首页 > 最新文献

Progress in Particle and Nuclear Physics最新文献

英文 中文
Recent progress in low energy neutrino scattering physics and its implications for the standard and beyond the standard model physics 低能中微子散射物理学的最新进展及其对标准和超越标准模型物理学的意义
IF 9.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2023-08-31 DOI: 10.1016/j.ppnp.2023.104078
Vishvas Pandey
<div><p><span>Neutrinos continue to provide a testing ground for the structure of the standard model of </span>particle physics<span> as well as hints towards the physics beyond the standard model<span><span>. Neutrinos of energies spanning over several orders of magnitude, originating in many terrestrial and astrophysical processes, have been detected via various decay and interaction mechanisms. At MeV scales, there has been one elusive process, until a few years ago, known as coherent elastic neutrino-nucleus scattering (CEvNS) that was theoretically predicted over five decades ago but was never observed experimentally. The recent experimental observation of the CEvNS process by the COHERENT collaboration at a stopped pion neutrino source has inspired physicists across many subfields. This new way of detecting neutrinos has vital implications for nuclear </span>physics, high-energy physics, astrophysics, and beyond. CEvNS, being a low-energy process, provides a natural window to study light, weakly-coupled, new physics in the neutrino sector. Leveraging orders of magnitude higher CEvNS cross section, new physics can be searched with relatively small detectors.</span></span></p><p><span>In this review, we intend to provide the current status of low energy neutrino scattering physics and its implications for the standard and beyond the standard model physics. We discuss low energy sources of neutrinos with a focus on neutrinos from the stopped pions. Stopped pion sources cover energies in the tens of MeVs and are almost optimal for studying CEvNS. Several worldwide experimental programs have been or are being set up to detect CEvNS and new physics signals in the near future with complementary detection technologies and physics goals. We discuss the general formalism of calculating the tree-level CEvNS cross section and the estimated theoretical uncertainties on the CEvNS cross section stemming from different sources. We also discuss the inelastic scattering of tens of MeV neutrinos that have implications for </span>supernova<span> detection in future neutrino experiments. The stopped-pion facilities are also a near-ideal tens of MeV neutrino source to study inelastic neutrino-nucleus cross sections. We discuss how the CEvNS experiments can be used as a testing ground for the Standard Model (SM) weak physics as well as in searching for the Beyond the Standard Model (BSM) physics signals. Any deviation from the SM predicted event rate either with a change in the total event rate or with a change in the shape of the recoil spectrum, could indicate new contributions to the interaction cross-section. The SM implications include the study of weak nuclear form factor and weak mixing angle. The BSM studies include non-standard interactions, neutrino electromagnetic properties, and sterile neutrino searches. Stopped pion facilities are also a copious source of neutral and changed mesons that allow study of several dark sector physics scenarios such as ve
中微子继续为粒子物理学标准模型的结构提供了一个试验场,也为标准模型之外的物理学提供了线索。能量跨越几个数量级的中微子,起源于许多地球和天体物理过程,已经通过各种衰变和相互作用机制被探测到。在MeV尺度上,有一个难以捉摸的过程,直到几年前才被称为相干弹性中微子核散射(CEvNS),该过程在50多年前被理论上预测,但从未在实验中观察到。最近在一个停止的介子中微子源上进行的相干合作对CEvNS过程的实验观察启发了许多子领域的物理学家。这种探测中微子的新方法对核物理学、高能物理学、天体物理学等领域都具有重要意义。CEvNS作为一个低能过程,为研究中微子领域的光、弱耦合和新物理提供了一个天然的窗口。利用数量级更高的CEvNS横截面,可以用相对较小的探测器搜索新的物理。本文综述了低能中微子散射物理的研究现状及其对标准和超越标准模型物理的启示。我们讨论中微子的低能量源,重点讨论来自停止介子的中微子。停止介子源覆盖了几十mev的能量,几乎是研究CEvNS的最佳选择。在不久的将来,几个世界性的实验项目已经或正在建立,以检测CEvNS和新的物理信号,并具有互补的检测技术和物理目标。讨论了树级CEvNS截面计算的一般形式,以及不同来源下CEvNS截面的理论不确定度估计。我们还讨论了数十MeV中微子的非弹性散射,这对未来中微子实验中的超新星探测有意义。停止介子装置也是研究非弹性中微子核截面的近理想的几十MeV中微子源。我们讨论了如何将CEvNS实验用作标准模型(SM)弱物理以及寻找超越标准模型(BSM)物理信号的试验场。与SM预测的事件率的任何偏差,无论是总事件率的变化还是反冲谱形状的变化,都可能表明对相互作用截面有新的贡献。SM的意义包括弱核形状因子和弱混合角的研究。BSM研究包括非标准相互作用、中微子电磁特性和惰性中微子搜索。停止介子设施也是中性介子和改变介子的丰富来源,允许研究几个黑区物理场景,如矢量门户模型,疏轻暗物质以及类轴子粒子搜索。
{"title":"Recent progress in low energy neutrino scattering physics and its implications for the standard and beyond the standard model physics","authors":"Vishvas Pandey","doi":"10.1016/j.ppnp.2023.104078","DOIUrl":"10.1016/j.ppnp.2023.104078","url":null,"abstract":"&lt;div&gt;&lt;p&gt;&lt;span&gt;Neutrinos continue to provide a testing ground for the structure of the standard model of &lt;/span&gt;particle physics&lt;span&gt; as well as hints towards the physics beyond the standard model&lt;span&gt;&lt;span&gt;. Neutrinos of energies spanning over several orders of magnitude, originating in many terrestrial and astrophysical processes, have been detected via various decay and interaction mechanisms. At MeV scales, there has been one elusive process, until a few years ago, known as coherent elastic neutrino-nucleus scattering (CEvNS) that was theoretically predicted over five decades ago but was never observed experimentally. The recent experimental observation of the CEvNS process by the COHERENT collaboration at a stopped pion neutrino source has inspired physicists across many subfields. This new way of detecting neutrinos has vital implications for nuclear &lt;/span&gt;physics, high-energy physics, astrophysics, and beyond. CEvNS, being a low-energy process, provides a natural window to study light, weakly-coupled, new physics in the neutrino sector. Leveraging orders of magnitude higher CEvNS cross section, new physics can be searched with relatively small detectors.