implementation, fast and accurate response. However, the main issue is its variable switching frequency which leads to extraswitching losses and injecting high-frequency harmonics into the system current. To solve this problem, adaptive hysteresis current control (AHCC) has been introduced which produces hysteresis bandwidth which instantaneously results in smoother and constant switching frequency. In this paper the instantaneous power theory is used to extract the harmonic components of system current. Then fixed-band hysteresis current control is explained. Because of fixed-band variable frequency disadvantages, the adaptive hysteresis current control is explained that leads to fixing the switching frequency and reducing the high-frequency components in source current waveform. Due to these advantages of AHCC, the switching frequency and switching losses will be diminished appropriately. Some simulations are done in MATLAB/Simulink. The Fourier Transform and THD results of source and load currents and the instantaneous switching frequency diagram are discussed to prove the efficiency of this method. The Fourier Transform and THD results of source and load currents are discussed to prove the validity of this method.","PeriodicalId":412593,"journal":{"name":"Advances in Power Electronic","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127039134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The static synchronous compensator (STATCOM) is a shunt connected voltage source converter (VSC) based FACTS controller using GTOs employed for reactive power control. A typical application of a STATCOM is for voltage regulation at the midpoint of a long transmission line for the enhancement of power transfer capability and/or reactive power control at the load centre. The PI controller-based reactive current controller can cause oscillatory instability in inductive mode of operation of STATCOM and can be overcome by the nonlinear feedback controller. The transient response of the STATCOM depends on the controller parameters selected. This paper presents a systematic method for controller parameter optimization based on genetic algorithm (GA). The performance of the designed controller is evaluated by transient simulation. It is observed that the STATCOM with optimized controller parameters shows excellent transient response for the step change in the reactive current reference. While the eigenvalue analysis and controller design are based on D-Q model, the transient simulation is based on both D-Q and 3-phase models of STATCOM (which considers switching action of VSC).
{"title":"Design of Robust Current Controller for Two-Level 12-Pulse VSC-based STATCOM","authors":"M. Janaki, R. Thirumalaivasan, N. Prabhu","doi":"10.1155/2011/912749","DOIUrl":"https://doi.org/10.1155/2011/912749","url":null,"abstract":"The static synchronous compensator (STATCOM) is a shunt connected voltage source converter (VSC) based FACTS controller using GTOs employed for reactive power control. A typical application of a STATCOM is for voltage regulation at the midpoint of a long transmission line for the enhancement of power transfer capability and/or reactive power control at the load centre. The PI controller-based reactive current controller can cause oscillatory instability in inductive mode of operation of STATCOM and can be overcome by the nonlinear feedback controller. The transient response of the STATCOM depends on the controller parameters selected. This paper presents a systematic method for controller parameter optimization based on genetic algorithm (GA). The performance of the designed controller is evaluated by transient simulation. It is observed that the STATCOM with optimized controller parameters shows excellent transient response for the step change in the reactive current reference. While the eigenvalue analysis and controller design are based on D-Q model, the transient simulation is based on both D-Q and 3-phase models of STATCOM (which considers switching action of VSC).","PeriodicalId":412593,"journal":{"name":"Advances in Power Electronic","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130728865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a stability analysis of train converters in order to evaluate how the controller parameters affect the absorbed current. The new dynamic model presented in this paper is capable of considering the time-variant nature of the system for the correct tuning of the feedback proportional-integral PI controller, applying a current controlled modulation technique never used in high-power traction converters. The reduction of the harmonic content of the current absorbed by a converter employed at the input stage onboard high-speed trains is really important, considering the interaction with the signaling system set up for traffic control. A computer model of the converter, considering both the power and the control structure, has also been implemented in order to deliver a validated tool for the developed theoretical analysis.
