首页 > 最新文献

Mechatronic Systems and Control最新文献

英文 中文
Instantaneous Center of Rotation-Based Master-Slave Kinematic Modeling and Control 基于瞬时旋转中心的主从运动建模与控制
IF 0.6 Q4 Computer Science Pub Date : 2019-11-26 DOI: 10.1115/dscc2019-9123
V. Ramanathan, A. Zelenak, M. Pryor
This article presents a novel kinematic model and controller design for a mobile robot with four Centered Orientable Conventional (COC) wheels. When compared to non-conventional wheels, COC wheels perform better over rough terrain, are not subject to vertical chatter and offer better braking capability. However, COC wheels are pseudo-omnidirectional and subject to nonholonomic constraints. Several established modeling and control techniques define and control the Instantaneous Center of Rotation (ICR); however, this method involves singular configurations that are not trivial to eliminate. The proposed method uses a novel ICR-based kinematic model to avoid these singularities, and an ICR-based nonlinear controller for one ‘master’ wheel. The other ‘slave’ wheels simply track the resulting kinematic relationships between the ‘master’ wheel and the ICR. Thus, the nonlinear control problem is reduced from 12th to 3rd-order, becoming much more tractable. Simulations with a feedback linearization controller verify the approach.
本文提出了一种具有四个中心可定向常规(COC)轮的移动机器人的运动学模型和控制器设计。与非传统车轮相比,COC车轮在崎岖地形上表现更好,不受垂直颤振的影响,并提供更好的制动能力。然而,COC车轮是伪全向的,受非完整约束。几种已建立的建模和控制技术定义和控制瞬时旋转中心(ICR);然而,这种方法涉及到奇异的配置,这些配置是不容易消除的。该方法采用一种新颖的基于icr的运动模型来避免这些奇异性,并对一个“主”轮采用基于icr的非线性控制器。其他“从”轮简单地跟踪“主”轮和ICR之间产生的运动关系。因此,非线性控制问题从12阶降至3阶,变得更加易于处理。用反馈线性化控制器的仿真验证了该方法。
{"title":"Instantaneous Center of Rotation-Based Master-Slave Kinematic Modeling and Control","authors":"V. Ramanathan, A. Zelenak, M. Pryor","doi":"10.1115/dscc2019-9123","DOIUrl":"https://doi.org/10.1115/dscc2019-9123","url":null,"abstract":"\u0000 This article presents a novel kinematic model and controller design for a mobile robot with four Centered Orientable Conventional (COC) wheels. When compared to non-conventional wheels, COC wheels perform better over rough terrain, are not subject to vertical chatter and offer better braking capability. However, COC wheels are pseudo-omnidirectional and subject to nonholonomic constraints. Several established modeling and control techniques define and control the Instantaneous Center of Rotation (ICR); however, this method involves singular configurations that are not trivial to eliminate. The proposed method uses a novel ICR-based kinematic model to avoid these singularities, and an ICR-based nonlinear controller for one ‘master’ wheel. The other ‘slave’ wheels simply track the resulting kinematic relationships between the ‘master’ wheel and the ICR. Thus, the nonlinear control problem is reduced from 12th to 3rd-order, becoming much more tractable. Simulations with a feedback linearization controller verify the approach.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88360532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Hybrid Electro-Thermal Energy Storage System for High Ramp Rate Power Applications 一种用于高斜坡速率电力应用的混合电-热储能系统
IF 0.6 Q4 Computer Science Pub Date : 2019-11-26 DOI: 10.1115/dscc2019-9089
Cary E. Laird, A. Alleyne
The practice of hybridizing energy storage systems is vital to high ramp rate power applications, in which energy storage systems are constrained by strict power and energy requirements. Hybrid energy storage is typically studied in the electrical and thermal domains separately, but due to the inherent link between electrical and thermal energy domains, it is necessary to examine hybrid energy storage in both domains simultaneously. In this paper, a combined electro-thermal energy storage system is modeled and simulated. Equivalent circuit and lumped-parameter models are used to facilitate control design. PI controllers are designed for both the electrical and thermal domains to demonstrate the ability to perform multi-domain energy management.
