首页 > 最新文献

Progress in Particle and Nuclear Physics最新文献

英文 中文
Chiral spin symmetry and hot/dense QCD 手性自旋对称与热/密量子光盘
IF 9.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2023-07-01 DOI: 10.1016/j.ppnp.2023.104049
L.Ya. Glozman

Above the chiral symmetry restoration crossover around Tch155 MeV a new regime arises in QCD, a stringy fluid, which is characterized by an approximate chiral spin symmetry of the thermal partition function. This symmetry is not a symmetry of the Dirac Lagrangian and is a symmetry of the electric part of the QCD Lagrangian. In this regime the medium consists of the chirally symmetric and approximately chiral spin symmetric hadrons that are made of the chirally symmetric quarks connected into the color singlet compounds by a confining chromoelectric field. This regime is evidenced by the approximate chiral spin symmetry of the spatial and temporal correlators and by the breakdown of the thermal perturbation theory at the crossover between the partonic (the quark–gluon plasma) and the stringy fluid regimes at 3Tch. The chiral spin symmetry smoothly disappears above 3Tch which means that the chromoelectric confining interaction gets screened. A direct evidence that the stringy fluid medium consists of densely packed hadrons is the pion spectral function that shows a distinct pion state and its first radial excitation above Tch. Another direct evidence of the hadron degrees of freedom in the stringy fluid is the bottomonium spectrum with the 1S, 2S, 3S and 1P, 2P radial and orbital excitations that become broad with temperature. The hadrons between Tch and 3Tch in the stringy fluid interact strongly which makes the stringy fluid more a liquid rather than a gas. We discuss how this chiral spin symmetric regime extends into the finite chemical potentials domain and present a qualitative sketch of the QCD phase diagram.

在ch ~ 155 MeV附近的手性对称性恢复交叉之上,QCD(一种弦状流体)出现了一个新的区域,其特征是热配分函数的近似手性自旋对称。这种对称不是狄拉克拉格朗日量的对称,而是QCD拉格朗日量的电部分的对称。在这个体系中,介质由手性对称和近似手性自旋对称强子组成,这些强子是由手性对称夸克组成的,它们通过一个限制性色电场连接成彩色单线态化合物。时空相关器的近似手性自旋对称性和热扰动理论在约3Tch时在部分子(夸克-胶子等离子体)和弦流体机制交叉处的崩溃证明了这一机制。手性自旋对称性在~ 3Tch以上平滑地消失,这意味着色电约束相互作用被屏蔽。弦流体介质由密集排列的强子组成的直接证据是介子谱函数,它显示出一个明显的介子态和它在Tch以上的第一个径向激发。弦状流体中强子自由度的另一个直接证据是具有1S, 2S, 3S和1P, 2P径向和轨道激发的底氢光谱,它们随着温度的升高而变宽。弦状流体中介于Tch和~ 3Tch之间的强子相互作用强烈,使弦状流体更像液体而不是气体。我们讨论了这种手性自旋对称体系如何扩展到有限化学势域,并给出了QCD相图的定性草图。
{"title":"Chiral spin symmetry and hot/dense QCD","authors":"L.Ya. Glozman","doi":"10.1016/j.ppnp.2023.104049","DOIUrl":"https://doi.org/10.1016/j.ppnp.2023.104049","url":null,"abstract":"<div><p>Above the chiral symmetry restoration crossover around <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi><mi>h</mi></mrow></msub><mspace></mspace><mo>∼</mo><mspace></mspace><mn>155</mn></mrow></math></span> MeV a new regime arises in QCD, a stringy fluid, which is characterized by an approximate chiral spin symmetry of the thermal partition function. This symmetry is not a symmetry of the Dirac Lagrangian and is a symmetry of the electric part of the QCD Lagrangian. In this regime the medium consists of the chirally symmetric and approximately chiral spin symmetric hadrons that are made of the chirally symmetric quarks connected into the color singlet compounds by a confining chromoelectric field. This regime is evidenced by the approximate chiral spin symmetry of the spatial and temporal correlators and by the breakdown of the thermal perturbation theory at the crossover between the partonic (the quark–gluon plasma) and the stringy fluid regimes at <span><math><mrow><mo>∼</mo><mn>3</mn><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi><mi>h</mi></mrow></msub></mrow></math></span>. The chiral spin symmetry smoothly disappears above <span><math><mrow><mo>∼</mo><mn>3</mn><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi><mi>h</mi></mrow></msub></mrow></math></span> which means that the chromoelectric confining interaction gets screened. A direct evidence that the stringy fluid medium consists of densely packed hadrons is the pion spectral function that shows a distinct pion state and its first radial excitation above <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi><mi>h</mi></mrow></msub></math></span>. Another direct evidence of the hadron degrees of freedom in the stringy fluid is the bottomonium spectrum with the 1S, 2S, 3S and 1P, 2P radial and orbital excitations that become broad with temperature. The hadrons between <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi><mi>h</mi></mrow></msub></math></span> and <span><math><mrow><mo>∼</mo><mn>3</mn><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi><mi>h</mi></mrow></msub></mrow></math></span> in the stringy fluid interact strongly which makes the stringy fluid more a liquid rather than a gas. We discuss how this chiral spin symmetric regime extends into the finite chemical potentials domain and present a qualitative sketch of the QCD phase diagram.</p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"131 ","pages":"Article 104049"},"PeriodicalIF":9.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3451551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Emerging technologies for cancer therapy using accelerated particles 利用加速粒子治疗癌症的新兴技术
IF 9.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2023-07-01 DOI: 10.1016/j.ppnp.2023.104046
Christian Graeff , Lennart Volz , Marco Durante

