Ben Groelke, Christian Earnhardt, John Borek, C. Vermillion
This paper presents a novel adaptive cruise control (ACC) strategy that utilizes a command governor (CG) to enforce vehicle following constraints. The CG formulation relies on knowledge of the maximum possible braking deceleration of the lead vehicle and a tunable assumption regarding the lead vehicle velocity profile (offering different levels of conservatism) to modify wheel torque commands to ensure safe following. In particular, a safe following distance is defined as one in which the ego vehicle can avoid collision with the lead vehicle and maintain a sufficient following distance in the event that the lead vehicle exerts maximum braking deceleration. The CG seeks to adjust the wheel torque command such that the aforementioned constraint is satisfied at every step in a prediction horizon (i.e., at every step, if the lead vehicle exerts maximum braking deceleration, the ego vehicle can brake and remain outside of the aforementioned buffer zone), which requires an estimate of future lead vehicle behavior. In this work, we explore different levels of conservatism with regard to this assumption. Simulations are presented for a heavy-duty truck, using a stochastic lead vehicle model that has been calibrated with actual traffic data. Even for the most conservative lead vehicle prediction models, results show that this CG-based ACC strategy can reduce braking energy expended (used as a surrogate for fuel wasted) by up to 78%, while improving drivability and reducing total trip time.
{"title":"Analysis of a Novel Command Governor-Based Adaptive Cruise Controller for Non-Cooperative Vehicle Following","authors":"Ben Groelke, Christian Earnhardt, John Borek, C. Vermillion","doi":"10.1115/dscc2019-9196","DOIUrl":"https://doi.org/10.1115/dscc2019-9196","url":null,"abstract":"\u0000 This paper presents a novel adaptive cruise control (ACC) strategy that utilizes a command governor (CG) to enforce vehicle following constraints. The CG formulation relies on knowledge of the maximum possible braking deceleration of the lead vehicle and a tunable assumption regarding the lead vehicle velocity profile (offering different levels of conservatism) to modify wheel torque commands to ensure safe following. In particular, a safe following distance is defined as one in which the ego vehicle can avoid collision with the lead vehicle and maintain a sufficient following distance in the event that the lead vehicle exerts maximum braking deceleration. The CG seeks to adjust the wheel torque command such that the aforementioned constraint is satisfied at every step in a prediction horizon (i.e., at every step, if the lead vehicle exerts maximum braking deceleration, the ego vehicle can brake and remain outside of the aforementioned buffer zone), which requires an estimate of future lead vehicle behavior. In this work, we explore different levels of conservatism with regard to this assumption. Simulations are presented for a heavy-duty truck, using a stochastic lead vehicle model that has been calibrated with actual traffic data. Even for the most conservative lead vehicle prediction models, results show that this CG-based ACC strategy can reduce braking energy expended (used as a surrogate for fuel wasted) by up to 78%, while improving drivability and reducing total trip time.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"23 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85742803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Baitao Xiao, Kelly Tyler, Stolzenfeld Timothy, Christopher. Lu, D. Bell, M. Janković, J. Buckland, J. Rollinger
In this work, a systematic approach is developed to calibrate a feedback controller for boost pressure control of an electrically assisted turbocharged gasoline engine. The information from the experiments indicates the system can be approximated by a Gain-Integrator-Delay (GID) model which can be robustly identified. Two controllers are designed for two different types of inner loop control (torque/speed) of the electrically assisted turbocharger. The underlying calibration methodology is based on Internal Model Control (IMC). The application of IMC leads to controllers that can be naturally mapped to a classic feedback controller. The plant model is obtained by characterizing the boost system with relay feedback experiments. The calibration methodology as well as the controller designs are demonstrated with a validated simulation platform and good performance is observed.