混合储能系统的实践对于高斜坡速率电力应用至关重要,因为储能系统受到严格的功率和能量要求的限制。混合储能通常分别在电和热领域进行研究,但由于电和热领域之间的内在联系,有必要同时研究这两个领域的混合储能。本文对一种组合电-热储能系统进行了建模和仿真。为了便于控制设计,采用了等效电路和集总参数模型。PI控制器是为电气和热领域设计的,以展示执行多领域能量管理的能力。
{"title":"A Hybrid Electro-Thermal Energy Storage System for High Ramp Rate Power Applications","authors":"Cary E. Laird, A. Alleyne","doi":"10.1115/dscc2019-9089","DOIUrl":"https://doi.org/10.1115/dscc2019-9089","url":null,"abstract":"\u0000 The practice of hybridizing energy storage systems is vital to high ramp rate power applications, in which energy storage systems are constrained by strict power and energy requirements. Hybrid energy storage is typically studied in the electrical and thermal domains separately, but due to the inherent link between electrical and thermal energy domains, it is necessary to examine hybrid energy storage in both domains simultaneously. In this paper, a combined electro-thermal energy storage system is modeled and simulated. Equivalent circuit and lumped-parameter models are used to facilitate control design. PI controllers are designed for both the electrical and thermal domains to demonstrate the ability to perform multi-domain energy management.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73733358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Optimal Transient Real-Time Engine-Generator Control in the Series-Hybrid Vehicle 串联式混合动力汽车瞬态发电机最优实时控制
IF 0.6 Q4 Computer Science Pub Date : 2019-11-26 DOI: 10.1115/dscc2019-8964
Jonathan Lock, Rickard Arvidsson, T. McKelvey
We study the dynamic engine-generator optimal control problem with a goal of minimizing fuel consumption while delivering a requested average electrical power. By using an infinite-horizon formulation and explicitly minimizing fuel consumption, we avoid issues inherent with penalty-based and finite-horizon problems. The solution to the optimal control problem, found using dynamic programming and the successive approximation method, can be expressed as instantaneous non-linear state-feedback. This allows for trivial real-time control, typically requiring 10–20 CPU instructions per control period, a few bytes of RAM, and 5–20 KiB of nonvolatile memory. Simulation results for a passenger vehicle indicate a fuel consumption improvement in the region of 5–7% during the transient phase when compared with the class of controllers found in the industry. Bench-tests, where the optimal controller is executed in native hardware, show an improvement of 3.7%, primarily limited by unmodeled dynamics. Our specific choice of problem formulation, a guaranteed globally optimal solution, and trivial real-time control resolve many of the limitations with the current state of optimal engine-generator controllers.
本文研究了动态发动机-发电机最优控制问题,其目标是在提供要求的平均电功率的同时最小化燃油消耗。通过使用无限地平线公式并明确地最小化燃料消耗,我们避免了基于惩罚和有限地平线问题固有的问题。用动态规划和逐次逼近方法求解的最优控制问题可表示为瞬时非线性状态反馈。这允许进行简单的实时控制,通常每个控制周期需要10-20个CPU指令,几个字节的RAM和5 - 20kib的非易失性内存。对乘用车的仿真结果表明,与行业中发现的一类控制器相比,该控制器在瞬态阶段的燃油消耗改善了5-7%。在原生硬件中执行最优控制器的台架测试显示,主要受未建模动态的限制,性能提高了3.7%。我们对问题表述的特定选择、保证的全局最优解和琐碎的实时控制解决了当前最优发动机-发电机控制器状态的许多限制。
{"title":"Optimal Transient Real-Time Engine-Generator Control in the Series-Hybrid Vehicle","authors":"Jonathan Lock, Rickard Arvidsson, T. McKelvey","doi":"10.1115/dscc2019-8964","DOIUrl":"https://doi.org/10.1115/dscc2019-8964","url":null,"abstract":"\u0000 We study the dynamic engine-generator optimal control problem with a goal of minimizing fuel consumption while delivering a requested average electrical power. By using an infinite-horizon formulation and explicitly minimizing fuel consumption, we avoid issues inherent with penalty-based and finite-horizon problems. The solution to the optimal control problem, found using dynamic programming and the successive approximation method, can be expressed as instantaneous non-linear state-feedback. This allows for trivial real-time control, typically requiring 10–20 CPU instructions per control period, a few bytes of RAM, and 5–20 KiB of nonvolatile memory. Simulation results for a passenger vehicle indicate a fuel consumption improvement in the region of 5–7% during the transient phase when compared with the class of controllers found in the industry. Bench-tests, where the optimal controller is executed in native hardware, show an improvement of 3.7%, primarily limited by unmodeled dynamics. Our specific choice of problem formulation, a guaranteed globally optimal solution, and trivial real-time control resolve many of the limitations with the current state of optimal engine-generator controllers.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86401128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Real-Time Pressure Wave Model for Predicting Engine Knock 预测发动机爆震的实时压力波模型