Cancer therapy with accelerated charged particles is one of the most valuable biomedical applications of nuclear physics. The technology has vastly evolved in the past 50 years, the number of clinical centers is exponentially growing, and recent clinical results support the physics and radiobiology rationale that particles should be less toxic and more effective than conventional X-rays for many cancer patients. Charged particles are also the most mature technology for clinical translation of ultra-high dose rate (FLASH) radiotherapy. However, the fraction of patients treated with accelerated particles is still very small and the therapy is only applied to a few solid cancer indications. The growth of particle therapy strongly depends on technological innovations aiming to make the therapy cheaper, more conformal and faster. The most promising solutions to reach these goals are superconductive magnets to build compact accelerators; gantryless beam delivery; online image-guidance and adaptive therapy with the support of machine learning algorithms; and high-intensity accelerators coupled to online imaging. Large international collaborations are needed to hasten the clinical translation of the research results.

利用加速带电粒子治疗癌症是核物理最有价值的生物医学应用之一。在过去的50年里,这项技术得到了巨大的发展,临床中心的数量呈指数级增长,最近的临床结果支持物理学和放射生物学的基本原理,即对许多癌症患者来说,粒子应该比传统的x射线毒性更小,更有效。带电粒子也是超高剂量率(FLASH)放疗临床转化最成熟的技术。然而,使用加速粒子治疗的患者比例仍然很小,而且这种疗法只适用于少数实体癌症适应症。粒子治疗的发展很大程度上依赖于旨在使治疗更便宜、更适形和更快的技术创新。实现这些目标最有希望的解决方案是超导磁体来构建紧凑型加速器;无龙门梁输送;基于机器学习算法的在线图像引导和自适应治疗;高强度加速器与在线成像相结合。为了加快研究成果的临床转化,需要大规模的国际合作。
{"title":"Emerging technologies for cancer therapy using accelerated particles","authors":"Christian Graeff ,&nbsp;Lennart Volz ,&nbsp;Marco Durante","doi":"10.1016/j.ppnp.2023.104046","DOIUrl":"https://doi.org/10.1016/j.ppnp.2023.104046","url":null,"abstract":"<div><p><span><span><span>Cancer therapy with accelerated charged particles is one of the most valuable biomedical applications of nuclear physics. The technology has vastly evolved in the past 50 years, the number of clinical centers is exponentially growing, and recent clinical results support the physics and </span>radiobiology rationale that particles should be less toxic and more effective than conventional X-rays for many cancer patients. Charged particles are also the most mature technology for clinical translation of ultra-high dose rate (FLASH) </span>radiotherapy. However, the fraction of patients treated with accelerated particles is still very small and the therapy is only applied to a few solid cancer indications. The growth of particle therapy strongly depends on technological innovations aiming to make the therapy </span><em>cheaper, more conformal</em> and <em>faster</em>. The most promising solutions to reach these goals are superconductive magnets to build compact accelerators; gantryless beam delivery; online image-guidance and adaptive therapy with the support of machine learning algorithms; and high-intensity accelerators coupled to online imaging. Large international collaborations are needed to hasten the clinical translation of the research results.</p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"131 ","pages":"Article 104046"},"PeriodicalIF":9.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614547/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1635563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Heavy baryons in compact stars 致密恒星中的重子
IF 9.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2023-07-01 DOI: 10.1016/j.ppnp.2023.104041
Armen Sedrakian , Jia Jie Li , Fridolin Weber

We review the physics of hyperons and Δ-resonances in dense matter in compact stars. The covariant density functional approach to the equation of state and composition of dense nuclear matter in the mean-field Hartree and Hartree–Fock approximation is presented, with regimes covering cold β-equilibrated matter, hot and dense matter with and without neutrinos relevant for the description of supernovas and binary neutron star mergers, as well as dilute expanding nuclear matter in collision experiments. We discuss the static properties of compact stars with hyperons and Δ-resonances in light of constraints placed in recent years by the multimessenger astrophysics of compact stars on the compact stars’ masses, radii, and tidal deformabilities. The effects of kaon condensation and strong magnetic fields on the composition of hypernuclear stars are also discussed. The properties of rapidly rotating compact hypernuclear stars are discussed and confronted with the observations of 2.5-2.8 solar mass compact objects in gravitational wave events. We further discuss the cooling of hypernuclear stars, the neutrino emission reactions, hyperonic pairing, and the mass hierarchy in the cooling curves that arises due to the onset of hyperons. The effects of hyperons and Δ-resonances on the equation of state of hot nuclear matter in the dense regime, relevant for the transient astrophysical event and in the dilute regime relevant to the collider physics is discussed. The review closes with a discussion of universal relations among the integral parameters of hot and cold hypernuclear stars and their implications for the analysis of binary neutron star merger events.