&lt;/span&gt;&lt;/span&gt;&lt;/p&gt;&lt;p&gt;&lt;span&gt;In this review, we intend to provide the current status of low energy neutrino scattering physics and its implications for the standard and beyond the standard model physics. We discuss low energy sources of neutrinos with a focus on neutrinos from the stopped pions. Stopped pion sources cover energies in the tens of MeVs and are almost optimal for studying CEvNS. Several worldwide experimental programs have been or are being set up to detect CEvNS and new physics signals in the near future with complementary detection technologies and physics goals. We discuss the general formalism of calculating the tree-level CEvNS cross section and the estimated theoretical uncertainties on the CEvNS cross section stemming from different sources. We also discuss the inelastic scattering of tens of MeV neutrinos that have implications for &lt;/span&gt;supernova&lt;span&gt; detection in future neutrino experiments. The stopped-pion facilities are also a near-ideal tens of MeV neutrino source to study inelastic neutrino-nucleus cross sections. We discuss how the CEvNS experiments can be used as a testing ground for the Standard Model (SM) weak physics as well as in searching for the Beyond the Standard Model (BSM) physics signals. Any deviation from the SM predicted event rate either with a change in the total event rate or with a change in the shape of the recoil spectrum, could indicate new contributions to the interaction cross-section. The SM implications include the study of weak nuclear form factor and weak mixing angle. The BSM studies include non-standard interactions, neutrino electromagnetic properties, and sterile neutrino searches. Stopped pion facilities are also a copious source of neutral and changed mesons that allow study of several dark sector physics scenarios such as ve","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"134 ","pages":"Article 104078"},"PeriodicalIF":9.6,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43547721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase transition in particle physics 粒子物理中的相变
IF 9.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2023-07-20 DOI: 10.1016/j.ppnp.2023.104070
Gert Aarts , Joerg Aichelin , Chris Allton , Andreas Athenodorou , Dimitrios Bachtis , Claudio Bonanno , Nora Brambilla , Elena Bratkovskaya , Mattia Bruno , Michele Caselle , Costanza Conti , Roberto Contino , Leonardo Cosmai , Francesca Cuteri , Luigi Del Debbio , Massimo D’Elia , Petros Dimopoulos , Francesco Di Renzo , Tetyana Galatyuk , Jana N. Guenther , Uwe-Jens Wiese

Phase transitions in a non-perturbative regime can be studied by ab initio Lattice Field Theory methods. The status and future research directions for LFT investigations of Quantum Chromo-Dynamics under extreme conditions are reviewed, including properties of hadrons and of the hypothesized QCD axion as inferred from QCD topology in different phases. We discuss phase transitions in strong interactions in an extended parameter space, and the possibility of model building for Dark Matter and Electro-Weak Symmetry Breaking. Methodological challenges are addressed as well, including new developments in Artificial Intelligence geared towards the identification of different phases and transitions.

非微扰状态下的相变可以用从头算晶格场理论方法来研究。综述了极端条件下量子色动力学LFT研究的现状和未来的研究方向,包括强子的性质和从不同相的QCD拓扑推断的假设QCD轴子的性质。我们讨论了扩展参数空间中强相互作用的相变,以及建立暗物质和电弱对称破缺模型的可能性。方法上的挑战也得到了解决,包括人工智能的新发展,旨在识别不同的阶段和转变。
{"title":"Phase transition in particle physics","authors":"Gert Aarts ,&nbsp;Joerg Aichelin ,&nbsp;Chris Allton ,&nbsp;Andreas Athenodorou ,&nbsp;Dimitrios Bachtis ,&nbsp;Claudio Bonanno ,&nbsp;Nora Brambilla ,&nbsp;Elena Bratkovskaya ,&nbsp;Mattia Bruno ,&nbsp;Michele Caselle ,&nbsp;Costanza Conti ,&nbsp;Roberto Contino ,&nbsp;Leonardo Cosmai ,&nbsp;Francesca Cuteri ,&nbsp;Luigi Del Debbio ,&nbsp;Massimo D’Elia ,&nbsp;Petros Dimopoulos ,&nbsp;Francesco Di Renzo ,&nbsp;Tetyana Galatyuk ,&nbsp;Jana N. Guenther ,&nbsp;Uwe-Jens Wiese","doi":"10.1016/j.ppnp.2023.104070","DOIUrl":"https://doi.org/10.1016/j.ppnp.2023.104070","url":null,"abstract":"<div><p>Phase transitions in a non-perturbative regime can be studied by <em>ab initio</em><span><span><span> Lattice Field Theory methods. The status and future research directions for LFT investigations of Quantum Chromo-Dynamics under extreme conditions are reviewed, including properties of hadrons<span> and of the hypothesized QCD axion as inferred from QCD </span></span>topology in different phases. We discuss phase transitions in strong interactions in an extended parameter space, and the possibility of model building for Dark Matter and Electro-Weak </span>Symmetry Breaking. Methodological challenges are addressed as well, including new developments in Artificial Intelligence geared towards the identification of different phases and transitions.</span></p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"133 ","pages":"Article 104070"},"PeriodicalIF":9.6,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3463437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Experimental exploration of the 3D nucleon structure 三维核子结构的实验探索
IF 9.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2023-07-03 DOI: 10.1016/j.ppnp.2023.104069
Stefan Diehl

Extensive experimental and theoretical explorations over the last decades showed that the nucleon (proton/neutron) is not just a simple system of 3 quarks bound by gluons, but a complex system of valence and sea quarks as well as gluons (summarized as partons) which are all interacting with each other and moving relative to each other, following the rules of quantum chromo dynamics (QCD). To understand how the properties of these colored building blocks are related to the basic properties of the nucleon like its mass, its spin or its charge, a full understanding of the relevant effective degrees of freedom and of the effective interactions at large distances is required. In the classical picture of parton dynamics in high energy interactions the description is often simplified into two cases. On the one side the classical form factors, providing a 2D picture of the transverse position distribution and on the other side, the one-dimensional picture of a fast moving nucleon as a collection of co-linearly moving quarks and gluons, described in terms of the longitudinal momentum fraction in parton distribution functions. However, recent experimental and theoretical advances during the last two decades showed, that such a simple picture is not adequate for a full description, especially if transverse spin dependent observables are involved. It turned out, that the intrinsic transverse motion of partons and also the correlation between momentum and position information have to be considered, requiring a full 3-dimensional understanding of the nucleon structure. This review will give an overview on the main experimental data for 3D nucleon structure studies, available from lepton and hadron scattering and its interpretation in terms of generalized parton distributions (GPDs) and transverse momentum dependent parton distributions (TMDs). Recent global fits of both types of distribution functions based on experimental data and their physics content will be presented and discussed on the way to a full 3D imaging of the nucleon. Furthermore, an overview of current and future trends and new perspectives in the field will be provided.