{"title":"IMC-Based Calibration of the Boost Pressure Controller in an Electrically Assisted Turbocharged Gasoline Engine","authors":"Baitao Xiao, Kelly Tyler, Stolzenfeld Timothy, Christopher. Lu, D. Bell, M. Janković, J. Buckland, J. Rollinger","doi":"10.1115/dscc2019-9038","DOIUrl":"https://doi.org/10.1115/dscc2019-9038","url":null,"abstract":"\u0000 In this work, a systematic approach is developed to calibrate a feedback controller for boost pressure control of an electrically assisted turbocharged gasoline engine. The information from the experiments indicates the system can be approximated by a Gain-Integrator-Delay (GID) model which can be robustly identified. Two controllers are designed for two different types of inner loop control (torque/speed) of the electrically assisted turbocharger. The underlying calibration methodology is based on Internal Model Control (IMC). The application of IMC leads to controllers that can be naturally mapped to a classic feedback controller. The plant model is obtained by characterizing the boost system with relay feedback experiments. The calibration methodology as well as the controller designs are demonstrated with a validated simulation platform and good performance is observed.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"28 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81533054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Yazji, Hamza Zaidi, Luke Thomas Torres, C. Leroy, A. Keow, Zheng Chen
Buoyancy control devices are essential to maneuver ROV effectively underwater. Many approaches have been used to tackle this problem such as compressed air ballast which can take in water and eject it using compressed air and the use of high-density foam plates that can be added or removed to increase or decrease the buoyancy. Presented in this paper is a novel approach for buoyancy control, which utilizes the electrolysis and reverse electrolysis capabilities of a reversible polymer electrolyte membrane (PEM) fuel cell to adjust the volume of a small vehicle, and change its depth. Making use of the two processes helps restore some of the energy consumed by the system through the process of reverse electrolysis and also for building a fully-closed system, that is, one that does not require any water or gas flow to the surrounding. Modeling of the device is explained and a proportional-derivative (PD) controller is designed to control it at a certain depth using a single sensor measurement. Experiments validate the controller performance.
{"title":"A Novel Buoyancy Control Device Using Reversible PEM Fuel Cells","authors":"J. Yazji, Hamza Zaidi, Luke Thomas Torres, C. Leroy, A. Keow, Zheng Chen","doi":"10.1115/dscc2019-9155","DOIUrl":"https://doi.org/10.1115/dscc2019-9155","url":null,"abstract":"\u0000 Buoyancy control devices are essential to maneuver ROV effectively underwater. Many approaches have been used to tackle this problem such as compressed air ballast which can take in water and eject it using compressed air and the use of high-density foam plates that can be added or removed to increase or decrease the buoyancy. Presented in this paper is a novel approach for buoyancy control, which utilizes the electrolysis and reverse electrolysis capabilities of a reversible polymer electrolyte membrane (PEM) fuel cell to adjust the volume of a small vehicle, and change its depth. Making use of the two processes helps restore some of the energy consumed by the system through the process of reverse electrolysis and also for building a fully-closed system, that is, one that does not require any water or gas flow to the surrounding. Modeling of the device is explained and a proportional-derivative (PD) controller is designed to control it at a certain depth using a single sensor measurement. Experiments validate the controller performance.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"38 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77844497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper develops and demonstrates cooperative collision avoidance control on two robotic fish propelled by a servo motor and an ionic polymer-metal composite (IPMC)-driven fish tail. First, experiments conducted on a servo motor/IPMC-driven fish demonstrate an impulsive turning behavior in the fish’s trajectory under the application of a specific frequency, amplitude of the servo motor, and a constant voltage on the IPMC joint. These experiments validate the ‘back relaxation’ of the IPMC joint by observing the angular velocity and the centripetal acceleration of the fish. This impulsive turning speed due to the ‘back relaxation’ of IPMC joint is subsequently modeled by a transfer function and this transfer function is then integrated into the development of the collision avoidance laws for the fish. The collision avoidance control law utilizes the impulsive turning capability of the robotic fish. An experimental validation of the collision avoidance law is performed.