我们回顾了致密恒星中致密物质中的超子和Δ-resonances的物理学。提出了致密核物质在平均场Hartree和Hartree - fock近似下的状态和组成方程的协变密度泛函数方法,涵盖了与超新星和双中子星并合描述相关的冷β平衡物质、含和不含中微子的热和致密物质,以及碰撞实验中稀释膨胀核物质。本文结合近年来致密恒星多信使天体物理学对致密恒星质量、半径和潮汐变形能力的限制,讨论了具有超子和Δ-resonances的致密恒星的静态特性。讨论了介子凝聚和强磁场对超核恒星组成的影响。讨论了快速旋转致密超核恒星的性质,并结合引力波事件中2.5 ~ 2.8太阳质量致密天体的观测结果进行了探讨。我们进一步讨论了超核恒星的冷却,中微子发射反应,超子配对,以及由于超子的开始而产生的冷却曲线中的质量层次。讨论了超子和Δ-resonances对与瞬态天体物理事件有关的致密区和与对撞机物理有关的稀区热核物质状态方程的影响。最后讨论了热超核星和冷超核星积分参数之间的普遍关系及其对双中子星合并事件分析的意义。
{"title":"Heavy baryons in compact stars","authors":"Armen Sedrakian ,&nbsp;Jia Jie Li ,&nbsp;Fridolin Weber","doi":"10.1016/j.ppnp.2023.104041","DOIUrl":"https://doi.org/10.1016/j.ppnp.2023.104041","url":null,"abstract":"<div><p><span><span>We review the physics of </span>hyperons and </span><span><math><mi>Δ</mi></math></span><span><span>-resonances in dense matter in compact stars. The covariant density functional approach to the </span>equation of state and composition of dense nuclear matter in the mean-field Hartree and Hartree–Fock approximation is presented, with regimes covering cold </span><span><math><mi>β</mi></math></span><span><span>-equilibrated matter, hot and dense matter with and without neutrinos relevant for the description of supernovas<span> and binary neutron star mergers, as well as dilute expanding nuclear matter in collision experiments. We discuss the </span></span>static properties of compact stars with hyperons and </span><span><math><mi>Δ</mi></math></span><span>-resonances in light of constraints placed in recent years by the multimessenger astrophysics of compact stars on the compact stars’ masses, radii, and tidal deformabilities. The effects of kaon condensation<span> and strong magnetic fields on the composition of hypernuclear stars are also discussed. The properties of rapidly rotating compact hypernuclear stars are discussed and confronted with the observations of 2.5-2.8 solar mass<span> compact objects in gravitational wave events. We further discuss the cooling of hypernuclear stars, the neutrino emission reactions, hyperonic pairing, and the mass hierarchy in the cooling curves that arises due to the onset of hyperons. The effects of hyperons and </span></span></span><span><math><mi>Δ</mi></math></span>-resonances on the equation of state of hot nuclear matter in the dense regime, relevant for the transient astrophysical event and in the dilute regime relevant to the collider physics is discussed. The review closes with a discussion of universal relations among the integral parameters of hot and cold hypernuclear stars and their implications for the analysis of binary neutron star merger events.</p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"131 ","pages":"Article 104041"},"PeriodicalIF":9.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3451550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Strong-field physics in QED and QCD: From fundamentals to applications QED和QCD中的强场物理:从基础到应用
IF 9.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2023-06-24 DOI: 10.1016/j.ppnp.2023.104068
Koichi Hattori , Kazunori Itakura , Sho Ozaki

We provide a pedagogical review article on fundamentals and applications of the quantum dynamics in strong electromagnetic fields in QED and QCD. The fundamentals include the basic picture of the Landau quantization and the resummation techniques applied to the class of higher-order diagrams that are enhanced by large magnitudes of the external fields. We then discuss observable effects of the vacuum fluctuations in the presence of the strong fields, which consist of the interdisciplinary research field of nonlinear QED. We also discuss extensions of the Heisenberg–Euler effective theory to finite temperature/density and to non-Abelian theories with some applications. Next, we proceed to the paradigm of the dimensional reduction emerging in the low-energy dynamics in the strong magnetic fields. The mechanisms of superconductivity, the magnetic catalysis of the chiral symmetry breaking, and the Kondo effect are addressed from a unified point of view in terms of the renormalization-group method. We provide an up-to-date summary of the lattice QCD simulations in magnetic fields for the chiral symmetry breaking and the related topics as of the end of 2022. Finally, we discuss novel transport phenomena induced by chiral anomaly and the axial-charge dynamics. Those discussions are supported by a number of appendices.

