首页 > 最新文献

Progress in Quantum Electronics最新文献

英文 中文
Spectral coherence, Part I: Passive-resonator linewidth, fundamental laser linewidth, and Schawlow-Townes approximation 光谱相干性,第一部分:无源谐振器线宽,基本激光线宽,和肖洛-汤斯近似
IF 11.7 1区 物理与天体物理 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2020-08-01 DOI: 10.1016/j.pquantelec.2020.100255
Markus Pollnau , Marc Eichhorn
<div><p>The degree of spectral coherence characterizes the spectral purity of light. It can be equivalently expressed in the time domain by the decay time <em>τ</em> or the quality factor <em>Q</em><span> of the light-emitting oscillator, the coherence time </span><em>τ</em> <sup><em>coh</em></sup> or length <span><math><mi>ℓ</mi></math></span><sup><em>coh</em></sup><span> of emitted light or, via Fourier transformation to the frequency domain, the linewidth Δ</span><em>ν</em><span><span><span> of emitted light. We quantify these parameters for the reference situation of a passive Fabry-Pérot resonator. We investigate its </span>spectral line shapes, mode profiles, and Airy distributions and verify that the sum of all mode profiles generates the corresponding Airy distribution. The Fabry-Pérot resonator is described, as an oscillator, by its Lorentzian linewidth and finesse and, as a scanning spectrometer, by its Airy linewidth and finesse. Furthermore, stimulated and spontaneous emission are analyzed semi-classically by employing Maxwell′s equations and the law of energy conservation. Investigation of emission by atoms inside a Fabry-Pérot resonator, the Lorentz oscillator model, the Kramers-Kronig relations, the amplitude-phase diagram, and the summation of quantized electric fields consistently suggests that stimulated and spontaneous emission of light occur with a phase 90° in lead of the incident field. These findings question the quantum-optical picture, which proposed, firstly, that </span>stimulated emission occurred in phase, whereas spontaneous emission occurred at an arbitrary phase angle with respect to the incident field and, secondly, that the laser linewidth were due to amplitude and phase fluctuations induced by spontaneous emission. We emphasize that the first derivation of the Schawlow-Townes laser linewidth was entirely semi-classical but included the four approximations that (i) it is a truly continuous-wave (cw) laser, (ii) it is an ideal four-level laser, (iii) its resonator exhibits no intrinsic losses, and (iv) one photon is coupled spontaneously into the lasing mode per photon-decay time </span><em>τ</em><sub><em>c</em></sub> of the resonator, independent of the pump rate. After discussing the inconsistencies of existing semi-classical and quantum-optical descriptions of the laser linewidth, we introduce the spectral-coherence factor, which quantifies spectral coherence in an active compared to its underlying passive mode, and derive semi-classically, based on the principle that the gain elongates the photon-decay time and narrows the linewidth, the fundamental linewidth of a single lasing mode. This linewidth is valid for lasers with an arbitrary energy-level system, operating below, at, or above threshold and in a cw or a transient lasing regime, with the gain being smaller, equal, or larger compared to the losses. By applying approximations (i)-(iv) we reproduce the original Schawlow-Townes equation. It provides the hi
光谱的相干度表征了光的光谱纯度。它可以在时域中等效地表示为发光振荡器的衰减时间τ或质量因子Q,发射光的相干时间τ coh或长度r coh,或者通过在频域的傅里叶变换表示为发射光的线宽Δν。我们将这些参数量化为无源法布里-普氏谐振器的参考情况。我们研究了它的谱线形状、模式分布和Airy分布,并验证了所有模式分布的总和产生相应的Airy分布。法布里-帕姆罗特谐振器被描述为,一个振荡器,通过它的洛伦兹线宽和精细度,作为一个扫描光谱仪,通过它的艾里线宽和精细度。利用麦克斯韦方程组和能量守恒定律对受激辐射和自发辐射进行了半经典分析。对法布里-帕姆罗特谐振腔内原子发射的研究、洛伦兹振子模型、Kramers-Kronig关系、幅相图和量子化电场的总和一致表明,受激光和自发光的发射发生在入射场的前导相位为90°。这些发现对量子光学图像提出了质疑,首先,受激发射发生在相位上,而自发发射发生在相对于入射场的任意相角上,其次,激光线宽是由自发发射引起的幅度和相位波动引起的。我们强调,Schawlow-Townes激光线宽的第一个推导完全是半经典的,但包括四个近似:(i)它是一个真正的连续波(cw)激光器,(ii)它是一个理想的四能级激光器,(iii)它的谐振腔没有本征损耗,以及(iv)一个光子自发耦合到激光模式每个光子衰减时间τc谐振腔,独立于泵浦速率。在讨论了现有的半经典和量子光学描述激光线宽的不一致性之后,我们引入了光谱相干系数,它量化了主动模式下与底层被动模式下的光谱相干性,并基于增益延长光子衰减时间和收窄线宽的原理,推导出了半经典的单激光模式的基本线宽。该线宽适用于任意能级系统的激光器,在连续波或瞬态激光状态下工作,低于、等于或高于阈值,增益小于、等于或大于损耗。通过应用近似(i)-(iv),我们再现了原始的Schawlow-Townes方程。它提供了迄今为止在激光作为自发发射放大器的描述和肖洛-汤斯方程之间缺失的联系。自发发射要求在连续波激光模式下,增益小于损耗。我们还验证了基于密度算子主方程的激光线宽的量子光学方法中,增益小于损耗。最后,我们给出了坚果壳中激光线宽的推导。