IF 0.6 Q4 Computer Science Pub Date : 2019-11-26 DOI: 10.1115/dscc2019-9147
Ruixue C. Li, G. Zhu
This paper proposes a control-oriented pressure wave model, utilizing outputs of a reaction-based two-zone engine combustion model developed earlier, to accurately predict the key knock characteristics. The model can be used for model-based knock prediction and control. An in-cylinder pressure wave model of oscillation magnitude decay is proposed and simplified to describe pressure oscillations due to knock combustion, and the boundary and initial conditions of the pressure wave model at knock onset are provided by the two-zone reaction-based combustion model. The proposed pressure wave model is calibrated using experimental data, and the chemical kinetic-based Arrhenius integral (ARI) and maximum amplitude of pressure oscillations (MAPO) are used as the evaluation criteria for predicting knock onset and intensity, and the knock frequency is studied with the fast Fourier transform (FFT). The calibrated model is validated for predicting knock onset timing, knock intensity and frequency. Simulation results are compared with the experimental ones to demonstrate the capability of predicting engine knock characteristics by the proposed model.
本文提出了一种面向控制的压力波模型,利用先前开发的基于反应的两区发动机燃烧模型的输出,准确预测关键爆震特性。该模型可用于基于模型的爆震预测和控制。提出并简化了振荡幅度衰减的缸内压力波模型来描述爆震燃烧引起的压力振荡,并利用基于两区反应的燃烧模型给出了爆震开始时压力波模型的边界和初始条件。利用实验数据对所建立的压力波模型进行了标定,采用基于化学动力学的Arrhenius积分(ARI)和压力振荡最大幅值(MAPO)作为预测爆震发生时间和强度的评价标准,并采用快速傅立叶变换(FFT)对爆震频率进行了研究。验证了校正后的模型对爆震发生时间、爆震强度和爆震频率的预测效果。仿真结果与实验结果进行了比较,验证了该模型对发动机爆震特性的预测能力。
{"title":"A Real-Time Pressure Wave Model for Predicting Engine Knock","authors":"Ruixue C. Li, G. Zhu","doi":"10.1115/dscc2019-9147","DOIUrl":"https://doi.org/10.1115/dscc2019-9147","url":null,"abstract":"\u0000 This paper proposes a control-oriented pressure wave model, utilizing outputs of a reaction-based two-zone engine combustion model developed earlier, to accurately predict the key knock characteristics. The model can be used for model-based knock prediction and control. An in-cylinder pressure wave model of oscillation magnitude decay is proposed and simplified to describe pressure oscillations due to knock combustion, and the boundary and initial conditions of the pressure wave model at knock onset are provided by the two-zone reaction-based combustion model. The proposed pressure wave model is calibrated using experimental data, and the chemical kinetic-based Arrhenius integral (ARI) and maximum amplitude of pressure oscillations (MAPO) are used as the evaluation criteria for predicting knock onset and intensity, and the knock frequency is studied with the fast Fourier transform (FFT). The calibrated model is validated for predicting knock onset timing, knock intensity and frequency. Simulation results are compared with the experimental ones to demonstrate the capability of predicting engine knock characteristics by the proposed model.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86048381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Dynamic Design Optimization for Thermal Management: A Case Study on Shell and Tube Heat Exchangers 热管理的动态优化设计:以管壳式换热器为例
IF 0.6 Q4 Computer Science Pub Date : 2019-11-26 DOI: 10.1115/dscc2019-9212
Austin L. Nash, Neera Jain
We present a new methodology for designing a heat exchanger that explicitly considers both static and transient performance characteristics. The proposed approach leverages 1) a highly detailed, albeit static model that captures the complex nonlinear relationship between heat exchanger geometry and heat transfer coefficients, and 2) a reduced-order dynamic model of the heat exchanger that approximates the geometry detailed in the static model. In order to optimize the component design for both static and transient performance metrics, pole locations of the corresponding linearized model are penalized in the cost function of the proposed optimization algorithm in order to move dominant poles further into the left half complex plane. Through a simulated case study for a shell and tube heat exchanger, we demonstrate how the proposed algorithm exploits the trade off between static design metrics, including mass and footprint, and the rate at which heat is removed from the primary fluid.
