Neutrinos are known to play important roles in many astrophysical scenarios from the early period of the big bang to current stellar evolution being a unique messenger of the fusion reactions occurring in the center of our sun. In particular, neutrinos are crucial in determining the dynamics and the composition evolution in explosive events such as core-collapse supernovae and the merger of two neutron stars. In this paper, we review the current understanding of supernovae and binary neutron star mergers by focusing on the role of neutrinos therein. Several recent improvements on the theoretical modeling of neutrino interaction rates in nuclear matter as well as their impact on the heavy element nucleosynthesis in the supernova neutrino-driven wind are discussed, including the neutrino–nucleon opacity at the mean field level taking into account the relativistic kinematics of nucleons, the effect due to the nucleon–nucleon correlation, and the nucleon–nucleon bremsstrahlung. We also review the framework used to compute the neutrino–nucleus interactions and the up-to-date yield prediction for isotopes from neutrino nucleosynthesis occurring in the outer envelope of the supernova progenitor star during the explosion. Here improved predictions of energy spectra of supernova neutrinos of all flavors have had significant impact on the nucleosynthesis yields. Rapid progresses in modeling the flavor oscillations of neutrinos in these environments, including several novel mechanisms for collective neutrino oscillations and their potential impacts on various nucleosynthesis processes are summarized.
Reactor antineutrinos have played a significant role in establishing the standard model of particle physics and the theory of neutrino oscillations. In this article, we review the reactor antineutrino flux and in particular the reactor antineutrino anomaly (RAA) coined over a decade ago. RAA refers to a deficit of the measured antineutrino inverse beta decay rates at very short-baseline reactor experiments compared to the theoretically improved predictions (i.e. the Huber–Mueller model). Since the resolution of several previous experimental anomalies have led to the discovery of non-zero neutrino mass and mixing, many efforts have been invested to study the origin of RAA both experimentally and theoretically. The progress includes the observation of discrepancies in antineutrino energy spectrum between data and the Huber–Mueller model, the re-evaluation of the Huber–Mueller model uncertainties, the potential isotope-dependent rate deficits, and the better agreement between data and new model predictions using the improved summation method. These developments disfavor the hypothesis of a light sterile neutrino as the explanation of RAA and supports the deficiencies of Huber–Mueller model as the origin. Looking forward, more effort from both the theoretical and experimental sides is needed to fully understand the root of RAA and to make accurate predictions of reactor antineutrino flux and energy spectrum for future discoveries.
Gravitational waves (GWs) were recently detected for the first time. This revolutionary discovery opens a new way of learning about particle physics through GWs from first-order phase transitions (FOPTs) in the early Universe. FOPTs could occur when new fundamental symmetries are spontaneously broken down to the Standard Model and are a vital ingredient in solutions of the matter anti-matter asymmetry problem. The purpose of our work is to review the path from a particle physics model to GWs, which contains many specialized parts, so here we provide a timely review of all the required steps, including: (i) building a finite-temperature effective potential in a particle physics model and checking for FOPTs; (ii) computing transition rates; (iii) analyzing the dynamics of bubbles of true vacuum expanding in a thermal plasma; (iv) characterizing a transition using thermal parameters; and, finally, (v) making predictions for GW spectra using the latest simulations and theoretical results and considering the detectability of predicted spectra at future GW detectors. For each step we emphasize the subtleties, advantages and drawbacks of different methods, discuss open questions and review the state-of-art approaches available in the literature. This provides everything a particle physicist needs to begin exploring GW phenomenology.