本文就强电磁场中量子动力学的基本原理及其在QED和QCD中的应用进行了教学综述。基础包括朗道量化的基本图像和应用于高阶图类的恢复技术,这些高阶图被大幅度的外场增强。然后讨论了强场存在下真空涨落的可观测效应,这是非线性QED的跨学科研究领域。我们还讨论了海森堡-欧拉有效理论在有限温度/密度和非阿贝尔理论中的推广及其一些应用。接下来,我们继续讨论在强磁场中低能动力学中出现的降维范式。用重整化基团的方法从统一的角度讨论了超导机制、手性对称性破缺的磁催化和近藤效应。我们提供了截至2022年底的手性对称性破缺的磁场晶格QCD模拟和相关主题的最新总结。最后讨论了由手性异常和轴电荷动力学引起的新型输运现象。这些讨论得到了一些附录的支持。
{"title":"Strong-field physics in QED and QCD: From fundamentals to applications","authors":"Koichi Hattori ,&nbsp;Kazunori Itakura ,&nbsp;Sho Ozaki","doi":"10.1016/j.ppnp.2023.104068","DOIUrl":"https://doi.org/10.1016/j.ppnp.2023.104068","url":null,"abstract":"<div><p><span>We provide a pedagogical review article on fundamentals and applications of the quantum dynamics in strong electromagnetic fields<span> in QED and QCD<span>. The fundamentals include the basic picture of the Landau quantization and the resummation techniques applied to the class of higher-order diagrams that are enhanced by large magnitudes of the external fields. We then discuss observable effects of the vacuum fluctuations in the presence of the strong fields, which consist of the interdisciplinary research field of nonlinear QED. We also discuss extensions of the Heisenberg–Euler effective theory to finite temperature/density and to non-Abelian theories with some applications. Next, we proceed to the paradigm of the dimensional reduction emerging in the low-energy dynamics in the strong magnetic fields. The mechanisms of superconductivity, the magnetic catalysis of the chiral </span></span></span>symmetry breaking<span>, and the Kondo effect are addressed from a unified point of view in terms of the renormalization-group method. We provide an up-to-date summary of the lattice QCD simulations in magnetic fields for the chiral symmetry breaking and the related topics as of the end of 2022. Finally, we discuss novel transport phenomena induced by chiral anomaly and the axial-charge dynamics. Those discussions are supported by a number of appendices.</span></p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"133 ","pages":"Article 104068"},"PeriodicalIF":9.6,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3406269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Corrigendum to “Photonuclear reactions—From basic research to applications” [Prog. Part. Nucl. Phys. 122 (2022) 1-96/103903] “光核反应——从基础研究到应用”的勘误表。部分。诊断。物理学报,22 (2):1- 6/ 3 [j]
IF 9.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2023-06-15 DOI: 10.1016/j.ppnp.2023.104059
A. Zilges, D.L. Balabanski, J. Isaak, N. Pietralla
{"title":"Corrigendum to “Photonuclear reactions—From basic research to applications” [Prog. Part. Nucl. Phys. 122 (2022) 1-96/103903]","authors":"A. Zilges,&nbsp;D.L. Balabanski,&nbsp;J. Isaak,&nbsp;N. Pietralla","doi":"10.1016/j.ppnp.2023.104059","DOIUrl":"https://doi.org/10.1016/j.ppnp.2023.104059","url":null,"abstract":"","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"133 ","pages":"Article 104059"},"PeriodicalIF":9.6,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3208739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure formation during phase transitions in strongly interacting matter 强相互作用物质相变过程中的结构形成
IF 9.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2023-05-01 DOI: 10.1016/j.ppnp.2023.104030
D.N. Voskresensky
<div><p>A broad range of problems associated with phase transitions in systems characterized by the strong interaction between particles and with formation of structures is reviewed. A general phenomenological mean-field model is constructed describing phase transitions of the first and the second order to the homogeneous, <span><math><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>, and inhomogeneous, <span><math><mrow><msub><mrow><mover><mrow><mi>k</mi></mrow><mo>→</mo></mover></mrow><mrow><mn>0</mn></mrow></msub><mo>≠</mo><mn>0</mn></mrow></math></span> , states, the latter may occur even in case, when the interaction is translation-invariant. Due to fluctuations, the phase transition to the state, <span><math><mrow><msub><mrow><mover><mrow><mi>k</mi></mrow><mo>→</mo></mover></mrow><mrow><mn>0</mn></mrow></msub><mo>≠</mo><mn>0</mn></mrow></math></span>, becomes the transition of the first order. Various specific features of the phase transitions to the state <span><math><mrow><msub><mrow><mover><mrow><mi>k</mi></mrow><mo>→</mo></mover></mrow><mrow><mn>0</mn></mrow></msub><mo>≠</mo><mn>0</mn></mrow></math></span> are considered such as the anisotropic spectrum of excitations, a possibility of the formation of various structures including running and standing waves, three-axis structures, the chiral waves, pasta mixed phases, etc. Next, a formal transition to hydrodynamical variables is performed. Then focus is made on description of the dynamics of the order parameter at the phase transitions to the states with <span><math><mrow><msub><mrow><mover><mrow><mi>k</mi></mrow><mo>→</mo></mover></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mover><mrow><mi>k</mi></mrow><mo>→</mo></mover></mrow><mrow><mn>0</mn></mrow></msub><mo>≠</mo><mn>0</mn></mrow></math></span><span><span>. In case of the phase transition to the inhomogeneous state the dynamics has specific features. Next the non-ideal hydrodynamical description of the phase transitions of the liquid–gas type in nuclear systems is performed. The ordinary Ginzburg–Landau model proves to be not applicable for description of an initial inertial stage of the seeds. Surface tension, viscosity and thermal conductivity are driving forces of phase transitions. Quasi-periodic structures are developed during the transitions. Next, the specific example of the pion </span>condensation phase transition to the </span><span><math><mrow><msub><mrow><mover><mrow><mi>k</mi></mrow><mo>→</mo></mover></mrow><mrow><mn>0</mn></mrow></msub><mo>≠</mo><mn>0</mn></mrow></math></span><span> state in dense, cold or warm nuclear matter is considered and then the nuclear system at high temperature and small baryon chemical potential is studied, when baryons become completely blurred and light bosons, e.g., pions, may condense either in </span><span><math><mrow><msub><mrow><mover><mrow><mi>k</mi></mrow><mo>
本文综述了以粒子间强相互作用和结构形成为特征的系统中与相变有关的广泛问题。构造了一阶和二阶相变到齐次态(k0=0)和非齐次态(k→0≠0)的一般现象学平均场模型,后者即使在相互作用为平移不变的情况下也可能发生。由于涨落,相变到k→0≠0的状态成为一阶相变。考虑了k→0≠0相变的各种具体特征,如激发的各向异性谱,形成各种结构的可能性,包括行波和驻波,三轴结构,手性波,面食混合相等。接下来,执行到流体动力变量的正式转换。然后重点描述了相变到k→0=0和k→0≠0状态时序参量的动态变化。在相变到非均匀态的情况下,动力学具有特定的特征。其次,对核系统中液气型相变进行了非理想流体力学描述。证明了普通的金兹堡-朗道模型不适用于描述种子的初始惯性阶段。表面张力、粘度和热导率是相变的驱动力。在跃迁过程中形成了准周期结构。其次,考虑了稠密、冷或热核物质中介子凝聚相变到k→0≠0状态的具体例子,然后研究了高温、小重子化学势下的核系统,此时重子完全模糊,轻玻色子如介子可以在k→0=0或k→0≠0状态下凝聚。然后,研究了k→0=0或k→0≠0状态下的波美兰丘克不稳定性和玻色凝聚现象,讨论了亚稳稀核态存在的可能性。其次,考虑了运动介质中k→0≠0状态下玻色激发凝聚的可能性。然后研究了具有动态固定粒子数的介子的玻色-爱因斯坦凝聚。最后,通过一个由核子填充的盒子突然破裂的例子,证明了特定的纯非平衡效应。
{"title":"Structure formation during phase transitions in strongly interacting matter","authors":"D.N. Voskresensky","doi":"10.1016/j.ppnp.2023.104030","DOIUrl":"https://doi.org/10.1016/j.ppnp.2023.104030","url":null,"abstract":"&lt;div&gt;&lt;p&gt;A broad range of problems associated with phase transitions in systems characterized by the strong interaction between particles and with formation of structures is reviewed. A general phenomenological mean-field model is constructed describing phase transitions of the first and the second order to the homogeneous, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, and inhomogeneous, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≠&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; , states, the latter may occur even in case, when the interaction is translation-invariant. Due to fluctuations, the phase transition to the state, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≠&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, becomes the transition of the first order. Various specific features of the phase transitions to the state &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≠&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; are considered such as the anisotropic spectrum of excitations, a possibility of the formation of various structures including running and standing waves, three-axis structures, the chiral waves, pasta mixed phases, etc. Next, a formal transition to hydrodynamical variables is performed. Then focus is made on description of the dynamics of the order parameter at the phase transitions to the states with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≠&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;span&gt;. In case of the phase transition to the inhomogeneous state the dynamics has specific features. Next the non-ideal hydrodynamical description of the phase transitions of the liquid–gas type in nuclear systems is performed. The ordinary Ginzburg–Landau model proves to be not applicable for description of an initial inertial stage of the seeds. Surface tension, viscosity and thermal conductivity are driving forces of phase transitions. Quasi-periodic structures are developed during the transitions. Next, the specific example of the pion &lt;/span&gt;condensation phase transition to the &lt;/span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≠&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt; state in dense, cold or warm nuclear matter is considered and then the nuclear system at high temperature and small baryon chemical potential is studied, when baryons become completely blurred and light bosons, e.g., pions, may condense either in &lt;/span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"130 ","pages":"Article 104030"},"PeriodicalIF":9.6,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3452573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Heavy-quark diffusion in the quark–gluon plasma 夸克-胶子等离子体中的重夸克扩散
IF 9.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2023-05-01 DOI: 10.1016/j.ppnp.2023.104020
Min He , Hendrik van Hees , Ralf Rapp