我们提出了一种设计热交换器的新方法,明确地考虑了静态和瞬态性能特征。所提出的方法利用了1)一个非常详细的静态模型,该模型捕获了换热器几何形状和传热系数之间复杂的非线性关系,以及2)换热器的降阶动态模型,该模型近似于静态模型中详细的几何形状。为了优化静态和瞬态性能指标的组件设计,在所提出的优化算法的代价函数中对相应线性化模型的极点位置进行惩罚,以便将主导极点进一步移动到左半复平面。通过壳管式热交换器的模拟案例研究,我们展示了所提出的算法如何利用静态设计指标(包括质量和占地面积)与从一次流体中去除热量的速率之间的权衡。
{"title":"Dynamic Design Optimization for Thermal Management: A Case Study on Shell and Tube Heat Exchangers","authors":"Austin L. Nash, Neera Jain","doi":"10.1115/dscc2019-9212","DOIUrl":"https://doi.org/10.1115/dscc2019-9212","url":null,"abstract":"\u0000 We present a new methodology for designing a heat exchanger that explicitly considers both static and transient performance characteristics. The proposed approach leverages 1) a highly detailed, albeit static model that captures the complex nonlinear relationship between heat exchanger geometry and heat transfer coefficients, and 2) a reduced-order dynamic model of the heat exchanger that approximates the geometry detailed in the static model. In order to optimize the component design for both static and transient performance metrics, pole locations of the corresponding linearized model are penalized in the cost function of the proposed optimization algorithm in order to move dominant poles further into the left half complex plane. Through a simulated case study for a shell and tube heat exchanger, we demonstrate how the proposed algorithm exploits the trade off between static design metrics, including mass and footprint, and the rate at which heat is removed from the primary fluid.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90648760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Cooperative Collision Avoidance Control of Robotic Fish Propelled by a Servo/IPMC Driven Hybrid Tail 伺服/IPMC混合尾翼驱动机器鱼协同避碰控制
IF 0.6 Q4 Computer Science Pub Date : 2019-11-26 DOI: 10.1115/dscc2019-9228
Xiongfeng Yi, Zheng Chen, A. Chakravarthy
This paper develops and demonstrates cooperative collision avoidance control on two robotic fish propelled by a servo motor and an ionic polymer-metal composite (IPMC)-driven fish tail. First, experiments conducted on a servo motor/IPMC-driven fish demonstrate an impulsive turning behavior in the fish’s trajectory under the application of a specific frequency, amplitude of the servo motor, and a constant voltage on the IPMC joint. These experiments validate the ‘back relaxation’ of the IPMC joint by observing the angular velocity and the centripetal acceleration of the fish. This impulsive turning speed due to the ‘back relaxation’ of IPMC joint is subsequently modeled by a transfer function and this transfer function is then integrated into the development of the collision avoidance laws for the fish. The collision avoidance control law utilizes the impulsive turning capability of the robotic fish. An experimental validation of the collision avoidance law is performed.