In this review, we provide an up-to-date account of quantitative bottom-up holographic descriptions of the strongly coupled quark–gluon plasma (QGP) produced in relativistic heavy-ion collisions, based on the class of gauge-gravity Einstein–Maxwell–Dilaton (EMD) effective models. The holographic approach is employed to tentatively map the QCD phase diagram at finite temperature onto a dual theory of charged, asymptotically Anti-de Sitter (AdS) black holes living in five dimensions. With a quantitative focus on the hot QCD phase diagram, the nonconformal holographic EMD models reviewed here are adjusted to describe first-principles lattice results for the finite-temperature QCD equation of state, with flavors and physical quark masses, at zero chemical potential and vanishing electromagnetic fields. We review the evolution of such effective models and the corresponding improvements produced in quantitative holographic descriptions of the deconfined hot QGP phase of QCD. The predictive power of holographic EMD models is tested by quantitatively comparing their predictions for the hot QCD equation of state at nonzero baryon density and the corresponding state-of-the-art lattice QCD results. Hydrodynamic transport coefficients such as the shear and bulk viscosities predicted by these EMD constructions are also compared to the corresponding profiles favored by the latest phenomenological multistage models simultaneously describing different types of heavy-ion data. We briefly report preliminary results from a Bayesian analysis using EMD models, which provide systematic evidence that lattice QCD results at finite temperature and zero baryon density strongly constrains the free parameters of such bottom-up holographic constructions. Remarkably, the set of parameters constrained by lattice results at vanishing chemical potential turns out to produce EMD models in quantitative agreement with lattice QCD results also at finite baryon density. We also review results for equilibrium and transport properties from magnetic EMD models, which effectively describe the hot and magnetized QGP at finite temperatures and magnetic fields with zero chemical potentials. Finally, we provide a critical assessment of the main limitations and drawbacks of the holographic models reviewed in the present work, and point out some perspectives we believe are of fundamental importance for future developments.
In recent years, machine learning has emerged as a powerful computational tool and novel problem-solving perspective for physics, offering new avenues for studying strongly interacting QCD matter properties under extreme conditions. This review article aims to provide an overview of the current state of this intersection of fields, focusing on the application of machine learning to theoretical studies in high energy nuclear physics. It covers diverse aspects, including heavy ion collisions, lattice field theory, and neutron stars, and discuss how machine learning can be used to explore and facilitate the physics goals of understanding QCD matter. The review also provides a commonality overview from a methodology perspective, from data-driven perspective to physics-driven perspective. We conclude by discussing the challenges and future prospects of machine learning applications in high energy nuclear physics, also underscoring the importance of incorporating physics priors into the purely data-driven learning toolbox. This review highlights the critical role of machine learning as a valuable computational paradigm for advancing physics exploration in high energy nuclear physics.
Binary stars are as common as single stars. Binary stars are of immense importance to astrophysicists because that they allow us to determine the masses of the stars independent of their distances. They are the cornerstone of the understanding of stellar evolutionary theory and play an essential role in cosmic distance measurement, galactic evolution, nucleosynthesis and the formation of important objects such as cataclysmic variable stars, X-ray binaries, Type Ia supernovae, and gravitational wave-producing double compact objects. In this article, we review the significant theoretical and observational progresses in addressing binary stars in the new millennium. Increasing large survey projects have led to the discovery of enormous numbers of binary stars, which enables us to conduct statistical studies of binary populations, and therefore provide unprecedented insight into the stellar and binary evolution physics. Meanwhile, the rapid development of theoretical concepts and numerical approaches for binary evolution have made a substantial progress on the alleviation of some long-standing binary-related problems such as the stability of mass transfer and common envelope evolution. Nevertheless, it remains a challenge to have a full understanding of fundamental problems of stellar and binary astrophysics. The upcoming massive survey projects and increasingly sophisticated computational methods will lead to future progress.
We discuss our present knowledge of , the fundamental running coupling or effective charge of Quantum Chromodynamics (QCD). A precise understanding of the running of at high momentum transfer, , is necessary for any perturbative QCD calculation. Equally important, the behavior of at low in the nonperturbative QCD domain is critical for understanding strong interaction phenomena, including the emergence of mass and quark confinement. The behavior of at all momentum transfers also provides a connection between perturbative and nonperturbative QCD phenomena, such as hadron spectroscopy and dynamics. We first sketch the origin of the QCD coupling, the reason why its magnitude depends on the scale at which hadronic phenomena are probed, and the resulting consequences for QCD phenomenology. We then summarize latest measurements in both the perturbative and nonperturbative domains. New theory developments include the derivation of the universal nonperturbative behavior of from both the Dyson–Schwinger equations and light-front holography. We also describe theory advances for the calculation of gluon and quark Schwinger functions in the nonperturbative domain and the relation of these quantities to . We conclude by highlighting how the nonperturbative knowledge of is now providing a parameter-free determination of hadron spectroscopy and structure, a central and long-sought goal of QCD studies.