{"title":"Spectral coherence, Part I: Passive-resonator linewidth, fundamental laser linewidth, and Schawlow-Townes approximation","authors":"Markus Pollnau ,&nbsp;Marc Eichhorn","doi":"10.1016/j.pquantelec.2020.100255","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2020.100255","url":null,"abstract":"&lt;div&gt;&lt;p&gt;The degree of spectral coherence characterizes the spectral purity of light. It can be equivalently expressed in the time domain by the decay time &lt;em&gt;τ&lt;/em&gt; or the quality factor &lt;em&gt;Q&lt;/em&gt;&lt;span&gt; of the light-emitting oscillator, the coherence time &lt;/span&gt;&lt;em&gt;τ&lt;/em&gt; &lt;sup&gt;&lt;em&gt;coh&lt;/em&gt;&lt;/sup&gt; or length &lt;span&gt;&lt;math&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;sup&gt;&lt;em&gt;coh&lt;/em&gt;&lt;/sup&gt;&lt;span&gt; of emitted light or, via Fourier transformation to the frequency domain, the linewidth Δ&lt;/span&gt;&lt;em&gt;ν&lt;/em&gt;&lt;span&gt;&lt;span&gt;&lt;span&gt; of emitted light. We quantify these parameters for the reference situation of a passive Fabry-Pérot resonator. We investigate its &lt;/span&gt;spectral line shapes, mode profiles, and Airy distributions and verify that the sum of all mode profiles generates the corresponding Airy distribution. The Fabry-Pérot resonator is described, as an oscillator, by its Lorentzian linewidth and finesse and, as a scanning spectrometer, by its Airy linewidth and finesse. Furthermore, stimulated and spontaneous emission are analyzed semi-classically by employing Maxwell′s equations and the law of energy conservation. Investigation of emission by atoms inside a Fabry-Pérot resonator, the Lorentz oscillator model, the Kramers-Kronig relations, the amplitude-phase diagram, and the summation of quantized electric fields consistently suggests that stimulated and spontaneous emission of light occur with a phase 90° in lead of the incident field. These findings question the quantum-optical picture, which proposed, firstly, that &lt;/span&gt;stimulated emission occurred in phase, whereas spontaneous emission occurred at an arbitrary phase angle with respect to the incident field and, secondly, that the laser linewidth were due to amplitude and phase fluctuations induced by spontaneous emission. We emphasize that the first derivation of the Schawlow-Townes laser linewidth was entirely semi-classical but included the four approximations that (i) it is a truly continuous-wave (cw) laser, (ii) it is an ideal four-level laser, (iii) its resonator exhibits no intrinsic losses, and (iv) one photon is coupled spontaneously into the lasing mode per photon-decay time &lt;/span&gt;&lt;em&gt;τ&lt;/em&gt;&lt;sub&gt;&lt;em&gt;c&lt;/em&gt;&lt;/sub&gt; of the resonator, independent of the pump rate. After discussing the inconsistencies of existing semi-classical and quantum-optical descriptions of the laser linewidth, we introduce the spectral-coherence factor, which quantifies spectral coherence in an active compared to its underlying passive mode, and derive semi-classically, based on the principle that the gain elongates the photon-decay time and narrows the linewidth, the fundamental linewidth of a single lasing mode. This linewidth is valid for lasers with an arbitrary energy-level system, operating below, at, or above threshold and in a cw or a transient lasing regime, with the gain being smaller, equal, or larger compared to the losses. By applying approximations (i)-(iv) we reproduce the original Schawlow-Townes equation. It provides the hi","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"72 ","pages":"Article 100255"},"PeriodicalIF":11.7,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100255","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2620887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 30
Terahertz sources based on stimulated polariton scattering 基于受激极子散射的太赫兹源
IF 11.7 1区 物理与天体物理 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2020-05-01 DOI: 10.1016/j.pquantelec.2020.100254
Andrew J. Lee, David J. Spence, Helen M. Pask

