首页 > 最新文献

Progress in Quantum Electronics最新文献

英文 中文
Progress of magneto-optical ceramics 磁光陶瓷的研究进展
IF 11.7 1区 物理与天体物理 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-09-01 DOI: 10.1016/j.pquantelec.2022.100416
A. Ikesue , Y.L. Aung , J. Wang

The magneto-optical effect (Faraday effect) was discovered in the middle of the 19th century. In the latter half of the 20th century, the practical use of isolators using single crystals (Faraday rotators) using the melt growth method began. One century after Faraday's discovery of the magneto-optic effect, R.L. Coble proved translucency of polycrystalline ceramics. Ceramics may have many scattering sources due to their polycrystalline microstructure, and even from the viewpoint of scattering theory, it was considered impossible to apply them to the generation of coherent light (laser). However, 40 years later, A. Ikesue demonstrated laser ceramics for the first time with performance comparable to that of optical single crystal counterparts. The possibility of laser application of polycrystalline ceramics also makes it possible to apply it to Faraday rotators (optical isolators) that utilize coherence light. A magneto-optical single crystal composed of a single crystal orientation was considered to be superior in that it provided excellent optical performance and an accurate Faraday rotation angle. However, polycrystalline ceramics composed of random crystal orientations can not only provide accurate Faraday rotation angle but can also have a higher extinction ratio than single crystal isolators. A ceramic medium with extremely low scattering and extremely low insertion loss, which cannot be achieved with a single crystal material, has been developed. In addition, new materials, which have Verdet constants several times higher than those of main commercial crystal for isolator, have made it possible to reduce the size of isolator devices. However, these materials cannot be synthesized by the conventional melt-growth method. In the 21st century, polycrystalline ceramics are paradigms for Faraday rotating elements, and are about to enter a period of change from single crystals to polycrystalline ceramics.

磁光效应(法拉第效应)在19世纪中叶被发现。在20世纪下半叶,使用熔体生长法使用单晶(法拉第旋转器)的隔离器开始实际使用。在法拉第发现磁光效应一个世纪后,R.L.科布尔证明了多晶陶瓷的半透明性。陶瓷由于其多晶的微观结构,可能有许多散射源,即使从散射理论的角度来看,也被认为不可能将其应用于相干光(激光)的产生。然而,40年后,A. Ikesue首次证明了激光陶瓷的性能可与光学单晶相媲美。多晶陶瓷的激光应用的可能性也使得它有可能应用到法拉第旋转器(光隔离器),利用相干光。单晶取向构成的磁光单晶具有优异的光学性能和准确的法拉第旋转角,是磁光单晶的优势。然而,由随机晶体取向组成的多晶陶瓷不仅可以提供精确的法拉第旋转角,而且比单晶隔离器具有更高的消光比。开发了一种具有极低散射和极低插入损耗的陶瓷介质,这是单晶材料无法实现的。此外,新材料的Verdet常数比隔离器的主要商用晶体高几倍,使隔离器器件的尺寸减小成为可能。然而,这些材料不能通过传统的熔体生长方法合成。21世纪,多晶陶瓷是法拉第旋转元件的典范,即将进入由单晶向多晶陶瓷转变的时期。
{"title":"Progress of magneto-optical ceramics","authors":"A. Ikesue ,&nbsp;Y.L. Aung ,&nbsp;J. Wang","doi":"10.1016/j.pquantelec.2022.100416","DOIUrl":"10.1016/j.pquantelec.2022.100416","url":null,"abstract":"<div><p>The magneto-optical effect (Faraday effect) was discovered in the middle of the 19<sup>th</sup> century. In the latter half of the 20<sup>th</sup> century, the practical use of isolators using single crystals (Faraday rotators) using the melt growth method began. One century after Faraday's discovery of the magneto-optic effect, R.L. Coble proved translucency of polycrystalline ceramics. Ceramics may have many scattering sources due to their polycrystalline microstructure, and even from the viewpoint of scattering theory, it was considered impossible to apply them to the generation of coherent light (laser). However, 40 years later, A. Ikesue demonstrated laser ceramics for the first time with performance comparable to that of optical single crystal counterparts. The possibility of laser application of polycrystalline ceramics also makes it possible to apply it to Faraday rotators (optical isolators) that utilize coherence light. A magneto-optical single crystal composed of a single crystal orientation was considered to be superior in that it provided excellent optical performance and an accurate Faraday rotation angle. However, polycrystalline ceramics composed of random crystal orientations can not only provide accurate Faraday rotation angle but can also have a higher extinction ratio than single crystal isolators. A ceramic medium with extremely low scattering and extremely low insertion loss, which cannot be achieved with a single crystal material, has been developed. In addition, new materials, which have Verdet constants several times higher than those of main commercial crystal for isolator, have made it possible to reduce the size of isolator devices. However, these materials cannot be synthesized by the conventional melt-growth method. In the 21<sup>st</sup> century, polycrystalline ceramics are paradigms for Faraday rotating elements, and are about to enter a period of change from single crystals to polycrystalline ceramics.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"86 ","pages":"Article 100416"},"PeriodicalIF":11.7,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49343437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Photonic frequency microcombs based on dissipative Kerr and quadratic cavity solitons 基于耗散Kerr和二次腔孤子的光子频率微梳
IF 11.7 1区 物理与天体物理 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-09-01 DOI: 10.1016/j.pquantelec.2022.100437
Mingming Nie, Yijun Xie, Bowen Li, Shu-Wei Huang

