In recent years, machine learning has emerged as a powerful computational tool and novel problem-solving perspective for physics, offering new avenues for studying strongly interacting QCD matter properties under extreme conditions. This review article aims to provide an overview of the current state of this intersection of fields, focusing on the application of machine learning to theoretical studies in high energy nuclear physics. It covers diverse aspects, including heavy ion collisions, lattice field theory, and neutron stars, and discuss how machine learning can be used to explore and facilitate the physics goals of understanding QCD matter. The review also provides a commonality overview from a methodology perspective, from data-driven perspective to physics-driven perspective. We conclude by discussing the challenges and future prospects of machine learning applications in high energy nuclear physics, also underscoring the importance of incorporating physics priors into the purely data-driven learning toolbox. This review highlights the critical role of machine learning as a valuable computational paradigm for advancing physics exploration in high energy nuclear physics.
Binary stars are as common as single stars. Binary stars are of immense importance to astrophysicists because that they allow us to determine the masses of the stars independent of their distances. They are the cornerstone of the understanding of stellar evolutionary theory and play an essential role in cosmic distance measurement, galactic evolution, nucleosynthesis and the formation of important objects such as cataclysmic variable stars, X-ray binaries, Type Ia supernovae, and gravitational wave-producing double compact objects. In this article, we review the significant theoretical and observational progresses in addressing binary stars in the new millennium. Increasing large survey projects have led to the discovery of enormous numbers of binary stars, which enables us to conduct statistical studies of binary populations, and therefore provide unprecedented insight into the stellar and binary evolution physics. Meanwhile, the rapid development of theoretical concepts and numerical approaches for binary evolution have made a substantial progress on the alleviation of some long-standing binary-related problems such as the stability of mass transfer and common envelope evolution. Nevertheless, it remains a challenge to have a full understanding of fundamental problems of stellar and binary astrophysics. The upcoming massive survey projects and increasingly sophisticated computational methods will lead to future progress.
We discuss our present knowledge of , the fundamental running coupling or effective charge of Quantum Chromodynamics (QCD). A precise understanding of the running of at high momentum transfer, , is necessary for any perturbative QCD calculation. Equally important, the behavior of at low in the nonperturbative QCD domain is critical for understanding strong interaction phenomena, including the emergence of mass and quark confinement. The behavior of at all momentum transfers also provides a connection between perturbative and nonperturbative QCD phenomena, such as hadron spectroscopy and dynamics. We first sketch the origin of the QCD coupling, the reason why its magnitude depends on the scale at which hadronic phenomena are probed, and the resulting consequences for QCD phenomenology. We then summarize latest measurements in both the perturbative and nonperturbative domains. New theory developments include the derivation of the universal nonperturbative behavior of from both the Dyson–Schwinger equations and light-front holography. We also describe theory advances for the calculation of gluon and quark Schwinger functions in the nonperturbative domain and the relation of these quantities to . We conclude by highlighting how the nonperturbative knowledge of is now providing a parameter-free determination of hadron spectroscopy and structure, a central and long-sought goal of QCD studies.
The nuclear equation of state (EOS) is at the center of numerous theoretical and experimental efforts in nuclear physics. With advances in microscopic theories for nuclear interactions, the availability of experiments probing nuclear matter under conditions not reached before, endeavors to develop sophisticated and reliable transport simulations to interpret these experiments, and the advent of multi-messenger astronomy, the next decade will bring new opportunities for determining the nuclear matter EOS, elucidating its dependence on density, temperature, and isospin asymmetry. Among controlled terrestrial experiments, collisions of heavy nuclei at intermediate beam energies (from a few tens of MeV/nucleon to about 25 GeV/nucleon in the fixed-target frame) probe the widest ranges of baryon density and temperature, enabling studies of nuclear matter from a few tenths to about 5 times the nuclear saturation density and for temperatures from a few to well above a hundred MeV, respectively. Collisions of neutron-rich isotopes further bring the opportunity to probe effects due to the isospin asymmetry. However, capitalizing on the enormous scientific effort aimed at uncovering the dense nuclear matter EOS, both at RHIC and at FRIB as well as at other international facilities, depends on the continued development of state-of-the-art hadronic transport simulations. This white paper highlights the essential role that heavy-ion collision experiments and hadronic transport simulations play in understanding strong interactions in dense nuclear matter, with an emphasis on how these efforts can be used together with microscopic approaches and neutron star studies to uncover the nuclear EOS.
We survey the impact of nuclear three-body forces on structure properties of nuclei within the shell model. It has long been acknowledged, since the seminal works of Zuker and coworkers, that three-body forces play a fundamental role in making the monopole component of shell-model Hamiltonians, derived from realistic nucleon–nucleon potentials, able to reproduce the observed evolution of the shell structure. In the vast majority of calculations, however, their effects have been taken into account by shell-model practitioners by introducing ad hoc modifications of the monopole matrix elements. During last twenty years, a new theoretical approach, framed within the chiral perturbation theory, has progressed in developing nuclear potentials, where two- and many-body components are naturally and consistently built in. This new class of nuclear forces allows to carry out nuclear structure studies that are improving our ability to understand nuclear phenomena in a microscopic approach. We provide in this work an update on the status of the nuclear shell model based on realistic Hamiltonians that are derived from two- and three-nucleon chiral potentials, focusing on the role of the three-body component to provide the observed shell evolution and closure properties, as well as the location of driplines. To this end, we present the results of shell-model calculations and their comparison with recent experimental measurements, which enlighten the relevance of the inclusion of three-nucleon forces to master our knowledge of the physics of atomic nuclei.
One of the many physical questions that have emerged from studies of heavy-ion collisions at RHIC and the LHC concerns the validity of hydrodynamic modelling at the very early stages, when the Quark–Gluon Plasma system produced is still far from isotropy. In this article we review the idea of far-from-equilibrium hydrodynamic attractors as a way to understand how the complexity of initial states of nuclear matter is reduced so that a hydrodynamic description can be effective.
One of characteristic phenomena for nuclei beyond the proton dripline is the simultaneous emission of two protons (2p). The current status of our knowledge of this most recently observed and the least known decay mode is presented. First, different approaches to theoretical description of this process, ranging from effective approximations to advanced three-body models are overviewed. Then, after a brief survey of main experimental methods to produce 2p-emitting nuclei and techniques to study their decays, experimental findings in this research field are presented and discussed. This review covers decays of short-lived resonances and excited states of unbound nuclei as well as longer-lived, ground-state radioactive decays. In addition, more exotic decays like three- and four-proton emission are addressed. Finally, related few-body topics, like two-neutron and four-neutron radioactivity, and the problem of the tetraneutron are shortly discussed.