In this paper we review the field of terahertz (THz) sources which make use of the nonlinear, stimulated polariton scattering (SPS) process. A historical perspective of the technology is offered, in addition to an investigation of modern SPS-based THz sources. Breakthroughs in these source technologies have coincided with rapid developments in laser technology over the past 10 years. We are now in an age where pulsed SPS-THz sources are generating peak powers in excess of 50 ​kW, and continuous wave SPS-THz sources can be produced using diode pump powers as low as 2.3 ​W. The versatility of this approach to THz generation has enabled the generation of coherent THz radiation across continuous wave (CW), nanosecond-, and picosecond-pulsed modalities, with sources spanning the frequency range 0.5–13 ​THz. Being based on robust and well-developed, crystalline solid-state laser technology, these sources hold great promise as an enabling technology for a plethora of THz applications.

本文综述了利用非线性受激极化子散射(SPS)过程的太赫兹(THz)源的研究进展。除了对现代基于sps的太赫兹源的调查外,还提供了该技术的历史观点。这些光源技术的突破与过去10年来激光技术的快速发展相吻合。我们现在处于脉冲SPS-THz源产生峰值功率超过50 kW的时代,连续波SPS-THz源可以使用低至2.3 W的二极管泵浦功率产生。这种太赫兹产生方法的通用性使连续波(CW)、纳秒和皮秒脉冲模式的相干太赫兹辐射能够产生,源的频率范围为0.5-13太赫兹。基于强大和发达的晶体固态激光技术,这些光源作为一种使能技术,在太赫兹的大量应用中具有很大的前景。
{"title":"Terahertz sources based on stimulated polariton scattering","authors":"Andrew J. Lee,&nbsp;David J. Spence,&nbsp;Helen M. Pask","doi":"10.1016/j.pquantelec.2020.100254","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2020.100254","url":null,"abstract":"<div><p>In this paper we review the field of terahertz (THz) sources which make use of the nonlinear, stimulated polariton scattering (SPS) process. A historical perspective of the technology is offered, in addition to an investigation of modern SPS-based THz sources. Breakthroughs in these source technologies have coincided with rapid developments in laser technology over the past 10 years. We are now in an age where pulsed SPS-THz sources are generating peak powers in excess of 50 ​kW, and continuous wave SPS-THz sources can be produced using diode pump powers as low as 2.3 ​W. The versatility of this approach to THz generation has enabled the generation of coherent THz radiation across continuous wave (CW), nanosecond-, and picosecond-pulsed modalities, with sources spanning the frequency range 0.5–13 ​THz. Being based on robust and well-developed, crystalline solid-state laser technology, these sources hold great promise as an enabling technology for a plethora of THz applications.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"71 ","pages":"Article 100254"},"PeriodicalIF":11.7,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100254","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2620888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display 全彩色微型led显示屏的生长、转移印刷和色彩转换技术
IF 11.7 1区 物理与天体物理 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2020-05-01 DOI: 10.1016/j.pquantelec.2020.100263
Xiaojie Zhou , Pengfei Tian , Chin-Wei Sher , Jiang Wu , Hezhuang Liu , Ran Liu , Hao-Chung Kuo

Micro light-emitting diode (micro-LED) display, mainly based on inorganic GaN-based LED, is an emerging technique with high contrast, low power consumption, long lifetime and fast response time compared to liquid crystal display (LCD) and organic light-emitting diode (OLED) display. Therefore, many research institutes and companies have conducted in-depth research on micro-LED in the full-colour display, gradually realizing the commercialization of micro-LED. And the current research results of micro-LED indicate that it can be widely used in display, visible light communication (VLC), biomedicine and other fields. Although micro-LED has broad commercial prospects, it still faces great challenges, such as the effect of size reduction on performance, the realization of high-density integration on a single wafer for independent addressing of full-colour micro-LED display, the improvement of repair technique and yield et al. This paper reviews the key solutions to the technical difficulties of the full-colour micro-LED display. Specifically, this review analyzes and discusses a variety of advanced full-colour micro-LED display techniques with a focus on three aspects: growth technique, transfer printing technique and colour conversion technique. This review demonstrates the opportunities, progress and challenges of these techniques, aiming to guide the development of full-colour micro-LED display.