Optical frequency comb, with precisely controlled spectral lines spanning a broad range, has been the key enabling technology for many scientific breakthroughs. In addition to the traditional implementation based on mode-locked lasers, photonic frequency microcombs based on dissipative Kerr and quadratic cavity solitons in high-Q microresonators have become invaluable in applications requiring compact footprint, low cost, good energy efficiency, large comb spacing, and access to nonconventional spectral regions. In this review, we comprehensively examine the recent progress of photonic frequency microcombs and discuss how various phenomena can be utilized to enhance the microcomb performances that benefit a plethora of applications including optical atomic clockwork, optical frequency synthesizer, precision spectroscopy, astrospectrograph calibration, biomedical imaging, optical communications, coherent ranging, and quantum information science.

光学频率梳具有广泛的精确控制谱线,是许多科学突破的关键使能技术。除了基于锁模激光器的传统实现之外,基于高q微谐振器中耗散Kerr和二次腔孤子的光子频率微梳在要求占地面积小、成本低、能效高、梳间距大以及进入非常规光谱区域的应用中变得非常宝贵。在本文中,我们全面回顾了光子频率微梳的最新进展,并讨论了如何利用各种现象来提高微梳的性能,从而有利于光学原子钟、光学频率合成器、精密光谱学、天体光谱仪校准、生物医学成像、光通信、相干测距和量子信息科学等众多应用。
{"title":"Photonic frequency microcombs based on dissipative Kerr and quadratic cavity solitons","authors":"Mingming Nie,&nbsp;Yijun Xie,&nbsp;Bowen Li,&nbsp;Shu-Wei Huang","doi":"10.1016/j.pquantelec.2022.100437","DOIUrl":"10.1016/j.pquantelec.2022.100437","url":null,"abstract":"<div><p><span>Optical frequency comb, with precisely controlled spectral lines<span> spanning a broad range, has been the key enabling technology for many scientific breakthroughs. In addition to the traditional implementation based on mode-locked lasers, photonic frequency microcombs based on dissipative Kerr and quadratic cavity </span></span>solitons<span><span> in high-Q microresonators have become invaluable in applications requiring compact footprint, low cost, good energy efficiency, large comb spacing, and access to nonconventional spectral regions. In this review, we comprehensively examine the recent progress of photonic frequency microcombs and discuss how various phenomena can be utilized to enhance the microcomb performances that benefit a plethora of applications including optical atomic clockwork, optical frequency synthesizer, precision spectroscopy, astrospectrograph calibration, biomedical imaging, optical communications, coherent ranging, and </span>quantum information science.</span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"86 ","pages":"Article 100437"},"PeriodicalIF":11.7,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43161613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Deterministic integration of single nanowire devices with on-chip photonics and electronics 单纳米线器件与片上光子学和电子学的确定性集成
IF 11.7 1区 物理与天体物理 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-08-01 DOI: 10.1016/j.pquantelec.2022.100394
D. Jevtics, B. Guilhabert, A. Hurtado, M.D. Dawson, M.J. Strain