几十年来大量的实验和理论探索表明,核子(质子/中子)不仅仅是一个由胶子结合的3个夸克组成的简单系统,而是一个由价夸克、海夸克和胶子(概括为部分)组成的复杂系统,它们都遵循量子色动力学(QCD)的规则,相互作用,相互相对运动。要了解这些彩色构件的性质是如何与核子的基本性质(如质量、自旋或电荷)相关联的,就需要充分了解相关的有效自由度和远距离的有效相互作用。在高能相互作用中,经典的部分子动力学描述通常被简化为两种情况。一边是经典的形式因子,提供了横向位置分布的二维图像,另一边是快速运动的核子作为共线性运动的夸克和胶子的集合的一维图像,用部分子分布函数中的纵向动量分数来描述。然而,最近二十年来的实验和理论进展表明,这样一个简单的图像不足以进行完整的描述,特别是如果涉及到横向自旋相关的观测值。事实证明,必须考虑粒子的固有横向运动以及动量和位置信息之间的相关性,这需要对核子结构有一个完整的三维理解。本文综述了轻子和强子散射中三维核子结构研究的主要实验数据及其广义部分子分布(GPDs)和横向动量相关部分子分布(TMDs)的解释。最近基于实验数据和它们的物理内容的两种类型的分布函数的全局拟合将在实现核子的完整3D成像的过程中提出和讨论。此外,还将概述当前和未来的趋势以及该领域的新观点。
{"title":"Experimental exploration of the 3D nucleon structure","authors":"Stefan Diehl","doi":"10.1016/j.ppnp.2023.104069","DOIUrl":"https://doi.org/10.1016/j.ppnp.2023.104069","url":null,"abstract":"<div><p>Extensive experimental and theoretical explorations over the last decades showed that the nucleon<span><span> (proton/neutron) is not just a simple system of 3 quarks bound by gluons, but a complex system of valence and sea quarks as well as gluons (summarized as partons) which are all interacting with each other and moving relative to each other, following the rules of quantum chromo dynamics (QCD). To understand how the properties of these colored building blocks are related to the basic properties of the nucleon like its mass, its spin or its charge, a full understanding of the relevant effective degrees of freedom and of the effective interactions at large distances is required. In the classical picture of parton dynamics in high energy interactions the description is often simplified into two cases. On the one side the classical form factors, providing a 2D picture of the transverse position distribution and on the other side, the one-dimensional picture of a fast moving nucleon as a collection of co-linearly moving quarks and gluons, described in terms of the longitudinal momentum fraction in parton distribution functions. However, recent experimental and theoretical advances during the last two decades showed, that such a simple picture is not adequate for a full description, especially if transverse spin dependent observables are involved. It turned out, that the intrinsic transverse motion of </span>partons<span> and also the correlation between momentum and position information have to be considered, requiring a full 3-dimensional understanding of the nucleon structure. This review will give an overview on the main experimental data for 3D nucleon structure studies, available from lepton<span><span> and hadron scattering and its interpretation in terms of generalized parton distributions (GPDs) and </span>transverse momentum<span> dependent parton distributions (TMDs). Recent global fits of both types of distribution functions based on experimental data and their physics content will be presented and discussed on the way to a full 3D imaging of the nucleon. Furthermore, an overview of current and future trends and new perspectives in the field will be provided.</span></span></span></span></p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"133 ","pages":"Article 104069"},"PeriodicalIF":9.6,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2956412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “The thick gas electron multiplier and its derivatives: Physics, technologies and applications” [Prog. Part. Nucl. Phys. 130 (2023) 104029] “厚气电子倍增器及其衍生物:物理、技术和应用”的勘误表。部分。诊断。物理学报,130 (2023)104029]
IF 9.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2023-07-01 DOI: 10.1016/j.ppnp.2023.104042
Shikma Bressler, Luca Moleri, Abhik Jash, Andrea Tesi, Darina Zavazieva
{"title":"Corrigendum to “The thick gas electron multiplier and its derivatives: Physics, technologies and applications” [Prog. Part. Nucl. Phys. 130 (2023) 104029]","authors":"Shikma Bressler,&nbsp;Luca Moleri,&nbsp;Abhik Jash,&nbsp;Andrea Tesi,&nbsp;Darina Zavazieva","doi":"10.1016/j.ppnp.2023.104042","DOIUrl":"https://doi.org/10.1016/j.ppnp.2023.104042","url":null,"abstract":"","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"131 ","pages":"Article 104042"},"PeriodicalIF":9.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2643927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solar neutrino physics 太阳中微子物理学
IF 9.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2023-07-01 DOI: 10.1016/j.ppnp.2023.104043
Xun-Jie Xu , Zhe Wang , Shaomin Chen

As a free, intensive, rarely interactive, and well directional messenger, solar neutrinos have been driving both solar physics and neutrino physics developments for more than half a century. Since more extensive and advanced neutrino experiments are under construction, being planned or proposed, we are striving toward an era of precise and comprehensive measurement of solar neutrinos in the next decades. In this article, we review recent theoretical and experimental progress achieved in solar neutrino physics. We present not only an introduction to neutrinos from the standard solar model and the standard flavor evolution, but also a compilation of a variety of new physics that could affect and hence be probed by solar neutrinos. After reviewing the latest techniques and issues involved in the measurement of solar neutrino spectra and background reduction, we provide our anticipation on the physics gains from the new generation of neutrino experiments.