微发光二极管(Micro -LED)显示是一种基于无机氮化镓基LED的新兴技术,与液晶显示(LCD)和有机发光二极管(OLED)显示相比,具有高对比度、低功耗、长寿命和快速响应时间等特点。因此,许多研究机构和公司都对micro-LED在全彩显示中的应用进行了深入的研究,逐步实现了micro-LED的商业化。而目前微型led的研究成果表明,它可以广泛应用于显示、可见光通信(VLC)、生物医学等领域。尽管micro-LED具有广阔的商业前景,但它仍然面临着巨大的挑战,如尺寸缩小对性能的影响、实现全彩micro-LED显示屏独立寻址的单片高密度集成、修复技术和良率的提高等。本文综述了全彩微型led显示屏技术难点的关键解决方案。具体来说,本文对各种先进的全彩微型led显示技术进行了分析和讨论,重点从生长技术、转移印花技术和色彩转换技术三个方面进行了分析和讨论。本文综述了这些技术的机遇、进展和挑战,旨在指导全彩微型led显示屏的发展。
{"title":"Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display","authors":"Xiaojie Zhou ,&nbsp;Pengfei Tian ,&nbsp;Chin-Wei Sher ,&nbsp;Jiang Wu ,&nbsp;Hezhuang Liu ,&nbsp;Ran Liu ,&nbsp;Hao-Chung Kuo","doi":"10.1016/j.pquantelec.2020.100263","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2020.100263","url":null,"abstract":"<div><p>Micro light-emitting diode (micro-LED) display, mainly based on inorganic GaN-based LED, is an emerging technique with high contrast, low power consumption, long lifetime and fast response time compared to liquid crystal display<span> (LCD) and organic light-emitting diode (OLED) display. Therefore, many research institutes and companies have conducted in-depth research on micro-LED in the full-colour display, gradually realizing the commercialization of micro-LED. And the current research results of micro-LED indicate that it can be widely used in display, visible light communication (VLC), biomedicine and other fields. Although micro-LED has broad commercial prospects, it still faces great challenges, such as the effect of size reduction on performance, the realization of high-density integration on a single wafer for independent addressing of full-colour micro-LED display, the improvement of repair technique and yield et al. This paper reviews the key solutions to the technical difficulties of the full-colour micro-LED display. Specifically, this review analyzes and discusses a variety of advanced full-colour micro-LED display techniques with a focus on three aspects: growth technique, transfer printing technique and colour conversion technique. This review demonstrates the opportunities, progress and challenges of these techniques, aiming to guide the development of full-colour micro-LED display.</span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"71 ","pages":"Article 100263"},"PeriodicalIF":11.7,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100263","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2620889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 134
Generation, optimization, and application of ultrashort femtosecond pulse in mode-locked fiber lasers 超短飞秒脉冲在锁模光纤激光器中的产生、优化和应用
IF 11.7 1区 物理与天体物理 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2020-05-01 DOI: 10.1016/j.pquantelec.2020.100264
Ying Han , Yubin Guo , Bo Gao , Chunyang Ma , Ruohan Zhang , Han Zhang

Ultrafast femtosecond mode-locked fiber laser plays an indispensable role in medical imaging, space ranging, ophthalmology, terahertz spectroscopy, material micromachining, and so on. It’s not only an important tool for people to explore the world, but also a pillar field of laser technology. This review present the generation of femtosecond pulses in ultrafast mode-locked fiber lasers using active, passive, hybrid mode-locking techniques, the emphasis is given to passively mode-locked fiber lasers. In terms of the optimization of femtosecond pulses, we introduce the external compression technique to obtain shorter pulse width, chirped pulse amplification technique to increase pulse energy and obtain high energy femtosecond pulses at the practical band. Furthermore, the coherent beam combination and divided pulse amplification technique to further boost pulse energy are summarized. At the end of this review, we present a detailed overview of the applications of femtosecond pulses including the generation of supercontinuum and tunable femtosecond pulses, and some practical applications. Several perspectives and research directions of femtosecond pulses are also addressed.

超快飞秒锁模光纤激光器在医学成像、空间测距、眼科、太赫兹光谱学、材料微加工等领域发挥着不可缺少的作用。它不仅是人们探索世界的重要工具,也是激光技术的支柱领域。本文综述了利用主动、被动和混合锁模技术在超快锁模光纤激光器中产生飞秒脉冲的研究进展,重点介绍了被动锁模光纤激光器。在飞秒脉冲的优化方面,我们引入了外压缩技术来获得更短的脉冲宽度,啁啾脉冲放大技术来增加脉冲能量,在实际波段获得高能量的飞秒脉冲。总结了相干光束组合和分脉冲放大技术,进一步提高了脉冲能量。最后,我们对飞秒脉冲的应用进行了详细的综述,包括超连续谱和可调谐飞秒脉冲的产生,以及一些实际应用。对飞秒脉冲的发展前景和研究方向进行了展望。
{"title":"Generation, optimization, and application of ultrashort femtosecond pulse in mode-locked fiber lasers","authors":"Ying Han ,&nbsp;Yubin Guo ,&nbsp;Bo Gao ,&nbsp;Chunyang Ma ,&nbsp;Ruohan Zhang ,&nbsp;Han Zhang","doi":"10.1016/j.pquantelec.2020.100264","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2020.100264","url":null,"abstract":"<div><p>Ultrafast femtosecond mode-locked fiber laser plays an indispensable role in medical imaging, space ranging, ophthalmology, terahertz spectroscopy<span>, material micromachining, and so on. It’s not only an important tool for people to explore the world, but also a pillar field of laser technology. This review present the generation of femtosecond pulses in ultrafast mode-locked fiber lasers using active, passive, hybrid mode-locking techniques, the emphasis is given to passively mode-locked fiber lasers. In terms of the optimization of femtosecond pulses, we introduce the external compression technique to obtain shorter pulse width, chirped pulse amplification technique to increase pulse energy and obtain high energy femtosecond pulses at the practical band. Furthermore, the coherent beam combination and divided pulse amplification technique to further boost pulse energy are summarized. At the end of this review, we present a detailed overview of the applications of femtosecond pulses including the generation of supercontinuum and tunable femtosecond pulses, and some practical applications. Several perspectives and research directions of femtosecond pulses are also addressed.</span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"71 ","pages":"Article 100264"},"PeriodicalIF":11.7,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100264","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2620890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 61
Chip-scale GaN integration 芯片级GaN集成
IF 11.7 1区 物理与天体物理 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2020-03-01 DOI: 10.1016/j.pquantelec.2020.100247
K.H. Li, W.Y. Fu, H.W. Choi