The diffusion of heavy quarks through the quark–gluon plasma (QGP) as produced in high-energy heavy-ion collisions has long been recognized as an excellent probe of its transport properties. In addition, the experimentally observed heavy-flavor hadrons carry valuable information about the hadronization process of the transported quarks. Here we review recent progress in the theoretical developments of heavy-quark interactions in the QGP and how they relate to the nonperturbative hadronization process, and discuss the recent status of the pertinent phenomenology in heavy-ion collisions at the RHIC and the LHC. The interactions of heavy quarks in the QGP also constitute a central building block in the description of the heavy quarkonia which controls their transport parameters as well. We will thus focus on theoretical approaches that aim for a unified description of open and hidden heavy-flavor particles in medium, and discuss how they can be constrained by lattice-QCD “data” and utilized to deduce fundamental properties of the microscopic interactions and emerging spectral properties of the strongly coupled QGP.

重夸克在高能重离子碰撞中产生的夸克-胶子等离子体(QGP)中的扩散一直被认为是研究其输运性质的一个很好的方法。此外,实验观察到的重味强子携带了有关输运夸克的强子化过程的宝贵信息。本文回顾了QGP中重夸克相互作用的最新理论进展,以及它们与非微扰强子化过程的关系,并讨论了RHIC和LHC重离子碰撞相关现象的最新进展。QGP中重夸克的相互作用也构成了描述重夸克的中心构件,它也控制着它们的输运参数。因此,我们将重点关注旨在统一描述介质中开放和隐藏重味粒子的理论方法,并讨论它们如何受到晶格- qcd“数据”的约束,并利用它们来推断微观相互作用的基本性质和强耦合QGP的新光谱性质。
{"title":"Heavy-quark diffusion in the quark–gluon plasma","authors":"Min He ,&nbsp;Hendrik van Hees ,&nbsp;Ralf Rapp","doi":"10.1016/j.ppnp.2023.104020","DOIUrl":"https://doi.org/10.1016/j.ppnp.2023.104020","url":null,"abstract":"<div><p>The diffusion<span><span> of heavy quarks through the quark–gluon plasma (QGP) as produced in high-energy heavy-ion collisions has long been recognized as an excellent probe of its transport properties. In addition, the experimentally observed heavy-flavor hadrons carry valuable information about the hadronization process of the transported quarks. Here we review recent progress in the theoretical developments of heavy-quark interactions in the QGP and how they relate to the nonperturbative hadronization process, and discuss the recent status of the pertinent phenomenology in heavy-ion collisions at the </span>RHIC and the LHC. The interactions of heavy quarks in the QGP also constitute a central building block in the description of the heavy quarkonia which controls their transport parameters as well. We will thus focus on theoretical approaches that aim for a unified description of open and hidden heavy-flavor particles in medium, and discuss how they can be constrained by lattice-QCD “data” and utilized to deduce fundamental properties of the microscopic interactions and emerging spectral properties of the strongly coupled QGP.</span></p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"130 ","pages":"Article 104020"},"PeriodicalIF":9.6,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1869834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
The Thick Gas Electron Multiplier and its derivatives: Physics, technologies and applications 厚气电子倍增器及其衍生物:物理、技术和应用
IF 9.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2023-05-01 DOI: 10.1016/j.ppnp.2023.104029
Shikma Bressler, Luca Moleri, Abhik Jash, Andrea Tesi, Darina Zavazieva

The Thick Gas Electron Multiplier (THGEM) is a robust high-gain gas-avalanche electron multiplier – a building block of a variety of radiation detectors. It can be manufactured economically by standard printed-circuit drilling and etching technology. We present a detailed review of the THGEM and its derivatives. We focus on the physics phenomena that govern their operation and performances under different operation conditions. Technological aspects associated with the production of these detectors and their current and potential applications are discussed.