{"title":"The Influence of Controller Parameters on the Quality of the Train Converter Current","authors":"M. Brenna, F. Foiadelli, D. Zaninelli","doi":"10.1155/2011/832737","DOIUrl":"https://doi.org/10.1155/2011/832737","url":null,"abstract":"This paper presents a stability analysis of train converters in order to evaluate how the controller parameters affect the absorbed current. The new dynamic model presented in this paper is capable of considering the time-variant nature of the system for the correct tuning of the feedback proportional-integral PI controller, applying a current controlled modulation technique never used in high-power traction converters. The reduction of the harmonic content of the current absorbed by a converter employed at the input stage onboard high-speed trains is really important, considering the interaction with the signaling system set up for traffic control. A computer model of the converter, considering both the power and the control structure, has also been implemented in order to deliver a validated tool for the developed theoretical analysis.","PeriodicalId":412593,"journal":{"name":"Advances in Power Electronic","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133379942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A sensorless method for the estimation of the rotor position of the wound-rotor induction machine is described in this paper. The method is based on the MRAS methodology and consists in the comparison of two models for the evaluation of the active power transferred across the air gap: the reference model and the adaptive model. The reference model obtains the power transferred across the air gap using directly available and measured stator variables. The adaptive model obtains the same quantity in function of electromotive forces and rotor currents that are measurable on the rotor position, which is under estimation. The method does not need any information about the stator or rotor flux and can be implemented in the rotor or in the stator reference frames with a hysteresis or with a PI controller. The stability analysis gives an unstable region on the rotor current dq plane. Simulation and experimental results show that the method is appropriate for the vector control of the doubly fed induction machine under the stability region.
{"title":"A New Sensorless MRAS Based on Active Power Calculations for Rotor Position Estimation of a DFIG","authors":"G. Marques, D. Sousa","doi":"10.1155/2011/970364","DOIUrl":"https://doi.org/10.1155/2011/970364","url":null,"abstract":"A sensorless method for the estimation of the rotor position of the wound-rotor induction machine is described in this paper. The method is based on the MRAS methodology and consists in the comparison of two models for the evaluation of the active power transferred across the air gap: the reference model and the adaptive model. The reference model obtains the power transferred across the air gap using directly available and measured stator variables. The adaptive model obtains the same quantity in function of electromotive forces and rotor currents that are measurable on the rotor position, which is under estimation. The method does not need any information about the stator or rotor flux and can be implemented in the rotor or in the stator reference frames with a hysteresis or with a PI controller. The stability analysis gives an unstable region on the rotor current dq plane. Simulation and experimental results show that the method is appropriate for the vector control of the doubly fed induction machine under the stability region.","PeriodicalId":412593,"journal":{"name":"Advances in Power Electronic","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128833049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The advent of series FACTS controllers, thyristor controlled series capacitor (TCSC) and static synchronous Series Compensator (SSSC) has made it possible not only for the fast control of power flow in a transmission line, but also for the mitigation of subsynchronous resonance (SSR) in the presence of fixed series capacitors. SSSC is an emerging controller and this paper presents SSR characteristics of a series compensated system with SSSC. The study system is adapted from IEEE first benchmark model (FBM). The active series compensation is provided by a three-level twenty four-pulse SSSC. The modeling and control details of a three level voltage source converter-(VSC)-based SSSC are discussed. The SSR characteristics of the combined system with constant reactive voltage control mode in SSSC has been investigated. It is shown that the constant reactive voltage control of SSSC has the effect of reducing the electrical resonance frequency, which detunes the SSR. The analysis of SSR with SSSC is carried out based on frequency domain method, eigenvalue analysis and transient simulation. While the eigenvalue and damping torque analysis are based on linearizing the D-Q model of SSSC, the transient simulation considers both D-Q and detailed three phase nonlinear system model using switching functions.
{"title":"Investigation of SSR Characteristics of Hybrid Series Compensated Power System with SSSC","authors":"R. Thirumalaivasan, M. Janaki, N. Prabhu","doi":"10.1155/2011/621818","DOIUrl":"https://doi.org/10.1155/2011/621818","url":null,"abstract":"The advent of series FACTS controllers, thyristor controlled series capacitor (TCSC) and static synchronous Series Compensator (SSSC) has made it possible not only for the fast control of power flow in a transmission line, but also for the mitigation of subsynchronous resonance (SSR) in the presence of fixed series capacitors. SSSC is an emerging controller and this paper presents SSR characteristics of a series compensated system with SSSC. The study system is adapted from IEEE first benchmark model (FBM). The active series compensation is provided by a three-level twenty four-pulse SSSC. The modeling and control details of a three level voltage source converter-(VSC)-based SSSC are discussed. The SSR characteristics of the combined system with constant reactive voltage control mode in SSSC has been investigated. It is shown that the constant reactive voltage control of SSSC has the effect of reducing the electrical resonance frequency, which detunes the SSR. The analysis of SSR with SSSC is carried out based on frequency domain method, eigenvalue analysis and transient simulation. While the eigenvalue and damping torque analysis are based on linearizing the D-Q model of SSSC, the transient simulation considers both D-Q and detailed three phase nonlinear system model using switching functions.","PeriodicalId":412593,"journal":{"name":"Advances in Power Electronic","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132736803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A pulse-width modulator to drive three-phase AC motors is described. It performs a numerical modulation technique, also known as optimum or calculated modulation, but, in order to reduce hardware resources, a hybrid approach merging that calculated modulation with proportional modulation is proposed. The modulator is tested in a flash-based field programmable gate array (FPGA) implementation.