Blue LEDs and HEMTs based on III-Nitride have been flourishing commercially across the globe, thanks largely to breakthroughs in the material quality of the wide-bandgap compound semiconductor back in the 1990s. The realizations of white-light LEDs, blu-ray systems, and lately efficient compact chargers have drastically changed the way we live and have contributed tremendously to global energy saving efforts. The maturity and diversity of modern discrete GaN-based devices open up opportunities for an integrated GaN platform with extended functionalities and applications. In this review paper, we present an overview of the monolithic and heterogeneous integration of GaN devices and components. Various methods for the integration of electronic, optoelectronic, and optical components based on GaN are discussed.

基于iii -氮化物的蓝色led和hemt已经在全球范围内蓬勃发展,这在很大程度上要归功于20世纪90年代宽带隙化合物半导体材料质量的突破。白光led、蓝光系统的实现,以及最近高效的紧凑型充电器已经彻底改变了我们的生活方式,并为全球节能努力做出了巨大贡献。现代离散型氮化镓器件的成熟和多样性为具有扩展功能和应用的集成氮化镓平台提供了机会。在这篇综述文章中,我们提出了GaN器件和组件的单片和异构集成的概述。讨论了基于GaN的电子、光电和光学元件集成的各种方法。
{"title":"Chip-scale GaN integration","authors":"K.H. Li,&nbsp;W.Y. Fu,&nbsp;H.W. Choi","doi":"10.1016/j.pquantelec.2020.100247","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2020.100247","url":null,"abstract":"<div><p><span>Blue LEDs<span><span> and HEMTs based on III-Nitride have been flourishing commercially across the globe, thanks largely to breakthroughs in the material quality of the wide-bandgap compound semiconductor back in the 1990s. The realizations of white-light LEDs, blu-ray systems, and lately efficient compact chargers have drastically changed the way we live and have contributed tremendously to global energy saving efforts. The maturity and diversity of modern discrete GaN-based devices open up opportunities for an integrated GaN platform with extended functionalities and applications. In this review paper, we present an overview of the monolithic and heterogeneous integration of GaN devices and components. Various methods for the integration of electronic, </span>optoelectronic, and </span></span>optical components based on GaN are discussed.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"70 ","pages":"Article 100247"},"PeriodicalIF":11.7,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100247","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2164454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 27
Recent advances in microwave photonics instantaneous frequency measurements 微波光子学瞬时频率测量的最新进展
IF 11.7 1区 物理与天体物理 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2020-01-01 DOI: 10.1016/j.pquantelec.2019.100237
Lam Anh Bui

This paper reviews the field of microwave photonics instantaneous frequency measurements (IFM). It aims to consolidate the literature, explains the key implementations and reviews the recent developments. Current photonic IFMs are capable of operating over a wide bandwidth with a good resolution. However, their implementations are often based on discrete components and exhibit limited dynamic range and moderate efficiency. Photonic integration and improvements of dynamic range and efficiency are thus necessary, and they are anticipated as the future research directions and developments.

本文综述了微波光子学瞬时频率测量(IFM)的研究进展。它旨在巩固文献,解释关键的实现和回顾最近的发展。目前的光子ifm能够在较宽的带宽上工作,并具有良好的分辨率。然而,它们的实现通常基于离散元件,并且表现出有限的动态范围和中等效率。因此,光子集成和提高动态范围和效率是必要的,这是未来的研究方向和发展方向。
{"title":"Recent advances in microwave photonics instantaneous frequency measurements","authors":"Lam Anh Bui","doi":"10.1016/j.pquantelec.2019.100237","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2019.100237","url":null,"abstract":"<div><p>This paper reviews the field of microwave photonics<span> instantaneous frequency measurements (IFM). It aims to consolidate the literature, explains the key implementations and reviews the recent developments. Current photonic IFMs are capable of operating over a wide bandwidth with a good resolution. However, their implementations are often based on discrete components and exhibit limited dynamic range and moderate efficiency. Photonic integration and improvements of dynamic range and efficiency are thus necessary, and they are anticipated as the future research directions and developments.</span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"69 ","pages":"Article 100237"},"PeriodicalIF":11.7,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2019.100237","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2620893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Special thanks to Professor Jagadish and an introduction to the new editorial team 特别感谢Jagadish教授,并介绍新的编辑团队
IF 11.7 1区 物理与天体物理 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2020-01-01 DOI: 10.1016/j.pquantelec.2019.100246
M.D. Dawson (Editor-in-Chief), D.P. Tsai (Editor), H. Jelinkova (Editor), M. Kim (Editor), Z. Mi (Editor)
{"title":"Special thanks to Professor Jagadish and an introduction to the new editorial team","authors":"M.D. Dawson (Editor-in-Chief),&nbsp;D.P. Tsai (Editor),&nbsp;H. Jelinkova (Editor),&nbsp;M. Kim (Editor),&nbsp;Z. Mi (Editor)","doi":"10.1016/j.pquantelec.2019.100246","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2019.100246","url":null,"abstract":"","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"69 ","pages":"Article 100246"},"PeriodicalIF":11.7,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2019.100246","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2620892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Type-II superlattice photodetectors versus HgCdTe photodiodes ii型超晶格光电探测器与HgCdTe光电二极管
IF 11.7 1区 物理与天体物理 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2019-11-01 DOI: 10.1016/j.pquantelec.2019.100228
A. Rogalski, P. Martyniuk, M. Kopytko