半个多世纪以来,太阳中微子作为一种自由、密集、很少相互作用、方向性好的信使,一直推动着太阳物理学和中微子物理学的发展。由于更广泛、更先进的中微子实验正在建设、计划或提议中,我们正努力在未来几十年里进入一个精确、全面测量太阳中微子的时代。本文综述了近年来在太阳中微子物理方面取得的理论和实验进展。我们不仅介绍了来自标准太阳模型的中微子和标准风味的演变,而且还汇编了各种可能影响太阳中微子并因此被探测的新物理。在回顾了太阳中微子光谱测量和背景还原的最新技术和问题之后,我们对新一代中微子实验的物理收获进行了展望。
{"title":"Solar neutrino physics","authors":"Xun-Jie Xu ,&nbsp;Zhe Wang ,&nbsp;Shaomin Chen","doi":"10.1016/j.ppnp.2023.104043","DOIUrl":"https://doi.org/10.1016/j.ppnp.2023.104043","url":null,"abstract":"<div><p>As a free, intensive, rarely interactive, and well directional messenger, solar neutrinos<span> have been driving both solar physics and neutrino physics developments for more than half a century. Since more extensive and advanced neutrino experiments are under construction, being planned or proposed, we are striving toward an era of precise and comprehensive measurement of solar neutrinos in the next decades. In this article, we review recent theoretical and experimental progress achieved in solar neutrino physics. We present not only an introduction to neutrinos from the standard solar model and the standard flavor evolution, but also a compilation of a variety of new physics that could affect and hence be probed by solar neutrinos. After reviewing the latest techniques and issues involved in the measurement of solar neutrino spectra and background reduction, we provide our anticipation on the physics gains from the new generation of neutrino experiments.</span></p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"131 ","pages":"Article 104043"},"PeriodicalIF":9.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3451552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Primordial black hole constraints with Hawking radiation—A review 具有霍金辐射的原始黑洞约束——综述
IF 9.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2023-07-01 DOI: 10.1016/j.ppnp.2023.104040
Jérémy Auffinger

Primordial black holes are under intense scrutiny since the detection of gravitational waves from mergers of Solar-mass black holes in 2015. More recently, the development of numerical tools and the precision observational data have rekindled the effort to constrain the black hole abundance in the lower mass range, that is M<1023g. In particular, primordial black holes of asteroid mass M10171023g may represent 100% of dark matter. While the microlensing and stellar disruption constraints on their abundance are weaker than originally proposed, Hawking radiation of these black holes seems to be the primary method for detecting or constraining such black holes. Hawking radiation constraints on primordial black holes date back to the first papers by Hawking. Black holes evaporating in the early universe may have generated the baryon asymmetry, modified Big Bang nucleosynthesis, distorted the cosmic microwave background and/or produced cosmological backgrounds of stable particles such as photons and neutrinos. At the end of their lifetime, exploding primordial black holes would produce high energy cosmic rays that would provide invaluable access to the physics at energies up to the Planck scale. In this review, we describe the main principles of Hawking radiation, which lie at the intersection of general relativity, quantum mechanics and statistical physics/thermodynamics. We then present an up-to-date status of the different constraints on primordial black holes that rely on the evaporation phenomenon, and give, where relevant, prospects for future work. In particular, we also discuss non-standard black holes and the emission of Beyond the Standard Model degrees of freedom.