The epitaxial growth of semiconductor materials in nanowire geometries is enabling a new class of compact, micron scale optoelectronic devices. The deterministic selection and integration of single nanowire devices, from large growth populations, is required with high spatial accuracy and yield to enable their integration with on-chip systems. In this review we highlight the main methods by which single nanowires can be transferred from their growth substrate to a target chip. We present a range of chip-scale devices enabled by single NW transfer, including optical sources, receivers and waveguide networks. We discuss the scalability of common integration methods and their compatibility with standard lithographic methods and electronic contacting.

纳米线几何形状的半导体材料的外延生长使新型紧凑的微米级光电器件成为可能。单纳米线器件的确定性选择和集成,来自大量增长的群体,需要具有高空间精度和产量,以使其与片上系统集成。在这篇综述中,我们重点介绍了单纳米线从生长基质转移到目标芯片的主要方法。我们提出了一系列由单个NW传输启用的芯片级设备,包括光源,接收器和波导网络。讨论了常用集成方法的可扩展性及其与标准光刻方法和电子接触的兼容性。
{"title":"Deterministic integration of single nanowire devices with on-chip photonics and electronics","authors":"D. Jevtics,&nbsp;B. Guilhabert,&nbsp;A. Hurtado,&nbsp;M.D. Dawson,&nbsp;M.J. Strain","doi":"10.1016/j.pquantelec.2022.100394","DOIUrl":"10.1016/j.pquantelec.2022.100394","url":null,"abstract":"<div><p>The epitaxial growth of semiconductor materials in nanowire geometries is enabling a new class of compact, micron scale optoelectronic devices. The deterministic selection and integration of single nanowire devices, from large growth populations, is required with high spatial accuracy and yield to enable their integration with on-chip systems. In this review we highlight the main methods by which single nanowires can be transferred from their growth substrate to a target chip. We present a range of chip-scale devices enabled by single NW transfer, including optical sources, receivers and waveguide networks. We discuss the scalability of common integration methods and their compatibility with standard lithographic methods and electronic contacting.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"85 ","pages":"Article 100394"},"PeriodicalIF":11.7,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079672722000209/pdfft?md5=1f0fcaffa3d96c1615bfb8d16453f533&pid=1-s2.0-S0079672722000209-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48860244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Special issue in honor of the 65th birthday of Professor Chennupati Jagadish, AC 纪念AC Chennupati Jagadish教授65岁生日特刊
IF 11.7 1区 物理与天体物理 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-08-01 DOI: 10.1016/j.pquantelec.2022.100427
Martin Dawson, Zetian Mi, Hoe Tan
{"title":"Special issue in honor of the 65th birthday of Professor Chennupati Jagadish, AC","authors":"Martin Dawson,&nbsp;Zetian Mi,&nbsp;Hoe Tan","doi":"10.1016/j.pquantelec.2022.100427","DOIUrl":"10.1016/j.pquantelec.2022.100427","url":null,"abstract":"","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"85 ","pages":"Article 100427"},"PeriodicalIF":11.7,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49481989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical characterisation of nanowire lasers 纳米线激光器的光学特性
IF 11.7 1区 物理与天体物理 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-08-01 DOI: 10.1016/j.pquantelec.2022.100408
Stephen A. Church , Ruqaiya Al-Abri , Patrick Parkinson , Dhruv Saxena

Semiconductor nanowire lasers are single-element structures that can act as both gain material and cavity for optical lasing. They have typical dimensions on the order of an optical wavelength in diameter and several micrometres in length, presenting unique challenges for testing and characterisation. Optical microscopy and spectroscopy are powerful tools used to study nanowire lasers; here, we review the common techniques and analytical approaches often used and outline potential pitfalls in their application. We aim to outline best practise and experimental approaches used for characterisation of the material, cavity and lasing performance of nanowires towards applications in biology, photonics and telecommunications.