厚气体电子倍增器(THGEM)是一种强大的高增益气体雪崩电子倍增器,是各种辐射探测器的组成部分。采用标准的印刷电路钻孔和蚀刻技术,可以经济地制造。我们对THGEM及其衍生产品进行了详细的回顾。我们关注的是控制它们在不同操作条件下运行和性能的物理现象。讨论了与这些探测器的生产有关的技术方面及其当前和潜在的应用。
{"title":"The Thick Gas Electron Multiplier and its derivatives: Physics, technologies and applications","authors":"Shikma Bressler,&nbsp;Luca Moleri,&nbsp;Abhik Jash,&nbsp;Andrea Tesi,&nbsp;Darina Zavazieva","doi":"10.1016/j.ppnp.2023.104029","DOIUrl":"https://doi.org/10.1016/j.ppnp.2023.104029","url":null,"abstract":"<div><p><span>The Thick Gas Electron Multiplier (THGEM) is a robust high-gain gas-avalanche electron multiplier – a building block of a variety of radiation detectors. It can be manufactured economically by standard printed-circuit drilling and etching technology. We present a detailed review of the THGEM and its derivatives. We focus on the </span>physics phenomena that govern their operation and performances under different operation conditions. Technological aspects associated with the production of these detectors and their current and potential applications are discussed.</p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"130 ","pages":"Article 104029"},"PeriodicalIF":9.6,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2703850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Nucleon form factors and parton distributions in nonlocal chiral effective theory 非局部手性有效理论中的核子形状因子和部分子分布
IF 9.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2023-03-01 DOI: 10.1016/j.ppnp.2022.104017
P. Wang , Fangcheng He , Chueng-Ryong Ji , W. Melnitchouk

We present a review of recent applications of nonlocal chiral effective theory to hadron structure studies. Starting from a nonlocal meson–baryon effective chiral Lagrangian, we show how the introduction of a correlation function representing the finite extent of hadrons regularizes the meson loop integrals and introduces momentum dependence in vertex form factors in a gauge invariant manner. We apply the framework to the calculation of nucleon electromagnetic form factors, unpolarized and polarized parton distributions, as well as transverse momentum dependent distributions and generalized parton distributions.

本文综述了近年来非局部手性有效理论在强子结构研究中的应用。从非局部介子-重子有效手性拉格朗日开始,我们展示了如何引入一个表示强子有限范围的相关函数使介子环积分正则化,并以规范不变的方式引入顶点形式因子中的动量依赖。我们将该框架应用于计算核子电磁形状因子、非极化和极化部分子分布,以及横向动量依赖分布和广义部分子分布。
{"title":"Nucleon form factors and parton distributions in nonlocal chiral effective theory","authors":"P. Wang ,&nbsp;Fangcheng He ,&nbsp;Chueng-Ryong Ji ,&nbsp;W. Melnitchouk","doi":"10.1016/j.ppnp.2022.104017","DOIUrl":"https://doi.org/10.1016/j.ppnp.2022.104017","url":null,"abstract":"<div><p><span>We present a review of recent applications of nonlocal chiral effective theory to hadron structure studies. Starting from a nonlocal meson–baryon effective chiral Lagrangian, we show how the introduction of a correlation function representing the finite extent of hadrons regularizes the meson loop integrals and introduces momentum dependence in vertex form factors in a gauge invariant manner. We apply the framework to the calculation of </span>nucleon<span><span> electromagnetic form factors, unpolarized and polarized </span>parton<span> distributions, as well as transverse momentum dependent distributions and generalized parton distributions.</span></span></p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"129 ","pages":"Article 104017"},"PeriodicalIF":9.6,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1750376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Laser spectroscopy for the study of exotic nuclei 用于研究外来核的激光光谱学
IF 9.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2023-03-01 DOI: 10.1016/j.ppnp.2022.104005
X.F. Yang , S.J. Wang , S.G. Wilkins , R.F. Garcia Ruiz

Investigation into the properties and structure of unstable nuclei far from stability is a key avenue of research in modern nuclear physics. These efforts are motivated by the continual observation of unexpected structure phenomena in nuclei with unusual proton-to-neutron ratios. In recent decades, laser spectroscopy techniques have made significant contributions in our understanding of exotic nuclei in different mass regions encompassing almost the entire nuclear chart. This is achieved through determining multiple fundamental properties of nuclear ground and isomeric states, such as nuclear spins, magnetic dipole and electric quadrupole moments and charge radii, via the measurement of hyperfine structures and isotope shifts in the atomic or ionic spectra of the nuclei of interest. These properties offer prominent tests of recently developed state-of-the-art nuclear theory and help to stimulate new developments in improving the many-body methods and nucleon–nucleon interactions at the core of these models. With the aim of exploring more exotic short-lived nuclei located ever closer to the proton and neutron driplines, laser spectroscopy techniques, with their continuous technological developments towards higher resolution and higher sensitivity, are extensively employed at current- and next-generation radioactive ion beam facilities worldwide. Ongoing efforts in parallel promise to improve the availability of these even more exotic species at next-generation facilities. Very recently, an innovative application of laser spectroscopy on molecules containing short-lived nuclei has been demonstrated offering additional opportunities for several fields of research, e.g. fundamental symmetry studies and astrophysics. In this review, the basic nuclear properties measurable with laser spectroscopy will be introduced. How these observables are associated with nuclear structure and nucleon–nucleon interactions will be discussed. Following this, a general overview of different laser spectroscopy methods will be given with particular emphasis on technical advancements reported in recent years. The main focus of this article is to review the numerous highlights that have resulted from studying exotic nuclei in different mass regions with laser spectroscopy techniques since the last edition in this series. Finally, the challenges facing the field in addition to future opportunities will be discussed.