The development of the HgCdTe alloy as the most important intrinsic semiconductor for infrared (IR) technology is well established and recognized. In spite of the achievements in material and device quality, the drawbacks still exist due to bulk and surface instability, lower yields and higher costs particularly in fabrication of long wavelength infrared arrays. The difficulties with this material encouraged to research on other compounds to improve device performance.

Since the first paper published by Sakaki and Esaki in 1978 it is well known that InAs and GaSb constitute a nearly lattice-matched material system offering great flexibility in the design of IR optoelectronic devices. After four decades, the III-V type-II superlattice (T2SL) detector technology is under strong development as a possible alternative to HgCdTe. The novel ideas coming in design of detectors have enhanced the position of T2SLs in IR materials detector technology. It appears that T2SLs are especially helpful in the design of unipolar barriers.

In this paper fundamental physical properties of two material systems, HgCdTe and T2SLs, are compared together with their influence on detector performance: dark current density, RA product, quantum efficiency, and noise equivalent different temperature. In comparison with HgCdTe, fundamental properties of T2SLs are inferior. On the other hand, T2SL and barrier detectors have several advantages to include lower tunnelling and surface leakage currents, and suppressed Auger recombination mechanism. Up to date, the promise of superior performance of these detectors has not been realized yet. In the paper we present that the performance of T2SL detectors (dark current, current responsivity, and noise equivalent difference temperature) is lower than bulk HgCdTe photodiodes.

Due to stronger, less ionic chemical bonding of III-V semiconductors, these materials are attractive due to manufacturability and stability. It is also predicted that the interband T2SL quantum cascade devices will outperform the performance of the high operating temperature HgCdTe detectors.

HgCdTe合金作为红外(IR)技术中最重要的本质半导体,其发展已经得到了广泛的认可。尽管在材料和器件质量方面取得了成就,但由于体积和表面不稳定、产量低和成本高,特别是在长波红外阵列的制造方面,缺点仍然存在。这种材料的困难鼓励了对其他化合物的研究,以提高设备的性能。自1978年Sakaki和Esaki发表第一篇论文以来,众所周知,InAs和GaSb构成了一个几乎晶格匹配的材料体系,为红外光电器件的设计提供了很大的灵活性。经过40年的发展,III-V型- ii型超晶格(T2SL)探测器技术作为HgCdTe的可能替代品正在得到大力发展。在探测器设计上的新思想提高了T2SLs在红外材料探测器技术中的地位。T2SLs在单极屏障的设计中似乎特别有用。本文比较了HgCdTe和T2SLs两种材料体系的基本物理性质,以及它们对探测器性能的影响:暗电流密度、RA积、量子效率和不同温度下的噪声当量。与HgCdTe相比,T2SLs的基本特性较差。另一方面,T2SL和势垒探测器具有较低的隧穿电流和表面漏电流以及抑制俄歇复合机制等优点。迄今为止,这些探测器优越性能的承诺尚未实现。在本文中,我们提出T2SL探测器的性能(暗电流,电流响应性和噪声等效温差)低于体块HgCdTe光电二极管。由于III-V半导体更强,离子化学键更少,这些材料由于可制造性和稳定性而具有吸引力。预测该带间T2SL量子级联器件的性能将优于高温HgCdTe探测器。
{"title":"Type-II superlattice photodetectors versus HgCdTe photodiodes","authors":"A. Rogalski,&nbsp;P. Martyniuk,&nbsp;M. Kopytko","doi":"10.1016/j.pquantelec.2019.100228","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2019.100228","url":null,"abstract":"<div><p>The development of the HgCdTe alloy as the most important intrinsic semiconductor for infrared (IR) technology is well established and recognized. In spite of the achievements in material and device quality, the drawbacks still exist due to bulk and surface instability, lower yields and higher costs particularly in fabrication of long wavelength infrared arrays. The difficulties with this material encouraged to research on other compounds to improve device performance.</p><p><span>Since the first paper published by Sakaki and Esaki in 1978 it is well known that InAs and GaSb constitute a nearly lattice-matched material system offering great flexibility in the design of IR optoelectronic devices. After four decades, the III-V type-II </span>superlattice (T2SL) detector technology is under strong development as a possible alternative to HgCdTe. The novel ideas coming in design of detectors have enhanced the position of T2SLs in IR materials detector technology. It appears that T2SLs are especially helpful in the design of unipolar barriers.</p><p><span>In this paper fundamental physical properties of two material systems, HgCdTe and T2SLs, are compared together with their influence on detector performance: dark current density, </span><em>RA</em><span> product, quantum efficiency, and noise equivalent different temperature. In comparison with HgCdTe, fundamental properties of T2SLs are inferior. On the other hand, T2SL and barrier detectors have several advantages to include lower tunnelling and surface leakage currents, and suppressed Auger recombination mechanism. Up to date, the promise of superior performance of these detectors has not been realized yet. In the paper we present that the performance of T2SL detectors (dark current, current responsivity, and noise equivalent difference temperature) is lower than bulk HgCdTe photodiodes.</span></p><p>Due to stronger, less ionic chemical bonding of III-V semiconductors, these materials are attractive due to manufacturability and stability. It is also predicted that the interband T2SL quantum cascade devices will outperform the performance of the high operating temperature HgCdTe detectors.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"68 ","pages":"Article 100228"},"PeriodicalIF":11.7,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2019.100228","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3386806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A critical review on two-dimensional quantum dots (2D QDs): From synthesis toward applications in energy and optoelectronics 二维量子点(2D QDs)研究综述:从合成到在能源和光电子领域的应用
IF 11.7 1区 物理与天体物理 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2019-11-01 DOI: 10.1016/j.pquantelec.2019.100226
Arumugam Manikandan , Yu-Ze Chen , Chih-Chiang Shen , Chin-Wei Sher , Hao-Chung Kuo , Yu-Lun Chueh