半导体纳米线激光器是一种单元件结构,既可以作为光学激光的增益材料,又可以作为光腔。它们具有典型的尺寸,直径为光学波长,长度为几微米,这对测试和表征提出了独特的挑战。光学显微镜和光谱学是研究纳米线激光器的有力工具;在这里,我们回顾了常用的技术和分析方法,并概述了其应用中的潜在缺陷。我们的目标是概述用于表征纳米线的材料、腔和激光性能的最佳实践和实验方法,以应用于生物学、光子学和电信。
{"title":"Optical characterisation of nanowire lasers","authors":"Stephen A. Church ,&nbsp;Ruqaiya Al-Abri ,&nbsp;Patrick Parkinson ,&nbsp;Dhruv Saxena","doi":"10.1016/j.pquantelec.2022.100408","DOIUrl":"10.1016/j.pquantelec.2022.100408","url":null,"abstract":"<div><p>Semiconductor nanowire lasers are single-element structures that can act as both gain material and cavity for optical lasing. They have typical dimensions on the order of an optical wavelength in diameter and several micrometres in length, presenting unique challenges for testing and characterisation. Optical microscopy and spectroscopy are powerful tools used to study nanowire lasers; here, we review the common techniques and analytical approaches often used and outline potential pitfalls in their application. We aim to outline best practise and experimental approaches used for characterisation of the material, cavity and lasing performance of nanowires towards applications in biology, photonics and telecommunications.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"85 ","pages":"Article 100408"},"PeriodicalIF":11.7,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079672722000349/pdfft?md5=bc24019e0681be199b43a23dc87f626e&pid=1-s2.0-S0079672722000349-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41347123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Polarization anisotropy in nanowires: Fundamental concepts and progress towards terahertz-band polarization devices 纳米线极化各向异性:太赫兹波段极化器件的基本概念和进展
IF 11.7 1区 物理与天体物理 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-08-01 DOI: 10.1016/j.pquantelec.2022.100417
Michael B. Johnston , Hannah J. Joyce

Pronounced polarization anisotropy in semiconductor nanowires has been exploited to achieve polarization-sensitive devices operating across the electromagnetic spectrum, from the ultraviolet to the terahertz band. This contribution describes the physical origins of optical and electrical anisotropy in nanowires. Polarization anisotropy arising from dielectric contrast, and the behaviour of (nano)wire grid polarizers, are derived from first principles. This review discusses experimental observations of polarization-sensitive light–matter interactions in nanowires. It then describes how these phenomena are employed in devices that detect or modulate polarized terahertz radiation on ultrafast timescales. Such novel terahertz device concepts are expected to find use in a wide variety of applications including high-speed terahertz-band communications and molecular fingerprinting.