{"title":"Cooperative Collision Avoidance Control of Robotic Fish Propelled by a Servo/IPMC Driven Hybrid Tail","authors":"Xiongfeng Yi, Zheng Chen, A. Chakravarthy","doi":"10.1115/dscc2019-9228","DOIUrl":"https://doi.org/10.1115/dscc2019-9228","url":null,"abstract":"\u0000 This paper develops and demonstrates cooperative collision avoidance control on two robotic fish propelled by a servo motor and an ionic polymer-metal composite (IPMC)-driven fish tail. First, experiments conducted on a servo motor/IPMC-driven fish demonstrate an impulsive turning behavior in the fish’s trajectory under the application of a specific frequency, amplitude of the servo motor, and a constant voltage on the IPMC joint. These experiments validate the ‘back relaxation’ of the IPMC joint by observing the angular velocity and the centripetal acceleration of the fish. This impulsive turning speed due to the ‘back relaxation’ of IPMC joint is subsequently modeled by a transfer function and this transfer function is then integrated into the development of the collision avoidance laws for the fish. The collision avoidance control law utilizes the impulsive turning capability of the robotic fish. An experimental validation of the collision avoidance law is performed.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"4 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75642667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper deals with electrostatically actuated Double-Walled Carbon Nanotubes (DWCNT) and Single-Walled Carbon Nanotubes (SWCNT) cantilever resonators. Frequency response of parametric resonance is investigated. Euler-Bernoulli cantilever beam model is used for both DWCNT and SWCNT. Electrostatic and viscous damping forces are applied on both types of resonators, DWCNT and SWCNT. In this investigation, soft AC voltage excitation is assumed. For the DWCNT, an intertube van der Waals force is present between the two concentric carbon nanotubes (CNTs), coupling their motion and acting as a nonlinear spring. The nonlinearities in the vibration are provided by the electrostatic (both SWCNT and DWCNT) and intertube van der Waals forces (DWCNT). The Method of Multiple Scales (MMS) is a perturbation method that provides uniformly valid approximations for weakly nonlinear systems. A Reduced-Order-Model (ROM) is developed and numerically solved using AUTO-07P (bifurcation and continuation software). Since large tip deflections are investigated in this paper, only coaxial vibration of the DWCNT is considered. Parametric resonance is investigated, as well as the influences of damping and voltage. Lastly, the effect of intertube van der Waals force on the bifurcation and stability of the DWCNT is reported.
{"title":"Comparison of Frequency Response of Parametric Resonance of DWCNT and SWCNT Under Electrostatic Actuation","authors":"D. Caruntu, E. Juarez","doi":"10.1115/dscc2019-9171","DOIUrl":"https://doi.org/10.1115/dscc2019-9171","url":null,"abstract":"\u0000 This paper deals with electrostatically actuated Double-Walled Carbon Nanotubes (DWCNT) and Single-Walled Carbon Nanotubes (SWCNT) cantilever resonators. Frequency response of parametric resonance is investigated. Euler-Bernoulli cantilever beam model is used for both DWCNT and SWCNT. Electrostatic and viscous damping forces are applied on both types of resonators, DWCNT and SWCNT. In this investigation, soft AC voltage excitation is assumed. For the DWCNT, an intertube van der Waals force is present between the two concentric carbon nanotubes (CNTs), coupling their motion and acting as a nonlinear spring. The nonlinearities in the vibration are provided by the electrostatic (both SWCNT and DWCNT) and intertube van der Waals forces (DWCNT). The Method of Multiple Scales (MMS) is a perturbation method that provides uniformly valid approximations for weakly nonlinear systems. A Reduced-Order-Model (ROM) is developed and numerically solved using AUTO-07P (bifurcation and continuation software). Since large tip deflections are investigated in this paper, only coaxial vibration of the DWCNT is considered. Parametric resonance is investigated, as well as the influences of damping and voltage. Lastly, the effect of intertube van der Waals force on the bifurcation and stability of the DWCNT is reported.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"5 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75231005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Haber, F. Pecora, Mobin Uddin Chowdhury, Melvin Summerville
Identification, estimation, and control of temperature dynamics are ubiquitous and challenging control engineering problems. The main challenges originate from the fact that the temperature dynamics is usually infinite dimensional, nonlinear, and coupled with other physical processes. Furthermore, the dominant system time constants are often long, and due to various time constraints that limit the measurement time, we are only able to collect a relatively small number of input-output data samples. Motivated by these challenges, in this paper we present experimental results of identifying the temperature dynamics using subspace and machine learning techniques. We have developed an experimental setup consisting of an aluminum bar whose temperature is controlled by four heat actuators and sensed by seven thermocouples. We address noise reduction, experiment design, model structure selection, and overfitting problems. Our experimental results show that the temperature dynamics of the experimental setup can be relatively accurately represented by low-order models.