Recent advances in the development of quantum dots (QDs) have offered new possibilities for the exploration of sensors, bio imaging, batteries, electrochemical water splitting and optoelectronic applications because of their intriguing optical, electrical, catalytic and electrochemical properties. Among QDs, atomically thin two-dimensional quantum dots (2D QDs) derived from graphene sheets, transition metal dichalcogenide (TMD) layers and phosphorene have been of considerable interest for the past few years. There have been several intensive studies of carbon QDs, but TMD QDs and heterostructures based on 2D QDs are rapidly advancing. Herein, the synthesis and properties of 2D QDs, particularly carbon and TMD QDs, are reviewed for the recent progress in their application toward electrochemical water splitting, photocatalytic wastewater treatment, supercapacitors, batteries and photodetectors. Moreover, the assembly of such 2D QDs to achieve industrial-scale production and boost their performance in widespread applications is emphasized.

由于量子点具有有趣的光学、电学、催化和电化学特性,其发展的最新进展为传感器、生物成像、电池、电化学水分解和光电子应用的探索提供了新的可能性。在量子点中,由石墨烯片、过渡金属二硫化物(TMD)层和磷烯衍生的原子薄二维量子点(2D QDs)在过去几年中引起了相当大的兴趣。目前对碳量子点的研究已经非常深入,但TMD量子点和基于二维量子点的异质结构正在迅速发展。本文综述了二维量子点的合成和性质,特别是碳量子点和TMD量子点在电化学水分解、光催化废水处理、超级电容器、电池和光电探测器等方面的最新应用进展。此外,还强调了这种二维量子点的组装以实现工业规模生产并提高其在广泛应用中的性能。
{"title":"A critical review on two-dimensional quantum dots (2D QDs): From synthesis toward applications in energy and optoelectronics","authors":"Arumugam Manikandan ,&nbsp;Yu-Ze Chen ,&nbsp;Chih-Chiang Shen ,&nbsp;Chin-Wei Sher ,&nbsp;Hao-Chung Kuo ,&nbsp;Yu-Lun Chueh","doi":"10.1016/j.pquantelec.2019.100226","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2019.100226","url":null,"abstract":"<div><p><span><span>Recent advances in the development of quantum dots (QDs) have offered new possibilities for the exploration of sensors, bio imaging, batteries, electrochemical water splitting and </span>optoelectronic applications because of their intriguing optical, electrical, catalytic and electrochemical properties. Among QDs, atomically thin two-dimensional quantum dots (2D QDs) derived from graphene sheets, </span>transition metal dichalcogenide<span><span> (TMD) layers and phosphorene have been of considerable interest for the past few years. There have been several intensive studies of carbon QDs, but TMD QDs and </span>heterostructures<span> based on 2D QDs are rapidly advancing. Herein, the synthesis and properties of 2D QDs, particularly carbon and TMD QDs, are reviewed for the recent progress in their application toward electrochemical water splitting, photocatalytic wastewater treatment, supercapacitors<span>, batteries and photodetectors. Moreover, the assembly of such 2D QDs to achieve industrial-scale production and boost their performance in widespread applications is emphasized.</span></span></span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"68 ","pages":"Article 100226"},"PeriodicalIF":11.7,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2019.100226","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3386804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 65
Cr:Colquiriite Lasers: Current status and challenges for further progress Cr:Colquiriite激光器:现状和进一步发展的挑战
IF 11.7 1区 物理与天体物理 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2019-11-01 DOI: 10.1016/j.pquantelec.2019.100227
Umit Demirbas