半导体纳米线中明显的极化各向异性已被利用来实现在电磁波谱上工作的极化敏感器件,从紫外线到太赫兹波段。这篇文章描述了纳米线中光学和电学各向异性的物理起源。极化各向异性引起的电介质对比,以及(纳米)线栅偏振器的行为,是从第一性原理推导出来的。本文综述了纳米线中偏振敏感光-物质相互作用的实验观察。然后描述了如何在超快时间尺度上检测或调制偏振太赫兹辐射的设备中使用这些现象。这种新颖的太赫兹器件概念有望在各种各样的应用中找到用途,包括高速太赫兹波段通信和分子指纹识别。
{"title":"Polarization anisotropy in nanowires: Fundamental concepts and progress towards terahertz-band polarization devices","authors":"Michael B. Johnston ,&nbsp;Hannah J. Joyce","doi":"10.1016/j.pquantelec.2022.100417","DOIUrl":"10.1016/j.pquantelec.2022.100417","url":null,"abstract":"<div><p>Pronounced polarization anisotropy in semiconductor nanowires has been exploited to achieve polarization-sensitive devices operating across the electromagnetic spectrum, from the ultraviolet to the terahertz band. This contribution describes the physical origins of optical and electrical anisotropy in nanowires. Polarization anisotropy arising from dielectric contrast, and the behaviour of (nano)wire grid polarizers, are derived from first principles. This review discusses experimental observations of polarization-sensitive light–matter interactions in nanowires. It then describes how these phenomena are employed in devices that detect or modulate polarized terahertz radiation on ultrafast timescales. Such novel terahertz device concepts are expected to find use in a wide variety of applications including high-speed terahertz-band communications and molecular fingerprinting.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"85 ","pages":"Article 100417"},"PeriodicalIF":11.7,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079672722000428/pdfft?md5=b61f0d4b776cbd988fc12f062945b8a0&pid=1-s2.0-S0079672722000428-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46929066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
III-nitride nanostructures: Emerging applications for Micro-LEDs, ultraviolet photonics, quantum optoelectronics, and artificial photosynthesis 氮化纳米结构:在微型led、紫外光子学、量子光电子学和人工光合作用中的新兴应用
IF 11.7 1区 物理与天体物理 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-08-01 DOI: 10.1016/j.pquantelec.2022.100401
Yuanpeng Wu , Xianhe Liu , Ayush Pandey , Peng Zhou , Wan Jae Dong , Ping Wang , Jungwook Min , Parag Deotare , Mackillo Kira , Emmanouil Kioupakis , Zetian Mi

In this review article, we discuss the molecular beam epitaxy and basic structural, electronic, optical, excitonic, chemical and catalytic properties of III-nitride nanostructures, including nanowires, monolayer heterostructures, and quantum dots. Their emerging applications in ultraviolet, visible and infrared photonics, quantum optoelectronics, and artificial photosynthesis that are relevant for next generation mobile display, virtual/augmented reality, quantum communication, and energy, water, and environment sustainability challenges are presented.

本文综述了氮化ⅲ纳米结构(包括纳米线、单层异质结构和量子点)的分子束外延和基本结构、电子、光学、激子、化学和催化性能。介绍了它们在紫外、可见和红外光子学、量子光电子学和人工光合作用方面的新兴应用,这些应用与下一代移动显示、虚拟/增强现实、量子通信以及能源、水和环境可持续性挑战相关。
{"title":"III-nitride nanostructures: Emerging applications for Micro-LEDs, ultraviolet photonics, quantum optoelectronics, and artificial photosynthesis","authors":"Yuanpeng Wu ,&nbsp;Xianhe Liu ,&nbsp;Ayush Pandey ,&nbsp;Peng Zhou ,&nbsp;Wan Jae Dong ,&nbsp;Ping Wang ,&nbsp;Jungwook Min ,&nbsp;Parag Deotare ,&nbsp;Mackillo Kira ,&nbsp;Emmanouil Kioupakis ,&nbsp;Zetian Mi","doi":"10.1016/j.pquantelec.2022.100401","DOIUrl":"10.1016/j.pquantelec.2022.100401","url":null,"abstract":"<div><p><span><span>In<span> this review article, we discuss the molecular beam epitaxy and basic structural, electronic, optical, excitonic, chemical and catalytic properties of III-nitride </span></span>nanostructures, including nanowires, monolayer </span>heterostructures<span><span><span><span>, and quantum dots. Their emerging applications in ultraviolet, visible and infrared </span>photonics, quantum </span>optoelectronics, and artificial photosynthesis that are relevant for next generation mobile display, virtual/augmented reality, </span>quantum communication, and energy, water, and environment sustainability challenges are presented.</span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"85 ","pages":"Article 100401"},"PeriodicalIF":11.7,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46671887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
High-power multicore fiber laser systems 高功率多芯光纤激光器系统
IF 11.7 1区 物理与天体物理 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-06-01 DOI: 10.1016/j.pquantelec.2022.100412
Arno Klenke , Cesar Jauregui , Albrecht Steinkopff , Christopher Aleshire , Jens Limpert
{"title":"High-power multicore fiber laser systems","authors":"Arno Klenke ,&nbsp;Cesar Jauregui ,&nbsp;Albrecht Steinkopff ,&nbsp;Christopher Aleshire ,&nbsp;Jens Limpert","doi":"10.1016/j.pquantelec.2022.100412","DOIUrl":"10.1016/j.pquantelec.2022.100412","url":null,"abstract":"","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"84 ","pages":"Article 100412"},"PeriodicalIF":11.7,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42320884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Photon-by-photon quantum light state engineering 光子对光子量子光态工程
IF 11.7 1区 物理与天体物理 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-06-01 DOI: 10.1016/j.pquantelec.2022.100414
Nicola Biagi, Saverio Francesconi, Alessandro Zavatta, Marco Bellini