{"title":"Flash FPGA-Based Numerical Pulse-Width Modulator","authors":"Ricardo Arias, Hernán Mediote, H. Tacca","doi":"10.1155/2011/215376","DOIUrl":"https://doi.org/10.1155/2011/215376","url":null,"abstract":"A pulse-width modulator to drive three-phase AC motors is described. It performs a numerical modulation technique, also known as optimum or calculated modulation, but, in order to reduce hardware resources, a hybrid approach merging that calculated modulation with proportional modulation is proposed. The modulator is tested in a flash-based field programmable gate array (FPGA) implementation.","PeriodicalId":412593,"journal":{"name":"Advances in Power Electronic","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2011-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133212298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Modern electronical devices use high integration to decrease device size and cost and to increase reliability. More and more devices appear that integrate even power devices into VLSI circuits. When driving inductive loads, this is a critical step because freewheeling at a power device appears. In these applications usually special technologies with extra wells for the power devices, SOI technologies, or BiCMOS technologies are required to suppress any substrate current. However, the use of these technologies results in higher production cost for the device. We present a method to control the freewheeling actively. Using this approach we are able to integrate the power devices using a normal CMOS technology.
{"title":"A Substrate Current Less Control Method for CMOS Integration of Power Bridges","authors":"J. Krupar, Heiko Hauswald, Ronny Naumann","doi":"10.1155/2010/909612","DOIUrl":"https://doi.org/10.1155/2010/909612","url":null,"abstract":"Modern electronical devices use high integration to decrease device size and cost and to increase reliability. More and more\u0000devices appear that integrate even power devices into VLSI circuits. When driving inductive loads, this is a critical step because\u0000freewheeling at a power device appears. In these applications usually special technologies with extra wells for the power devices,\u0000SOI technologies, or BiCMOS technologies are required to suppress any substrate current. However, the use of these technologies\u0000results in higher production cost for the device. We present a method to control the freewheeling actively. Using this approach we\u0000are able to integrate the power devices using a normal CMOS technology.","PeriodicalId":412593,"journal":{"name":"Advances in Power Electronic","volume":"70 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120907756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A high-efficiency wireless power transfer system which is capable of supporting more than one receiver using class E operation for transmitter via inductive coupling has been designed and fabricated. The design approach of the system is also presented in this paper. The system requires no complex external control system but relies on its natural impedance response to achieve the desired power delivery profile across a wide range of load resistances while maintaining high efficiency to prevent any heating issues. A switch circuit is used to decouple the fully charged receiver from the system so that power delivery to the other receiver can be improved. The fabricated system at 12 V supply voltage is compact and capable of approximately 2.5 W of power delivery to each of the two receivers in a dual receiver setup and 5 W to a single receiver alone or when the other receiver is decoupled by the receiver switch. During high-power delivery state, the system efficiency is between 67.5% and 77.5%.