{"title":"Identification of Temperature Dynamics Using Subspace and Machine Learning Techniques","authors":"A. Haber, F. Pecora, Mobin Uddin Chowdhury, Melvin Summerville","doi":"10.1115/dscc2019-9007","DOIUrl":"https://doi.org/10.1115/dscc2019-9007","url":null,"abstract":"\u0000 Identification, estimation, and control of temperature dynamics are ubiquitous and challenging control engineering problems. The main challenges originate from the fact that the temperature dynamics is usually infinite dimensional, nonlinear, and coupled with other physical processes. Furthermore, the dominant system time constants are often long, and due to various time constraints that limit the measurement time, we are only able to collect a relatively small number of input-output data samples. Motivated by these challenges, in this paper we present experimental results of identifying the temperature dynamics using subspace and machine learning techniques. We have developed an experimental setup consisting of an aluminum bar whose temperature is controlled by four heat actuators and sensed by seven thermocouples. We address noise reduction, experiment design, model structure selection, and overfitting problems. Our experimental results show that the temperature dynamics of the experimental setup can be relatively accurately represented by low-order models.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"211 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75312662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recently, the automobile industry has begun applying an increasing number of systems to recycling wasted energy. One area that demands further research is the recycling and storing of energy in car suspension systems, especially in terms of developing an electronic interface to keep energy flowing bidirectionally. An electronic interface was designed to facilitate control of regenerative forces and store energy after the rectification process. The electronic interface was designed to be a symmetrical-bridgeless boost converter, due to this mechanism having few components and requiring little control effort. The converter was created such that it kept the current and voltage in phase for the maximum power factor. The input into this controller was the generator voltage used to determine the polarity of the pulse-width modulation, considering external road disturbances. Thus, this combination of converter and controller was able to replace an active controller. Variable resistance could be further controlled to manipulate the suspension damping force.
{"title":"Design and Control of a Power-Electronic Interface for Regenerative Suspension Systems","authors":"Abdullah A. Algethami, Won-jong Kim","doi":"10.1115/dscc2019-9081","DOIUrl":"https://doi.org/10.1115/dscc2019-9081","url":null,"abstract":"\u0000 Recently, the automobile industry has begun applying an increasing number of systems to recycling wasted energy. One area that demands further research is the recycling and storing of energy in car suspension systems, especially in terms of developing an electronic interface to keep energy flowing bidirectionally. An electronic interface was designed to facilitate control of regenerative forces and store energy after the rectification process. The electronic interface was designed to be a symmetrical-bridgeless boost converter, due to this mechanism having few components and requiring little control effort. The converter was created such that it kept the current and voltage in phase for the maximum power factor. The input into this controller was the generator voltage used to determine the polarity of the pulse-width modulation, considering external road disturbances. Thus, this combination of converter and controller was able to replace an active controller. Variable resistance could be further controlled to manipulate the suspension damping force.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"9 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84527369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kaian Chen, Zhaojian Li, Yan Wang, Jing Wang, Kai Wu, Dimitar Filev
In this paper, we treat the problem of online nonlinear system identification with parameter constraints. This approach is based upon our prior work on nonlinear system identification that exploits evolving Spatial-Temporal Filters (STF) to dynamically decompose system’s input/output space into a nonlinear combination of weighted local models. We extend the nonlinear system identification framework with the capability of dealing with linear equality and inequality parameter constraints. We leverage the gradient projection method in the local model parameter estimation process to inherently enforce the parameter constraints while retaining optimality. We apply the proposed algorithm to a turbo-charged gasoline engine system and promising results are demonstrated by experimental data.