The ability to manipulate light at the level of single photons, its elementary excitation quanta, has recently made it possible to produce a rich variety of tailor-made quantum states and arbitrary quantum operations, of high interest for fundamental science and applications. Here we present a concise review of the progress made over the last few decades in the engineering of quantum light states. Although far from exhaustive, this review aims at providing a sufficiently wide and updated introduction that may serve as the entry point to such a fascinating and rapidly evolving field.

在单光子水平上操纵光的能力,它的基本激发量子,最近使得产生丰富多样的定制量子态和任意量子操作成为可能,这对基础科学和应用具有很高的兴趣。在这里,我们简要回顾了过去几十年来在量子光态工程方面取得的进展。虽然远非详尽无遗,但本综述的目的是提供一个足够广泛和最新的介绍,可以作为这样一个迷人和快速发展的领域的切入点。
{"title":"Photon-by-photon quantum light state engineering","authors":"Nicola Biagi,&nbsp;Saverio Francesconi,&nbsp;Alessandro Zavatta,&nbsp;Marco Bellini","doi":"10.1016/j.pquantelec.2022.100414","DOIUrl":"10.1016/j.pquantelec.2022.100414","url":null,"abstract":"<div><p>The ability to manipulate light at the level of single photons, its elementary excitation quanta, has recently made it possible to produce a rich variety of tailor-made quantum states and arbitrary quantum operations, of high interest for fundamental science and applications. Here we present a concise review of the progress made over the last few decades in the engineering of quantum light states. Although far from exhaustive, this review aims at providing a sufficiently wide and updated introduction that may serve as the entry point to such a fascinating and rapidly evolving field.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"84 ","pages":"Article 100414"},"PeriodicalIF":11.7,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43406678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Visible solid-state lasers based on Pr3+ and Tb3+ 基于Pr3+和Tb3+的可见固体激光器
IF 11.7 1区 物理与天体物理 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2022-06-01 DOI: 10.1016/j.pquantelec.2022.100411
Hiroki Tanaka , Sascha Kalusniak , Moritz Badtke , Maxim Demesh , Nikolai V. Kuleshov , Fumihiko Kannari , Christian Kränkel
<div><p>Visible lasers are sought for in a variety of applications. They are required in fields as diverse as medicine, materials processing, display and entertainment technology and many others. Moreover, in contrast to infrared lasers, they enable very simple and efficient access to the UV spectral range by a single frequency doubling step. Currently, the choice of direct visibly emitting lasers is limited: The ‘green gap’ prohibits the development of semiconductor lasers with emission in the green and yellow spectral range and only few laser active ions allow for efficient visible lasing. In particular trivalent praseodymium (Pr<sup>3+</sup>) and terbium (Tb<sup>3+</sup>) ions have been shown to be the most successful candidates for efficient high power visible solid-state lasers. Compared to semiconductor lasers, solid-state lasers also provide other advantages, <em>e.g.</em>, in terms of energy storage in Q-switched operation as well as beam quality at high output power.