研究远离稳定的不稳定原子核的性质和结构是现代核物理学研究的一个重要途径。这些努力的动机是对质子中子比不寻常的原子核中意想不到的结构现象的持续观察。近几十年来,激光光谱技术在我们对几乎涵盖整个核图的不同质量区域的奇异核的理解方面做出了重大贡献。这是通过确定核基态和同分异构体态的多种基本性质来实现的,例如核自旋、磁偶极子和电四极矩和电荷半径,通过测量感兴趣的原子核的原子或离子光谱中的超精细结构和同位素位移。这些性质为最近发展的最先进的核理论提供了突出的测试,并有助于促进在改进这些模型核心的多体方法和核子-核子相互作用方面的新发展。随着激光光谱学技术不断向更高分辨率和更高灵敏度的方向发展,激光光谱学技术在当前和下一代放射性离子束设施中得到了广泛的应用,其目的是探索更接近质子和中子线的奇异短寿命核。同时正在进行的努力有望在下一代设施中提高这些更外来物种的可用性。最近,激光光谱学在含有短寿命原子核的分子上的创新应用已经被证明为几个研究领域提供了额外的机会,例如基本对称性研究和天体物理学。本文介绍了用激光光谱法测量核的基本性质。这些可观测物如何与核结构和核子-核子相互作用相联系将被讨论。接下来,将对不同的激光光谱学方法进行概述,并特别强调近年来报道的技术进步。本文的主要重点是回顾自本系列的上一版以来,用激光光谱学技术研究不同质量区域的奇异核所产生的许多亮点。最后,将讨论该领域面临的挑战以及未来的机遇。
{"title":"Laser spectroscopy for the study of exotic nuclei","authors":"X.F. Yang ,&nbsp;S.J. Wang ,&nbsp;S.G. Wilkins ,&nbsp;R.F. Garcia Ruiz","doi":"10.1016/j.ppnp.2022.104005","DOIUrl":"https://doi.org/10.1016/j.ppnp.2022.104005","url":null,"abstract":"<div><p><span>Investigation into the properties and structure of unstable nuclei far from stability is a key avenue of research in modern nuclear physics. These efforts are motivated by the continual observation of unexpected structure phenomena in nuclei with unusual proton-to-neutron ratios. In recent decades, laser spectroscopy techniques have made significant contributions in our understanding of exotic nuclei in different mass regions encompassing almost the entire nuclear chart. This is achieved through determining multiple fundamental properties of nuclear ground and isomeric states, such as nuclear spins, magnetic dipole and electric </span>quadrupole<span><span> moments and charge radii, via the measurement of hyperfine structures<span> and isotope shifts<span> in the atomic or ionic spectra of the nuclei of interest. These properties offer prominent tests of recently developed state-of-the-art nuclear theory and help to stimulate new developments in improving the many-body methods and nucleon–nucleon interactions at the core of these models. With the aim of exploring more exotic short-lived nuclei located ever closer to the proton and neutron driplines, laser spectroscopy techniques, with their continuous technological developments towards higher resolution and higher sensitivity, are extensively employed at current- and next-generation radioactive ion beam facilities worldwide. Ongoing efforts in parallel promise to improve the availability of these even more exotic species at next-generation facilities. Very recently, an innovative application of laser spectroscopy on molecules containing short-lived nuclei has been demonstrated offering additional opportunities for several fields of research, e.g. fundamental symmetry studies and astrophysics. In this review, the basic nuclear properties measurable with laser spectroscopy will be introduced. How these observables are associated with </span></span></span>nuclear structure and nucleon–nucleon interactions will be discussed. Following this, a general overview of different laser spectroscopy methods will be given with particular emphasis on technical advancements reported in recent years. The main focus of this article is to review the numerous highlights that have resulted from studying exotic nuclei in different mass regions with laser spectroscopy techniques since the last edition in this series. Finally, the challenges facing the field in addition to future opportunities will be discussed.</span></p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"129 ","pages":"Article 104005"},"PeriodicalIF":9.6,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1750377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 25
期刊
Progress in Particle and Nuclear Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1