{"title":"A Loosely Coupled Planar Wireless Power Transfer System Supporting Multiple Receivers","authors":"Z. Low, J. Casanova, Jenshan Lin","doi":"10.1155/2010/546529","DOIUrl":"https://doi.org/10.1155/2010/546529","url":null,"abstract":"A high-efficiency wireless power transfer system which is capable of supporting more than one receiver using class E operation for transmitter via inductive coupling has been designed and fabricated. The design approach of the system is also presented in this paper. The system requires no complex external control system but relies on its natural impedance response to achieve the desired power delivery profile across a wide range of load resistances while maintaining high efficiency to prevent any heating issues. A switch circuit is used to decouple the fully charged receiver from the system so that power delivery to the other receiver can be improved. The fabricated system at 12 V supply voltage is compact and capable of approximately 2.5 W of power delivery to each of the two receivers in a dual receiver setup and 5 W to a single receiver alone or when the other receiver is decoupled by the receiver switch. During high-power delivery state, the system efficiency is between 67.5% and 77.5%.","PeriodicalId":412593,"journal":{"name":"Advances in Power Electronic","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115706002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Power supplies in portable applications must not only conform and adapt to their highly integrated on-chip and in-package environments but also, more intrinsically, respond quickly to fast load dumps to achieve and maintain high accuracy. The frequency-compensation network, however, limits speed and regulation performance because it must cater to all combinations of filter capacitor 𝐶 𝑂 , inductor L, and 𝐶 𝑂 's equivalent series resistance 𝑅 E S R resulting from tolerance and modal design targets. As such, it must compensate the worst-case condition and therefore restrain the performance of all other possible scenarios, even if the likelihood of occurrence of the latter is considerably high and the former substantially low. Sigma-delta ( Σ Δ ) control, which addresses this issue in buck converters by easing its compensation requirements and offering one-cycle transient response, has not been able to simultaneously achieve high bandwidth, high accuracy, and wide 𝑅 E S R L C compliance in boost converters. This paper presents a dual-mode Σ Δ boost bypass converter, which by using a high-bandwidth bypass path only during transient load-dump events was experimentally 1.41 to 6 times faster than the state of the art in current-mode Σ Δ boost supplies, and this without any compromise in 𝑅 E S R L C compliance range (0–50 m Ω , 1–30 𝜇 H, and 1–350 𝜇 F).
便携式应用中的电源不仅必须符合并适应其高度集成的片上和封装环境,而且更本质地要对快速负载转储做出快速响应,以实现并保持高精度。然而,频率补偿网络限制了速度和调节性能,因为它必须满足滤波器电容器的所有组合,𝑂,电感器L,以及由公差和模态设计目标产生的𝑂等效串联电阻𝑅E s R。因此,它必须补偿最坏情况,从而限制所有其他可能情况的表现,即使后者发生的可能性相当高,而前者发生的可能性非常低。Sigma-delta (Σ Δ)控制通过简化其补偿要求和提供单周期瞬态响应来解决降压转换器中的此问题,但无法同时在升压转换器中实现高带宽,高精度和宽𝑅E S R L C合规性。本文提出了一种双模Σ Δ升压旁路转换器,该转换器仅在瞬态负载转储事件期间使用高带宽旁路,实验速度比当前模式Σ Δ升压电源的现有状态快1.41至6倍,并且在𝑅E S R L C符合范围(0-50 m Ω, 1-30℃H和1-350℃F)中没有任何妥协。
{"title":"One Clock-Cycle Response 0.5 m CMOS Dual-Mode ΣΔ DC-DC Bypass Boost Converter Stable over Wide ESRLC Variations","authors":"N. Keskar, G. Rincón-Mora","doi":"10.1155/2010/253508","DOIUrl":"https://doi.org/10.1155/2010/253508","url":null,"abstract":"Power supplies in portable applications must not only conform and adapt to their highly integrated on-chip and in-package environments but also, more intrinsically, respond quickly to fast load dumps to achieve and maintain high accuracy. The frequency-compensation network, however, limits speed and regulation performance because it must cater to all combinations of filter capacitor 𝐶 𝑂 , inductor L, and 𝐶 𝑂 's equivalent series resistance \u0000 𝑅 E S R resulting from tolerance and modal design targets. As such, it must compensate the worst-case condition and therefore restrain the performance of all other possible scenarios, even if the likelihood of occurrence of the latter is considerably high and the former substantially low. Sigma-delta ( Σ Δ ) control, which addresses this issue in buck converters by easing its compensation requirements and offering one-cycle transient response, has not been able to simultaneously achieve high bandwidth, high accuracy, and wide 𝑅 E S R L C compliance in boost converters. This paper presents a dual-mode Σ Δ boost bypass converter, which by using a high-bandwidth bypass path only during transient load-dump events was experimentally 1.41 to 6 times faster than the state of the art in current-mode Σ Δ boost supplies, and this without any compromise in 𝑅 E S R L C compliance range (0–50 m Ω , 1–30 𝜇 H, and 1–350 𝜇 F).","PeriodicalId":412593,"journal":{"name":"Advances in Power Electronic","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2010-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132045948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}