</p><p>In recent years, visibly emitting solid-state lasers have seen a revival enabled by the increasing commercial availability of GaN-based blue emitting pump diodes and an ever-increasing number of publications evidences the vivid research activities in this field. Still, due to the relatively short history of diode-pumped visible solid-state lasers, these are still in an early stage of their development and up to now only few direct visibly emitting solid-state lasers with comparably low output power are commercially available. However, we are convinced that visibly emitting solid-state lasers based on Pr<sup>3+</sup> and Tb<sup>3+</sup> have the potential for 100-W-class continuous wave output power levels as well as sub-ns pulse durations in Q-switched and sub-ps-pulse durations in mode-locked operation, which would qualify them to fulfil the requirements of most of the applications named above.</p><p>In this work, we review the state of the art of continuous wave and pulsed visibly emitting solid-state lasers and amplifiers based on Pr<sup>3+</sup> and Tb<sup>3+</sup> as the active ion. After an introduction, we briefly review the spectroscopic properties of these two ions and their particularities for laser operation as well as the requirements for suitable host materials. In the third chapter, we present the state of the art in the field of continuous wave Pr<sup>3+</sup>-lasers emitting in the cyan-blue, green, orange, red, and deep-red spectral range based on fluoride, glass, and oxide host materials and discuss prospects for further power scaling. The fourth chapter is devoted to the current state of Tb<sup>3+</sup>-based continuous wave green and yellow emitting solid-state lasers. In the fifth and sixth chapter we give an overview over existing pulsed visibly emitting solid-state lasers in Q-switched and mode-locked operation mode, respectively. Finally, the seventh chapter is devoted to pulse amplifiers for ultrafast visible lasers before this review closes wi
可见激光被用于各种各样的应用。他们需要在不同的领域,如医药,材料加工,显示和娱乐技术等。此外,与红外激光器相比,它们通过单个频率加倍步骤可以非常简单有效地访问紫外光谱范围。目前,直接可见发射激光器的选择是有限的:“绿隙”阻碍了半导体激光器在绿色和黄色光谱范围内发射的发展,只有少数激光活性离子允许有效的可见激光。特别是三价镨(Pr3+)和铽(Tb3+)离子已被证明是高效高功率可见固体激光器最成功的候选者。与半导体激光器相比,固态激光器还具有其他优点,例如,在调q操作中的能量存储以及高输出功率下的光束质量。近年来,由于氮化镓基蓝色发射泵浦二极管的商业可用性不断提高,可见发射固体激光器得到了复兴,越来越多的出版物证明了这一领域的生动研究活动。尽管如此,由于二极管泵浦可见固体激光器的历史相对较短,这些仍处于发展的早期阶段,到目前为止,只有少数具有相对低输出功率的直接可见发射固体激光器在商业上可用。然而,我们确信,基于Pr3+和Tb3+的可见发射固体激光器具有100 w级连续波输出功率水平的潜力,以及在q开关时的亚ns脉冲持续时间和锁模操作时的亚ps脉冲持续时间,这将使它们有资格满足上述大多数应用的要求。在这项工作中,我们回顾了基于Pr3+和Tb3+作为活性离子的连续波和脉冲可见发射固体激光器和放大器的最新进展。本文简要介绍了这两种离子的光谱特性及其在激光操作中的特殊性,以及对合适的基体材料的要求。在第三章中,我们介绍了基于氟化物、玻璃和氧化物主体材料的在蓝绿色、绿色、橙色、红色和深红色光谱范围内发射的连续波Pr3+激光器领域的最新进展,并讨论了进一步功率缩放的前景。第四章研究了基于Tb3+的连续波绿黄发射固体激光器的现状。在第五章和第六章中,我们分别概述了在调q和锁模工作模式下现有的脉冲可见发射固体激光器。最后,第七章专门介绍了用于超快可见激光器的脉冲放大器,然后以简短的结论结束本文的回顾。
{"title":"Visible solid-state lasers based on Pr3+ and Tb3+","authors":"Hiroki Tanaka ,&nbsp;Sascha Kalusniak ,&nbsp;Moritz Badtke ,&nbsp;Maxim Demesh ,&nbsp;Nikolai V. Kuleshov ,&nbsp;Fumihiko Kannari ,&nbsp;Christian Kränkel","doi":"10.1016/j.pquantelec.2022.100411","DOIUrl":"10.1016/j.pquantelec.2022.100411","url":null,"abstract":"&lt;div&gt;&lt;p&gt;Visible lasers are sought for in a variety of applications. They are required in fields as diverse as medicine, materials processing, display and entertainment technology and many others. Moreover, in contrast to infrared lasers, they enable very simple and efficient access to the