{"title":"Online Nonlinear System Identification With Parameter Constraints: Application to Automotive Engine Systems","authors":"Kaian Chen, Zhaojian Li, Yan Wang, Jing Wang, Kai Wu, Dimitar Filev","doi":"10.1115/dscc2019-9092","DOIUrl":"https://doi.org/10.1115/dscc2019-9092","url":null,"abstract":"\u0000 In this paper, we treat the problem of online nonlinear system identification with parameter constraints. This approach is based upon our prior work on nonlinear system identification that exploits evolving Spatial-Temporal Filters (STF) to dynamically decompose system’s input/output space into a nonlinear combination of weighted local models. We extend the nonlinear system identification framework with the capability of dealing with linear equality and inequality parameter constraints. We leverage the gradient projection method in the local model parameter estimation process to inherently enforce the parameter constraints while retaining optimality. We apply the proposed algorithm to a turbo-charged gasoline engine system and promising results are demonstrated by experimental data.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"5 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82885436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper proposes a control-oriented pressure wave model, utilizing outputs of a reaction-based two-zone engine combustion model developed earlier, to accurately predict the key knock characteristics. The model can be used for model-based knock prediction and control. An in-cylinder pressure wave model of oscillation magnitude decay is proposed and simplified to describe pressure oscillations due to knock combustion, and the boundary and initial conditions of the pressure wave model at knock onset are provided by the two-zone reaction-based combustion model. The proposed pressure wave model is calibrated using experimental data, and the chemical kinetic-based Arrhenius integral (ARI) and maximum amplitude of pressure oscillations (MAPO) are used as the evaluation criteria for predicting knock onset and intensity, and the knock frequency is studied with the fast Fourier transform (FFT). The calibrated model is validated for predicting knock onset timing, knock intensity and frequency. Simulation results are compared with the experimental ones to demonstrate the capability of predicting engine knock characteristics by the proposed model.
{"title":"A Real-Time Pressure Wave Model for Predicting Engine Knock","authors":"Ruixue C. Li, G. Zhu","doi":"10.1115/dscc2019-9147","DOIUrl":"https://doi.org/10.1115/dscc2019-9147","url":null,"abstract":"\u0000 This paper proposes a control-oriented pressure wave model, utilizing outputs of a reaction-based two-zone engine combustion model developed earlier, to accurately predict the key knock characteristics. The model can be used for model-based knock prediction and control. An in-cylinder pressure wave model of oscillation magnitude decay is proposed and simplified to describe pressure oscillations due to knock combustion, and the boundary and initial conditions of the pressure wave model at knock onset are provided by the two-zone reaction-based combustion model. The proposed pressure wave model is calibrated using experimental data, and the chemical kinetic-based Arrhenius integral (ARI) and maximum amplitude of pressure oscillations (MAPO) are used as the evaluation criteria for predicting knock onset and intensity, and the knock frequency is studied with the fast Fourier transform (FFT). The calibrated model is validated for predicting knock onset timing, knock intensity and frequency. Simulation results are compared with the experimental ones to demonstrate the capability of predicting engine knock characteristics by the proposed model.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"32 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86048381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A foot interface may one day control a third arm to assist the hands with a difficult task, but the interface needs to be easy to use. Developing a good foot interface is challenging because of the need to provide support for the leg, allow the user to disengage with the interface without causing unwanted motion, and make it easy for the user to hold a set position. The addition of friction in the interface can enable the device to meet these goals without negatively affecting performance. Although teleoperation is a well explored area of research, relatively little research has been done that examines the effects of friction on the control interface. This paper presents an experiment in which two foot control interfaces are compared. One device uses friction and the other has no added friction, so there is little resistance to motion in any direction. The experiment uses a reaching task and a path-following task to compare the interfaces. The only statistically significant performance differences were that the friction interface reduced the time needed to stop at a target and reduced excess movement when stopping at a target. Also, subjects indicated a preference for the friction interface. The results show that friction can be added to a foot interface to support the device and user and provide some positive gains in performance.
{"title":"Comparison of Position Control With and Without Friction on a Foot Interface","authors":"B. Rudolph, Ryder C. Winck","doi":"10.1115/dscc2019-9019","DOIUrl":"https://doi.org/10.1115/dscc2019-9019","url":null,"abstract":"\u0000 A foot interface may one day control a third arm to assist the hands with a difficult task, but the interface needs to be easy to use. Developing a good foot interface is challenging because of the need to provide support for the leg, allow the user to disengage with the interface without causing unwanted motion, and make it easy for the user to hold a set position. The addition of friction in the interface can enable the device to meet these goals without negatively affecting performance. Although teleoperation is a well explored area of research, relatively little research has been done that examines the effects of friction on the control interface. This paper presents an experiment in which two foot control interfaces are compared. One device uses friction and the other has no added friction, so there is little resistance to motion in any direction. The experiment uses a reaching task and a path-following task to compare the interfaces. The only statistically significant performance differences were that the friction interface reduced the time needed to stop at a target and reduced excess movement when stopping at a target. Also, subjects indicated a preference for the friction interface. The results show that friction can be added to a foot interface to support the device and user and provide some positive gains in performance.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"25 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84411290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}