自2015年探测到太阳质量黑洞合并产生的引力波以来,太初黑洞一直受到密切关注。最近,数值工具的发展和精确的观测数据重新点燃了将黑洞丰度限制在较低质量范围(即1023g)的努力。特别是,小行星质量为M ~ 1017-1023g的原始黑洞可能代表了100%的暗物质。虽然微透镜效应和恒星破坏对它们丰度的限制比最初提出的要弱,但这些黑洞的霍金辐射似乎是探测或限制此类黑洞的主要方法。霍金辐射对原始黑洞的限制可以追溯到霍金的第一篇论文。早期宇宙中蒸发的黑洞可能产生了重子不对称性,改变了大爆炸核合成,扭曲了宇宙微波背景和/或产生了稳定粒子(如光子和中微子)的宇宙背景。在它们生命的最后,爆炸的原始黑洞会产生高能宇宙射线,这将为研究能量高达普朗克尺度的物理学提供宝贵的途径。在这篇综述中,我们描述了霍金辐射的主要原理,它位于广义相对论,量子力学和统计物理/热力学的交叉点。然后,我们介绍了依赖于蒸发现象的原始黑洞的不同限制的最新状态,并在相关的情况下给出了未来工作的前景。特别地,我们还讨论了非标准黑洞和超越标准模型自由度的发射。
{"title":"Primordial black hole constraints with Hawking radiation—A review","authors":"Jérémy Auffinger","doi":"10.1016/j.ppnp.2023.104040","DOIUrl":"https://doi.org/10.1016/j.ppnp.2023.104040","url":null,"abstract":"<div><p><span>Primordial black holes<span> are under intense scrutiny since the detection of gravitational waves from mergers of Solar-mass black holes in 2015. More recently, the development of numerical tools and the precision observational data have rekindled the effort to constrain the black hole abundance in the lower mass range, that is </span></span><span><math><mrow><mi>M</mi><mo>&lt;</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>23</mn></mrow></msup></mrow></math></span>g. In particular, primordial black holes of asteroid mass <span><math><mrow><mi>M</mi><mo>∼</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>17</mn></mrow></msup></mrow></math></span>–<span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>23</mn></mrow></msup><mspace></mspace></mrow></math></span><span><span><span><span>g may represent 100% of dark matter. While the microlensing and stellar disruption constraints on their abundance are weaker than originally proposed, </span>Hawking radiation<span> of these black holes seems to be the primary method for detecting or constraining such black holes. Hawking radiation constraints on primordial black holes date back to the first papers by Hawking. Black holes evaporating in the early universe may have generated the </span></span>baryon asymmetry, modified </span>Big Bang nucleosynthesis<span><span>, distorted the cosmic microwave background and/or produced cosmological backgrounds of stable particles such as photons and neutrinos. At the end of their lifetime, exploding primordial black holes would produce </span>high energy cosmic rays<span><span><span> that would provide invaluable access to the physics at energies up to the Planck scale. In this review, we describe the main principles of Hawking radiation, which lie at the intersection of </span>general relativity, </span>quantum mechanics<span> and statistical physics/thermodynamics. We then present an up-to-date status of the different constraints on primordial black holes that rely on the evaporation phenomenon, and give, where relevant, prospects for future work. In particular, we also discuss non-standard black holes and the emission of Beyond the Standard Model degrees of freedom.</span></span></span></span></p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"131 ","pages":"Article 104040"},"PeriodicalIF":9.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3452580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Production of bottomonia states in proton+proton and heavy-ion collisions 质子+质子和重离子碰撞中底态的产生
IF 9.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2023-07-01 DOI: 10.1016/j.ppnp.2023.104044
Vineet Kumar , Prashant Shukla , Abhijit Bhattacharyya

In this work, we review the experimental and theoretical developments of bottomonia production in proton+proton and heavy-ion collisions. The bottomonia production process is proving to be one of the most robust processes to investigate the fundamental aspects of Quantum Chromodynamics at both low and high temperatures. The LHC experiments in the last decade have produced large statistics of bottomonia states in wide kinematic ranges in various collision systems. The bottomonia have three Υ S-states which are reconstructed in dilepton invariant mass channel with high mass resolution by LHC detectors and P-states are measured via their decay to S-states. We start with the details of measurements in proton+proton collisions and their understanding in terms of various effective theoretical models. Here we cover both the Tevatron and LHC measurements with s spanning from 1.8 TeV to 13 TeV. The bottomonia states have particularly been very good probes to understand strongly interacting matter produced in heavy-ion collisions. The Pb+Pb collisions have been performed at sNN = 2.76 TeV and 5.02 TeV at LHC. This led to the detailed study of the modification of bottomonia yields as a function of various observables and collision energy. At the same time, the improved results of bottomonia production became available from RHIC experiments which have proven to be useful for a quantitative comparison. A systematic study of bottomonia production in p+p, p+Pb and Pb+Pb has been very useful to understand the medium effects in these collision systems. We review some of the (if not all the) models of bottomonia evolution due to various processes in a large dynamically evolving medium and discuss these in comparison with the measurements.