Cr: Colquiriite laser materials (Cr:LiCAF, Cr:LiSAF, Cr:LiSGaF) own broad absorption bands in the visible region that allow direct-diode pumping by well-developed low-cost red diodes. Moreover, they possess broad emission bands in the near infrared that enable widely tunable laser operation (720–1110 nm), and generation of sub-10-fs light pulses via mode-locking. Furthermore, Cr: Colquiriite crystals can be grown with a very low loss level of 0.2%/cm, which enables the construction of high-Q-cavities, resulting in lasing thresholds below 1 mW, and slope efficiencies above 50%. High-Q-cavities constructed with Cr: Colquiriites could store large amount of intracavity laser powers which is off great interest: (i) for increasing the efficiency of intracavity nonlinear processes such as intracavity frequency-doubling, and (ii) for minimizing laser noise such as timing jitter noise in femtosecond operation. However, thermally and mechanically Cr: Colquiriites have glass like properties. Hence, average power scaling has been challenging in the cw and femtosecond Cr: Colquiriite lasers, as well as in their amplifiers. In this paper, we will review research efforts over the last decades, in developing robust, low-cost, highly-efficient, and tunable cw and femtosecond laser sources based on diode-pumped Cr:Colquiriite gain media. Challenges for future progress will also be discussed.

Cr: Colquiriite激光材料(Cr:LiCAF, Cr:LiSAF, Cr:LiSGaF)在可见光区具有较宽的吸收带,可以通过成熟的低成本红色二极管直接泵浦。此外,它们具有近红外宽发射带,可广泛调谐激光操作(720-1110 nm),并通过模式锁定产生低于10-fs的光脉冲。此外,Cr: Colquiriite晶体可以以0.2%/cm的极低损耗水平生长,这使得构建高q空腔成为可能,从而使激光阈值低于1 mW,斜率效率高于50%。用Cr: Colquiriites构建的高q腔可以存储大量腔内激光功率,这引起了人们的极大兴趣:(i)提高腔内非线性过程的效率,如腔内倍频;(ii)最小化飞秒操作中的激光噪声,如定时抖动噪声。然而,从热力学和力学角度看,铬:Colquiriites具有类似玻璃的性质。因此,在连续波和飞秒Cr: Colquiriite激光器及其放大器中,平均功率缩放一直是一个挑战。在本文中,我们将回顾过去几十年在基于二极管泵浦Cr:Colquiriite增益介质开发稳健、低成本、高效、可调谐的连续波和飞秒激光源方面的研究工作。还将讨论未来进展面临的挑战。
{"title":"Cr:Colquiriite Lasers: Current status and challenges for further progress","authors":"Umit Demirbas","doi":"10.1016/j.pquantelec.2019.100227","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2019.100227","url":null,"abstract":"<div><p>Cr: Colquiriite laser materials (Cr:LiCAF, Cr:LiSAF, Cr:LiSGaF) own broad absorption bands<span> in the visible region that allow direct-diode pumping by well-developed low-cost red diodes. Moreover, they possess broad emission bands in the near infrared<span> that enable widely tunable laser operation (720–1110 nm), and generation of sub-10-fs light pulses via mode-locking. Furthermore, Cr: Colquiriite crystals can be grown with a very low loss level of 0.2%/cm, which enables the construction of high-Q-cavities, resulting in lasing thresholds below 1 mW, and slope efficiencies above 50%. High-Q-cavities constructed with Cr: Colquiriites could store large amount of intracavity laser powers which is off great interest: (i) for increasing the efficiency of intracavity nonlinear processes such as intracavity frequency-doubling, and (ii) for minimizing laser noise such as timing jitter noise in femtosecond operation. However, thermally and mechanically Cr: Colquiriites have glass like properties. Hence, average power scaling has been challenging in the cw and femtosecond Cr: Colquiriite lasers, as well as in their amplifiers. In this paper, we will review research efforts over the last decades, in developing robust, low-cost, highly-efficient, and tunable cw and femtosecond laser sources based on diode-pumped Cr:Colquiriite gain media. Challenges for future progress will also be discussed.</span></span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"68 ","pages":"Article 100227"},"PeriodicalIF":11.7,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2019.100227","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2005564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
期刊
Progress in Quantum Electronics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1