基于伺服电机驱动和离子聚合物-金属复合材料(IPMC)驱动鱼尾的机器鱼协同避碰控制系统。首先,在伺服电机/IPMC驱动鱼身上进行的实验表明,在特定频率、伺服电机振幅和IPMC关节恒定电压的作用下,鱼的轨迹出现了脉冲转向行为。这些实验通过观察鱼的角速度和向心加速度来验证IPMC关节的“向后松弛”。由于IPMC关节的“背部松弛”导致的脉冲转弯速度随后由传递函数建模,然后将该传递函数集成到鱼的避碰律的开发中。避碰控制律利用了机器鱼的脉冲转向能力。对避碰规律进行了实验验证。
{"title":"Cooperative Collision Avoidance Control of Robotic Fish Propelled by a Servo/IPMC Driven Hybrid Tail","authors":"Xiongfeng Yi, Zheng Chen, A. Chakravarthy","doi":"10.1115/dscc2019-9228","DOIUrl":"https://doi.org/10.1115/dscc2019-9228","url":null,"abstract":"\u0000 This paper develops and demonstrates cooperative collision avoidance control on two robotic fish propelled by a servo motor and an ionic polymer-metal composite (IPMC)-driven fish tail. First, experiments conducted on a servo motor/IPMC-driven fish demonstrate an impulsive turning behavior in the fish’s trajectory under the application of a specific frequency, amplitude of the servo motor, and a constant voltage on the IPMC joint. These experiments validate the ‘back relaxation’ of the IPMC joint by observing the angular velocity and the centripetal acceleration of the fish. This impulsive turning speed due to the ‘back relaxation’ of IPMC joint is subsequently modeled by a transfer function and this transfer function is then integrated into the development of the collision avoidance laws for the fish. The collision avoidance control law utilizes the impulsive turning capability of the robotic fish. An experimental validation of the collision avoidance law is performed.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75642667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On the Dynamics and Control of a Full Wrist Exoskeleton for Tremor Alleviation 缓解震颤的全腕部外骨骼动力学与控制研究
IF 0.6 Q4 Computer Science Pub Date : 2019-11-26 DOI: 10.1115/dscc2019-9118
Jiamin Wang, O. Barry, A. Kurdila, S. Vijayan
This paper introduces a novel wearable full wrist exoskeleton designed for the alleviation of tremor in patients suffering from Parkinson’s Disease and Essential Tremor. The design introduces a structure to provide full observation of wrist kinematics as well as actuation in wrist flexion/extension and radial/ulnar deviation. To examine the feasibility of the design, the coupled dynamics of the device and the forearm is modeled via a general multibody framework. The dynamic analysis considers human motion, wrist stiffness, and tremor dynamics. The analysis of the model reveals that the identification of the wrist kinematics is indispensable for the controller design. Nonlinear regression based on the Levenberg-Marquardt algorithm has been applied to estimate the unknown parameters in a kinematic structural function designed to approximate the wrist kinematics, which leads to the construction of the control system framework. Finally, several simulation cases are demonstrated to conclude the study.
本文介绍了一种新型的可穿戴式全腕部外骨骼,旨在减轻帕金森病和特发性震颤患者的震颤。该设计引入了一个结构,以提供腕部运动学的充分观察以及腕部屈伸和桡尺偏移的驱动。为了验证设计的可行性,通过一般的多体框架对装置和前臂的耦合动力学进行了建模。动力学分析考虑了人体运动、手腕僵硬和震颤动力学。对模型的分析表明,腕部运动特性的辨识对于控制器的设计是必不可少的。采用基于Levenberg-Marquardt算法的非线性回归方法对腕部运动结构函数的未知参数进行估计,从而构建控制系统框架。最后,通过几个仿真案例对研究进行了总结。
{"title":"On the Dynamics and Control of a Full Wrist Exoskeleton for Tremor Alleviation","authors":"Jiamin Wang, O. Barry, A. Kurdila, S. Vijayan","doi":"10.1115/dscc2019-9118","DOIUrl":"https://doi.org/10.1115/dscc2019-9118","url":null,"abstract":"\u0000 This paper introduces a novel wearable full wrist exoskeleton designed for the alleviation of tremor in patients suffering from Parkinson’s Disease and Essential Tremor. The design introduces a structure to provide full observation of wrist kinematics as well as actuation in wrist flexion/extension and radial/ulnar deviation. To examine the feasibility of the design, the coupled dynamics of the device and the forearm is modeled via a general multibody framework. The dynamic analysis considers human motion, wrist stiffness, and tremor dynamics. The analysis of the model reveals that the identification of the wrist kinematics is indispensable for the controller design. Nonlinear regression based on the Levenberg-Marquardt algorithm has been applied to estimate the unknown parameters in a kinematic structural function designed to approximate the wrist kinematics, which leads to the construction of the control system framework. Finally, several simulation cases are demonstrated to conclude the study.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72444175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Online Nonlinear System Identification With Parameter Constraints: Application to Automotive Engine Systems 具有参数约束的非线性系统在线辨识:在汽车发动机系统中的应用
IF 0.6 Q4 Computer Science Pub Date : 2019-11-26 DOI: 10.1115/dscc2019-9092
Kaian Chen, Zhaojian Li, Yan Wang, Jing Wang, Kai Wu, Dimitar Filev
In this paper, we treat the problem of online nonlinear system identification with parameter constraints. This approach is based upon our prior work on nonlinear system identification that exploits evolving Spatial-Temporal Filters (STF) to dynamically decompose system’s input/output space into a nonlinear combination of weighted local models. We extend the nonlinear system identification framework with the capability of dealing with linear equality and inequality parameter constraints. We leverage the gradient projection method in the local model parameter estimation process to inherently enforce the parameter constraints while retaining optimality. We apply the proposed algorithm to a turbo-charged gasoline engine system and promising results are demonstrated by experimental data.