本文综述了质子+质子和重离子碰撞产生底波的实验和理论进展。事实证明,在低温和高温下研究量子色动力学的基本方面,底onia生产过程是最可靠的过程之一。近十年来的大型强子对撞机实验已经在各种碰撞系统的大运动范围内产生了大量的底态统计数据。底粒子有三个Υ s态,它们由LHC探测器在高质量分辨率的双轻子不变质量通道中重建,并通过衰变到s态来测量p态。我们从质子+质子碰撞的测量细节开始,并根据各种有效的理论模型来理解它们。在这里,我们涵盖了Tevatron和LHC的测量,s从1.8 TeV到13 TeV。底波态是了解重离子碰撞中产生的强相互作用物质的非常好的探测器。在大型强子对撞机上分别在sNN = 2.76 TeV和5.02 TeV条件下进行了Pb+Pb碰撞。这导致了作为各种观测值和碰撞能量的函数的底部产量的修改的详细研究。同时,从RHIC实验中获得了底藻产量的改进结果,这对定量比较是有用的。系统研究p+p、p+Pb和Pb+Pb的底生现象,对了解这些碰撞体系中的介质效应具有重要意义。我们回顾了一些(如果不是全部的话)在一个大的动态发展的介质中由于各种过程的底栖进化模型,并与测量结果进行了比较。
{"title":"Production of bottomonia states in proton+proton and heavy-ion collisions","authors":"Vineet Kumar ,&nbsp;Prashant Shukla ,&nbsp;Abhijit Bhattacharyya","doi":"10.1016/j.ppnp.2023.104044","DOIUrl":"https://doi.org/10.1016/j.ppnp.2023.104044","url":null,"abstract":"<div><p><span><span>In this work, we review the experimental and theoretical developments of bottomonia production in proton+proton and heavy-ion collisions. The bottomonia production process is proving to be one of the most robust processes to investigate the fundamental aspects of Quantum Chromodynamics at both low and high temperatures. The </span>LHC experiments in the last decade have produced large statistics of bottomonia states in wide kinematic ranges in various collision systems. The bottomonia have three </span><span><math><mi>Υ</mi></math></span> S-states which are reconstructed in dilepton invariant mass channel with high mass resolution by LHC detectors and P-states are measured via their decay to S-states. We start with the details of measurements in proton+proton collisions and their understanding in terms of various effective theoretical models. Here we cover both the Tevatron and LHC measurements with <span><math><msqrt><mrow><mi>s</mi></mrow></msqrt></math></span> spanning from 1.8 TeV to 13 TeV. The bottomonia states have particularly been very good probes to understand strongly interacting matter produced in heavy-ion collisions. The Pb+Pb collisions have been performed at <span><math><msqrt><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>N</mi><mi>N</mi></mrow></msub></mrow></msqrt></math></span><span> = 2.76 TeV and 5.02 TeV at LHC. This led to the detailed study of the modification of bottomonia yields as a function of various observables and collision energy. At the same time, the improved results of bottomonia production became available from RHIC experiments which have proven to be useful for a quantitative comparison. A systematic study of bottomonia production in p+p, p+Pb and Pb+Pb has been very useful to understand the medium effects in these collision systems. We review some of the (if not all the) models of bottomonia evolution due to various processes in a large dynamically evolving medium and discuss these in comparison with the measurements.</span></p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"131 ","pages":"Article 104044"},"PeriodicalIF":9.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1635562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The lowest order constrained variational (LOCV) method for the many-body problems and its applications 多体问题的最低阶约束变分方法及其应用
IF 9.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2023-07-01 DOI: 10.1016/j.ppnp.2023.104047
Majid Modarres , Azar Tafrihi
<div><p>One always looks for a simplified technique and desirable formalism, to solve the Hamiltonian, and to find the wave function, energy, etc, of a many-body system. The lowest order constrained variational (<span><math><mrow><mi>L</mi><mi>O</mi><mi>C</mi><mi>V</mi></mrow></math></span>) method is designed such that, to fulfill the above requirements. The <span><math><mrow><mi>L</mi><mi>O</mi><mi>C</mi><mi>V</mi></mrow></math></span> formalism is based on the first two, i.e., <strong>lowest order</strong>, terms of the cluster expansion theory with the <span><math><mrow><mi>J</mi><mi>a</mi><mi>s</mi><mi>t</mi><mi>r</mi><mi>o</mi><mi>w</mi></mrow></math></span> correlation functions as its inputs. A <strong>constraint</strong> is imposed for the normalization of the total correlated two-body wave functions, which also forces the cluster expansion series to converge very rapidly. The <strong>variation</strong> of <span><math><mrow><mi>J</mi><mi>a</mi><mi>s</mi><mi>t</mi><mi>r</mi><mi>o</mi><mi>w</mi></mrow></math></span> correlation functions subjected to the above normalization constraint, leads to the sets of Euler–Lagrange equations, which generates the required correlation functions. In order to satisfy the normalization constraint exactly, one has to define the long-range behaviors, for the two-body correlation functions, i.e., the Pauli function. The primary developments of <span><math><mrow><mi>L</mi><mi>O</mi><mi>C</mi><mi>V</mi></mrow></math></span> formalism, and some of its applications were reviewed in this journal by Max Irvine in 1981. Since then (1981–2022), the various extensions and applications of the <span><math><mrow><mi>L</mi><mi>O</mi><mi>C</mi><mi>V</mi></mrow></math></span> method are reported through the several published articles (nearly 180 items), which are the subjects of this review. (i) It is shown that the <span><math><mrow><mi>L</mi><mi>O</mi><mi>C</mi><mi>V</mi></mrow></math></span> results can be, as good as, the various more complicated and computer time-consuming techniques, such as the Fermi <span><math><mrow><mi>h</mi><mi>y</mi><mi>p</mi><mi>e</mi><mi>r</mi><mi>n</mi><mi>e</mi><mi>t</mi><mi>t</mi><mi>e</mi><mi>d</mi></mrow></math></span> chain (<span><math><mrow><mi>F</mi><mi>H</mi><mi>N</mi><mi>C</mi></mrow></math></span>), Monte Carlo (<span><math><mrow><mi>M</mi><mi>C</mi></mrow></math></span>), G-matrix, etc, calculations. (ii) Moreover, the <span><math><mrow><mi>L</mi><mi>O</mi><mi>C</mi><mi>V</mi></mrow></math></span> method is further developed to deal with the more sophisticated interactions, such as the <span><math><mrow><mi>A</mi><mi>V</mi><mn>18</mn></mrow></math></span>, <span><math><mrow><mi>U</mi><mi>V</mi><mn>14</mn></mrow></math></span>, etc, nucleon–nucleon potentials, using the state-dependent correlation functions, and applicable to perform the finite temperature calculations. The extended <span><math><mrow><mi>L</mi><mi>O</mi><mi>C</mi><mi>V</mi></mrow></math></span>(<span><math><mrow>
