首页 > 最新文献

Progress in Quantum Electronics最新文献

英文 中文
On the principle operation of tunneling injection quantum dot lasers 隧道注入量子点激光器的工作原理
IF 11.7 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2022-01-01 DOI: 10.1016/j.pquantelec.2021.100362
Igor Khanonkin , Sven Bauer , Vissarion Mikhelashvili , Ori Eyal , Michael Lorke , Frank Jahnke , Johann Peter Reithmaier , Gadi Eisenstein

The concept of tunneling injection was introduced in the 1990's to improve the dynamical properties of semiconductor lasers by avoiding the problem of hot carrier injection which increase the gain nonlinearity and hence limit the modulation capabilities. Indeed, tunneling injection led to record modulation speeds in quantum well lasers. Employing tunneling injection in quantum dot lasers is significantly more complicated. Tunneling injection is based on an energy band alignment between a carrier reservoir and the active region where laser oscillation takes place. However, the inherent inhomogeneity of self-assembled quantum dots prevents an unequivocal band alignment and can cause the tunneling injection process to actually deteriorate the laser performance compared to nominally identical quantum dot lasers that have no tunneling section. Understanding the complex process of tunneling injection in quantum dot lasers requires a comprehensive study where different aspects are analyzed theoretically and experimentally. In this paper we describe the technology of such lasers in the InP material system followed by a microscopic analysis of the detailed electrical characterization which is correlated to the electro-optic properties yields information about the exact carrier transport mechanism at bias levels of almost zero to well above threshold. A tunneling injection quantum dot optical amplifier was used for multi wavelength pump probe characterization from which it is clear why tunneling injection often deteriorates laser performance and determines how to design a structure which can take advantage of tunneling injection. Finally, we present a direct comparison between the modulation response of a tunneling injection quantum dot laser and a twin structure that has no tunneling injection section.

The broad study sheds light on the fundamental tunneling injection process that can guide the design of an optimum laser where tunneling injection will be taken full advantage of and will improve the dynamical properties.

隧道注入的概念是在20世纪90年代提出的,旨在通过避免热载流子注入增加增益非线性从而限制调制能力的问题来改善半导体激光器的动态特性。事实上,隧穿注入导致了量子阱激光器中调制速度的记录。在量子点激光器中使用隧道注入要复杂得多。隧穿注入是基于载流子储层和发生激光振荡的有源区域之间的能带对准。然而,自组装量子点固有的不均匀性阻止了明确的波段对准,并且与没有隧道段的名义上相同的量子点激光器相比,隧道注入过程实际上会降低激光器的性能。理解量子点激光器中隧穿注入的复杂过程需要从理论和实验两方面进行综合研究。在本文中,我们描述了这种激光器在InP材料系统中的技术,然后对与电光特性相关的详细电学特性进行了微观分析,得出了在几乎为零到远高于阈值的偏置水平下有关精确载流子输运机制的信息。利用隧道注入量子点光放大器对多波长泵浦探针进行了表征,从而明确了隧道注入导致激光器性能恶化的原因,并决定了如何设计一种能充分利用隧道注入的结构。最后,我们直接比较了隧穿注入量子点激光器和没有隧穿注入段的孪晶结构的调制响应。这项广泛的研究揭示了隧道注入的基本过程,可以指导设计最佳的激光器,充分利用隧道注入并改善其动力学性能。
{"title":"On the principle operation of tunneling injection quantum dot lasers","authors":"Igor Khanonkin ,&nbsp;Sven Bauer ,&nbsp;Vissarion Mikhelashvili ,&nbsp;Ori Eyal ,&nbsp;Michael Lorke ,&nbsp;Frank Jahnke ,&nbsp;Johann Peter Reithmaier ,&nbsp;Gadi Eisenstein","doi":"10.1016/j.pquantelec.2021.100362","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2021.100362","url":null,"abstract":"<div><p><span><span>The concept of tunneling injection was introduced in the 1990's to improve the dynamical properties of semiconductor lasers<span> by avoiding the problem of hot carrier injection which increase the gain nonlinearity and hence limit the modulation capabilities. Indeed, tunneling injection led to record modulation speeds in </span></span>quantum well lasers. Employing tunneling injection in </span>quantum dot<span><span> lasers is significantly more complicated. Tunneling injection is based on an energy band alignment between a carrier reservoir and the active region where laser oscillation takes place. However, the inherent inhomogeneity of self-assembled quantum dots prevents an unequivocal band alignment and can cause the tunneling injection process to actually deteriorate the laser performance compared to nominally identical quantum dot lasers that have no tunneling section. Understanding the complex process of tunneling injection in quantum dot lasers requires a comprehensive study where different aspects are analyzed theoretically and experimentally. In this paper we describe the technology of such lasers in the InP material system followed by a microscopic analysis of the detailed electrical characterization which is correlated to the electro-optic properties yields information about the exact carrier transport mechanism at bias levels of almost zero to well above threshold. A tunneling injection quantum dot </span>optical amplifier was used for multi wavelength pump probe characterization from which it is clear why tunneling injection often deteriorates laser performance and determines how to design a structure which can take advantage of tunneling injection. Finally, we present a direct comparison between the modulation response of a tunneling injection quantum dot laser and a twin structure that has no tunneling injection section.</span></p><p>The broad study sheds light on the fundamental tunneling injection process that can guide the design of an optimum laser where tunneling injection will be taken full advantage of and will improve the dynamical properties.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1613118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Special issue in honor of the 70th birthday of Professor J. Gary Eden 纪念盖里·艾登教授70岁生日的特刊
IF 11.7 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2022-01-01 DOI: 10.1016/j.pquantelec.2021.100366
Martin Dawson , D.B. Geohegan (Guest Editor) , T.M. Spinka (Guest Editor) , C. Jagadish (Guest Editor)
{"title":"Special issue in honor of the 70th birthday of Professor J. Gary Eden","authors":"Martin Dawson ,&nbsp;D.B. Geohegan (Guest Editor) ,&nbsp;T.M. Spinka (Guest Editor) ,&nbsp;C. Jagadish (Guest Editor)","doi":"10.1016/j.pquantelec.2021.100366","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2021.100366","url":null,"abstract":"","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2818901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-temperature terahertz quantum cascade lasers 高温太赫兹量子级联激光器
IF 11.7 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2021-11-01 DOI: 10.1016/j.pquantelec.2021.100363
Boyu Wen, Dayan Ban