本文研究具有参数约束的非线性系统在线辨识问题。该方法基于我们之前在非线性系统识别方面的工作,该工作利用演化时空滤波器(STF)将系统的输入/输出空间动态分解为加权局部模型的非线性组合。我们扩展了非线性系统辨识框架,使其具有处理线性等式和不等式参数约束的能力。我们利用梯度投影法在局部模型参数估计过程中固有地强制参数约束,同时保持最优性。将该算法应用于某涡轮增压汽油机系统,实验结果证明了该算法的有效性。
{"title":"Online Nonlinear System Identification With Parameter Constraints: Application to Automotive Engine Systems","authors":"Kaian Chen, Zhaojian Li, Yan Wang, Jing Wang, Kai Wu, Dimitar Filev","doi":"10.1115/dscc2019-9092","DOIUrl":"https://doi.org/10.1115/dscc2019-9092","url":null,"abstract":"\u0000 In this paper, we treat the problem of online nonlinear system identification with parameter constraints. This approach is based upon our prior work on nonlinear system identification that exploits evolving Spatial-Temporal Filters (STF) to dynamically decompose system’s input/output space into a nonlinear combination of weighted local models. We extend the nonlinear system identification framework with the capability of dealing with linear equality and inequality parameter constraints. We leverage the gradient projection method in the local model parameter estimation process to inherently enforce the parameter constraints while retaining optimality. We apply the proposed algorithm to a turbo-charged gasoline engine system and promising results are demonstrated by experimental data.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82885436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of Position Control With and Without Friction on a Foot Interface 足部接触面有摩擦和无摩擦位置控制的比较
IF 0.6 Q4 Computer Science Pub Date : 2019-11-26 DOI: 10.1115/dscc2019-9019
B. Rudolph, Ryder C. Winck
A foot interface may one day control a third arm to assist the hands with a difficult task, but the interface needs to be easy to use. Developing a good foot interface is challenging because of the need to provide support for the leg, allow the user to disengage with the interface without causing unwanted motion, and make it easy for the user to hold a set position. The addition of friction in the interface can enable the device to meet these goals without negatively affecting performance. Although teleoperation is a well explored area of research, relatively little research has been done that examines the effects of friction on the control interface. This paper presents an experiment in which two foot control interfaces are compared. One device uses friction and the other has no added friction, so there is little resistance to motion in any direction. The experiment uses a reaching task and a path-following task to compare the interfaces. The only statistically significant performance differences were that the friction interface reduced the time needed to stop at a target and reduced excess movement when stopping at a target. Also, subjects indicated a preference for the friction interface. The results show that friction can be added to a foot interface to support the device and user and provide some positive gains in performance.