人们总是在寻找一种简化的技术和理想的形式,来求解哈密顿函数,并找到多体系统的波函数、能量等。为了满足上述要求,设计了最低阶约束变分(LOCV)方法。LOCV形式是基于Jastrow相关函数作为输入的聚类展开理论的前两个项,即最低阶项。对总相关两体波函数的归一化施加了约束,这也迫使簇展开级数收敛得非常快。在上述归一化约束下,Jastrow相关函数的变化得到欧拉-拉格朗日方程组,这些方程组生成所需的相关函数。为了精确地满足归一化约束,必须定义两体相关函数的远程行为,即泡利函数。1981年,Max Irvine在本刊上综述了LOCV形式主义的主要发展及其一些应用。从那时起(1981-2022),通过几篇已发表的文章(近180项)报道了LOCV方法的各种扩展和应用,这些文章是本次综述的主题。(i)证明了LOCV的结果可以像费米超网络链(FHNC)、蒙特卡罗(MC)、g矩阵等各种更复杂和计算机耗时的技术一样好。(ii)此外,利用状态相关函数进一步发展了LOCV方法,以处理更复杂的相互作用,如AV18、UV14等核子-核子势,并适用于执行有限温度计算。对于状态无关的媒体,还引入了扩展的LOCV(ELOCV)方法。(iii)通过计算具有状态相关函数的三体聚类序列来检验其收敛性,这证实了旧的(1979)状态平均预测。最后,对具有和不具有三体力、有限核、液氦3、中子星等核和β -稳定物质进行了应用,并与其他多体技术进行了比较。正如我们之前所说的,在这次审查中,我们肯定会通过上述大部分项目。
{"title":"The lowest order constrained variational (LOCV) method for the many-body problems and its applications","authors":"Majid Modarres ,&nbsp;Azar Tafrihi","doi":"10.1016/j.ppnp.2023.104047","DOIUrl":"https://doi.org/10.1016/j.ppnp.2023.104047","url":null,"abstract":"&lt;div&gt;&lt;p&gt;One always looks for a simplified technique and desirable formalism, to solve the Hamiltonian, and to find the wave function, energy, etc, of a many-body system. The lowest order constrained variational (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;) method is designed such that, to fulfill the above requirements. The &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; formalism is based on the first two, i.e., &lt;strong&gt;lowest order&lt;/strong&gt;, terms of the cluster expansion theory with the &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; correlation functions as its inputs. A &lt;strong&gt;constraint&lt;/strong&gt; is imposed for the normalization of the total correlated two-body wave functions, which also forces the cluster expansion series to converge very rapidly. The &lt;strong&gt;variation&lt;/strong&gt; of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mi&gt;o&lt;/mi&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; correlation functions subjected to the above normalization constraint, leads to the sets of Euler–Lagrange equations, which generates the required correlation functions. In order to satisfy the normalization constraint exactly, one has to define the long-range behaviors, for the two-body correlation functions, i.e., the Pauli function. The primary developments of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; formalism, and some of its applications were reviewed in this journal by Max Irvine in 1981. Since then (1981–2022), the various extensions and applications of the &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; method are reported through the several published articles (nearly 180 items), which are the subjects of this review. (i) It is shown that the &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; results can be, as good as, the various more complicated and computer time-consuming techniques, such as the Fermi &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; chain (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;), Monte Carlo (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;), G-matrix, etc, calculations. (ii) Moreover, the &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; method is further developed to deal with the more sophisticated interactions, such as the &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mn&gt;18&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mn&gt;14&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, etc, nucleon–nucleon potentials, using the state-dependent correlation functions, and applicable to perform the finite temperature calculations. The extended &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;\u0000(&lt;span&gt;&lt;math&gt;&lt;mrow&gt;","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"131 ","pages":"Article 104047"},"PeriodicalIF":9.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1869833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Precision studies of QCD in the low energy domain of the EIC EIC低能域QCD的精度研究
IF 9.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2023-07-01 DOI: 10.1016/j.ppnp.2023.104032
V.D. Burkert , L. Elouadrhiri , A. Afanasev , J. Arrington , M. Contalbrigo , W. Cosyn , A. Deshpande , D.I. Glazier , X. Ji , S. Liuti , Y. Oh , D. Richards , T. Satogata , A. Vossen , H. Abdolmaleki , A. Albataineh , C.A. Aidala , C. Alexandrou , H. Avagyan , A. Bacchetta , J. Zhou

This White Paper aims at highlighting the important benefits in the science reach of the EIC. High luminosity operation is generally desirable, as it enables producing and harvesting scientific results in a shorter time period. It becomes crucial for programs that would require many months or even years of operation at lower luminosity.