UV spectral range by a single frequency doubling step. Currently, the choice of direct visibly emitting lasers is limited: The ‘green gap’ prohibits the development of semiconductor lasers with emission in the green and yellow spectral range and only few laser active ions allow for efficient visible lasing. In particular trivalent praseodymium (Pr&lt;sup&gt;3+&lt;/sup&gt;) and terbium (Tb&lt;sup&gt;3+&lt;/sup&gt;) ions have been shown to be the most successful candidates for efficient high power visible solid-state lasers. Compared to semiconductor lasers, solid-state lasers also provide other advantages, &lt;em&gt;e.g.&lt;/em&gt;, in terms of energy storage in Q-switched operation as well as beam quality at high output power.&lt;/p&gt;&lt;p&gt;In recent years, visibly emitting solid-state lasers have seen a revival enabled by the increasing commercial availability of GaN-based blue emitting pump diodes and an ever-increasing number of publications evidences the vivid research activities in this field. Still, due to the relatively short history of diode-pumped visible solid-state lasers, these are still in an early stage of their development and up to now only few direct visibly emitting solid-state lasers with comparably low output power are commercially available. However, we are convinced that visibly emitting solid-state lasers based on Pr&lt;sup&gt;3+&lt;/sup&gt; and Tb&lt;sup&gt;3+&lt;/sup&gt; have the potential for 100-W-class continuous wave output power levels as well as sub-ns pulse durations in Q-switched and sub-ps-pulse durations in mode-locked operation, which would qualify them to fulfil the requirements of most of the applications named above.&lt;/p&gt;&lt;p&gt;In this work, we review the state of the art of continuous wave and pulsed visibly emitting solid-state lasers and amplifiers based on Pr&lt;sup&gt;3+&lt;/sup&gt; and Tb&lt;sup&gt;3+&lt;/sup&gt; as the active ion. After an introduction, we briefly review the spectroscopic properties of these two ions and their particularities for laser operation as well as the requirements for suitable host materials. In the third chapter, we present the state of the art in the field of continuous wave Pr&lt;sup&gt;3+&lt;/sup&gt;-lasers emitting in the cyan-blue, green, orange, red, and deep-red spectral range based on fluoride, glass, and oxide host materials and discuss prospects for further power scaling. The fourth chapter is devoted to the current state of Tb&lt;sup&gt;3+&lt;/sup&gt;-based continuous wave green and yellow emitting solid-state lasers. In the fifth and sixth chapter we give an overview over existing pulsed visibly emitting solid-state lasers in Q-switched and mode-locked operation mode, respectively. Finally, the seventh chapter is devoted to pulse amplifiers for ultrafast visible lasers before this review closes wi","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"84 ","pages":"Article 100411"},"PeriodicalIF":11.7,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079672722000374/pdfft?md5=b2fa2e9abcf1a422ed80f0ffca72445d&pid=1-s2.0-S0079672722000374-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49258406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
期刊
Progress in Quantum Electronics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1