有一天,足部接口可能会控制第三只手臂来帮助双手完成困难的任务,但接口需要易于使用。开发一个好的足部界面是具有挑战性的,因为需要为腿部提供支撑,允许用户在不引起不必要的运动的情况下脱离界面,并使用户易于保持固定位置。在界面中增加摩擦可以使设备满足这些目标,而不会对性能产生负面影响。虽然远程操作是一个很好的探索研究领域,相对较少的研究已经做了检查摩擦对控制界面的影响。本文介绍了一个两足控制接口的对比实验。一种装置使用摩擦,另一种装置没有额外的摩擦,所以在任何方向上运动的阻力都很小。实验采用到达任务和路径跟踪任务来比较接口。唯一有统计学意义的性能差异是摩擦界面减少了停在目标处所需的时间,并减少了停在目标处时的过度运动。此外,受试者对摩擦界面表现出偏好。结果表明,摩擦可以添加到脚接口来支持设备和用户,并提供一些积极的性能增益。
{"title":"Comparison of Position Control With and Without Friction on a Foot Interface","authors":"B. Rudolph, Ryder C. Winck","doi":"10.1115/dscc2019-9019","DOIUrl":"https://doi.org/10.1115/dscc2019-9019","url":null,"abstract":"\u0000 A foot interface may one day control a third arm to assist the hands with a difficult task, but the interface needs to be easy to use. Developing a good foot interface is challenging because of the need to provide support for the leg, allow the user to disengage with the interface without causing unwanted motion, and make it easy for the user to hold a set position. The addition of friction in the interface can enable the device to meet these goals without negatively affecting performance. Although teleoperation is a well explored area of research, relatively little research has been done that examines the effects of friction on the control interface. This paper presents an experiment in which two foot control interfaces are compared. One device uses friction and the other has no added friction, so there is little resistance to motion in any direction. The experiment uses a reaching task and a path-following task to compare the interfaces. The only statistically significant performance differences were that the friction interface reduced the time needed to stop at a target and reduced excess movement when stopping at a target. Also, subjects indicated a preference for the friction interface. The results show that friction can be added to a foot interface to support the device and user and provide some positive gains in performance.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84411290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Control of a Power-Electronic Interface for Regenerative Suspension Systems 蓄热式悬架系统电-电接口设计与控制
IF 0.6 Q4 Computer Science Pub Date : 2019-11-26 DOI: 10.1115/dscc2019-9081
Abdullah A. Algethami, Won-jong Kim
Recently, the automobile industry has begun applying an increasing number of systems to recycling wasted energy. One area that demands further research is the recycling and storing of energy in car suspension systems, especially in terms of developing an electronic interface to keep energy flowing bidirectionally. An electronic interface was designed to facilitate control of regenerative forces and store energy after the rectification process. The electronic interface was designed to be a symmetrical-bridgeless boost converter, due to this mechanism having few components and requiring little control effort. The converter was created such that it kept the current and voltage in phase for the maximum power factor. The input into this controller was the generator voltage used to determine the polarity of the pulse-width modulation, considering external road disturbances. Thus, this combination of converter and controller was able to replace an active controller. Variable resistance could be further controlled to manipulate the suspension damping force.
最近,汽车工业已经开始应用越来越多的系统来回收被浪费的能源。一个需要进一步研究的领域是汽车悬架系统中的能量回收和储存,特别是在开发电子接口以保持能量双向流动方面。设计了一个电子接口,以方便控制再生力,并在整流过程后存储能量。电子接口被设计成一个对称无桥升压转换器,因为这种机制具有很少的组件,并且需要很少的控制努力。该转换器的创建使其保持电流和电压相一致,以获得最大的功率因数。考虑到外部道路干扰,该控制器的输入是用于确定脉宽调制极性的发电机电压。因此,这种转换器和控制器的组合能够取代主动控制器。可以进一步控制可变阻力来操纵悬架阻尼力。
{"title":"Design and Control of a Power-Electronic Interface for Regenerative Suspension Systems","authors":"Abdullah A. Algethami, Won-jong Kim","doi":"10.1115/dscc2019-9081","DOIUrl":"https://doi.org/10.1115/dscc2019-9081","url":null,"abstract":"\u0000 Recently, the automobile industry has begun applying an increasing number of systems to recycling wasted energy. One area that demands further research is the recycling and storing of energy in car suspension systems, especially in terms of developing an electronic interface to keep energy flowing bidirectionally. An electronic interface was designed to facilitate control of regenerative forces and store energy after the rectification process. The electronic interface was designed to be a symmetrical-bridgeless boost converter, due to this mechanism having few components and requiring little control effort. The converter was created such that it kept the current and voltage in phase for the maximum power factor. The input into this controller was the generator voltage used to determine the polarity of the pulse-width modulation, considering external road disturbances. Thus, this combination of converter and controller was able to replace an active controller. Variable resistance could be further controlled to manipulate the suspension damping force.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84527369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mechatronic Systems and Control
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1