本白皮书旨在强调EIC在科学领域的重要利益。高亮度操作通常是可取的,因为它可以在更短的时间内产生和收获科学结果。对于需要在较低亮度下运行数月甚至数年的程序来说,这一点至关重要。
{"title":"Precision studies of QCD in the low energy domain of the EIC","authors":"V.D. Burkert ,&nbsp;L. Elouadrhiri ,&nbsp;A. Afanasev ,&nbsp;J. Arrington ,&nbsp;M. Contalbrigo ,&nbsp;W. Cosyn ,&nbsp;A. Deshpande ,&nbsp;D.I. Glazier ,&nbsp;X. Ji ,&nbsp;S. Liuti ,&nbsp;Y. Oh ,&nbsp;D. Richards ,&nbsp;T. Satogata ,&nbsp;A. Vossen ,&nbsp;H. Abdolmaleki ,&nbsp;A. Albataineh ,&nbsp;C.A. Aidala ,&nbsp;C. Alexandrou ,&nbsp;H. Avagyan ,&nbsp;A. Bacchetta ,&nbsp;J. Zhou","doi":"10.1016/j.ppnp.2023.104032","DOIUrl":"https://doi.org/10.1016/j.ppnp.2023.104032","url":null,"abstract":"<div><p>This White Paper aims at highlighting the important benefits in the science reach of the EIC. High luminosity operation is generally desirable, as it enables producing and harvesting scientific results in a shorter time period. It becomes crucial for programs that would require many months or even years of operation at lower luminosity.</p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"131 ","pages":"Article 104032"},"PeriodicalIF":9.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1635561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
d∗(2380) in a chiral constituent quark model 手性组分夸克模型中的D * (2380)
IF 9.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Pub Date : 2023-07-01 DOI: 10.1016/j.ppnp.2023.104045
Yubing Dong , Pengnian Shen , Zongye Zhang
<div><p>After a brief review of the experimental findings of <span><math><mrow><msup><mrow><mi>d</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><mn>2380</mn><mo>)</mo></mrow></mrow></math></span> and several theoretical efforts to interpret its structure, the study of <span><math><mrow><msup><mrow><mi>d</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><mn>2380</mn><mo>)</mo></mrow></mrow></math></span> on the quark–gluon degrees of freedom is presented in detail. On the basis of the <span><math><mrow><mi>S</mi><mi>U</mi><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span><span> chiral constituent quark model and Resonating Group Method, the mass, width, wave function, and partial widths of almost all possible strong decays of the </span><span><math><mrow><msup><mrow><mi>d</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><mn>2380</mn><mo>)</mo></mrow></mrow></math></span> state with the <span><math><mrow><mi>Δ</mi><mi>Δ</mi><mo>+</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>8</mn></mrow></msub><msub><mrow><mi>C</mi></mrow><mrow><mn>8</mn></mrow></msub></mrow></math></span> structure are evaluated. The obtained results agree with the data quite well, which implies that <span><math><mrow><msup><mrow><mi>d</mi></mrow><mrow><mo>∗</mo></mrow></msup><mrow><mo>(</mo><mn>2380</mn><mo>)</mo></mrow></mrow></math></span><span> could be assigned as a compact hexaquark system with the hidden-color component being dominant. The electromagnetic characteristics of </span><span><math><msup><mrow><mi>d</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span><span>, such as the charge distribution, charge radius, multipole moment, and etc. are further calculated. Because of the sensitivity of these physical quantities to different interpretations of </span><span><math><msup><mrow><mi>d</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>, they can be used as additional physical quantities to distinguish the structures of <span><math><msup><mrow><mi>d</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>. Moreover, the production of <span><math><msup><mrow><mi>d</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> from the <span><math><mrow><mi>γ</mi><mi>d</mi></mrow></math></span> reaction, from the <span><math><mrow><mi>Υ</mi><mrow><mo>(</mo><mi>n</mi><mi>S</mi><mo>)</mo></mrow></mrow></math></span> decays in the <span><math><mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup></mrow></math></span> annihilations, and from the <span><math><mrow><mi>p</mi><mover><mrow><mi>p</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow></math></span> annihilation at forthcoming <span><math><mover><mrow><mi>P</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span>anda are also predicted and calculated. According to these predictions, experiments on Belle II, <span><math><mover><mrow><mi>P</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span>anda, BEPC, and other lar
在简要回顾了d *(2380)的实验结果和解释其结构的几个理论努力之后,详细介绍了d *(2380)对夸克-胶子自由度的研究。基于SU(3)手性组分夸克模型和共振群方法,对具有ΔΔ+C8C8结构的d *(2380)态几乎所有可能的强衰变的质量、宽度、波函数和部分宽度进行了计算。所得结果与实验数据吻合较好,表明d *(2380)可以被归为一个以隐色分量为主的紧致六夸克体系。进一步计算了d *的电荷分布、电荷半径、多极矩等电磁特性。由于这些物理量对d *的不同解释的敏感性,它们可以用作额外的物理量来区分d *的结构。此外,还预测和计算了γ - d反应、e+e−湮灭中的Υ(nS)衰变和即将到来的P - anda的pp湮灭产生的d *。根据这些预测,在Belle II、P�anda、BEPC和其他大型科学设施上的实验可以用来寻找d *(2380)共振并揭示其性质。
{"title":"d∗(2380) in a chiral constituent quark model","authors":"Yubing Dong ,&nbsp;Pengnian Shen ,&nbsp;Zongye Zhang","doi":"10.1016/j.ppnp.2023.104045","DOIUrl":"https://doi.org/10.1016/j.ppnp.2023.104045","url":null,"abstract":"&lt;div&gt;&lt;p&gt;After a brief review of the experimental findings of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2380&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and several theoretical efforts to interpret its structure, the study of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2380&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; on the quark–gluon degrees of freedom is presented in detail. On the basis of the &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt; chiral constituent quark model and Resonating Group Method, the mass, width, wave function, and partial widths of almost all possible strong decays of the &lt;/span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2380&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; state with the &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;8&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;8&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; structure are evaluated. The obtained results agree with the data quite well, which implies that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2380&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt; could be assigned as a compact hexaquark system with the hidden-color component being dominant. The electromagnetic characteristics of &lt;/span&gt;&lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;, such as the charge distribution, charge radius, multipole moment, and etc. are further calculated. Because of the sensitivity of these physical quantities to different interpretations of &lt;/span&gt;&lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, they can be used as additional physical quantities to distinguish the structures of &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;. Moreover, the production of &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; from the &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; reaction, from the &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;Υ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; decays in the &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; annihilations, and from the &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;̄&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; annihilation at forthcoming &lt;span&gt;&lt;math&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;̄&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt;anda are also predicted and calculated. According to these predictions, experiments on Belle II, &lt;span&gt;&lt;math&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;̄&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt;anda, BEPC, and other lar","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"131 ","pages":"Article 104045"},"PeriodicalIF":9.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1750375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Progress in Particle and Nuclear Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1