The terahertz (THz) quantum cascade laser (QCL), first demonstrated in 2002, is among the most promising radiation sources in the THz region owing to its high output power and broad frequency coverage from ∼1.3 to ∼5.4 ​THz and sub-terahertz, without and with assistance of external strong magnetic field. The operation of THz QCLs, however, has thus far been limited to applications below room temperature. Recent advances in THz QCL research have principally focused on optimization of quantum design, fabrication, and growth techniques to improve the maximum operating temperature of THz QCLs; these efforts culminated in a recent demonstration of pulse-mode lasing at temperature up to 250 ​K. Research interests continue to be propelled as new maximum lasing temperature record are set, heating up the race to realize room-temperature operation of THz QCLs. This paper critically reviews key achievements and milestones of quantum designs, fabrication techniques, and simulation methods applicable to the high temperature operation of THz QCLs. In addition, this paper provides a succinct summary of efforts in this field to pinpoint the remaining challenges and provide a comprehensive picture for future trends in THz QCL research.

2002年首次展示的太赫兹(THz)量子级联激光器(QCL)是太赫兹区域最有前途的辐射源之一,因为它具有高输出功率和宽频率覆盖范围,从1.3到5.4太赫兹和次太赫兹,没有外部强磁场的帮助。然而,迄今为止,太赫兹量子激光器的操作仅限于室温以下的应用。太赫兹量子激光器的最新研究进展主要集中在量子设计、制造和生长技术的优化上,以提高太赫兹量子激光器的最高工作温度;这些努力在最近的一次温度高达250k的脉冲模式激光演示中达到了顶峰。随着新的最高激光温度记录的创造,研究兴趣继续受到推动,使实现太赫兹量子激光器室温运行的竞赛升温。本文评述了适用于太赫兹量子激光器高温运行的量子设计、制造技术和模拟方法的关键成就和里程碑。此外,本文还简要总结了该领域的工作,以指出仍然存在的挑战,并为太赫兹QCL研究的未来趋势提供了一个全面的图景。
{"title":"High-temperature terahertz quantum cascade lasers","authors":"Boyu Wen,&nbsp;Dayan Ban","doi":"10.1016/j.pquantelec.2021.100363","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2021.100363","url":null,"abstract":"<div><p>The terahertz (THz) quantum cascade laser (QCL), first demonstrated in 2002, is among the most promising radiation sources in the THz region owing to its high output power and broad frequency coverage from ∼1.3 to ∼5.4 ​THz and sub-terahertz, without and with assistance of external strong magnetic field. The operation of THz QCLs, however, has thus far been limited to applications below room temperature. Recent advances in THz QCL research have principally focused on optimization of quantum design, fabrication, and growth techniques to improve the maximum operating temperature of THz QCLs; these efforts culminated in a recent demonstration of pulse-mode lasing at temperature up to 250 ​K. Research interests continue to be propelled as new maximum lasing temperature record are set, heating up the race to realize room-temperature operation of THz QCLs. This paper critically reviews key achievements and milestones of quantum designs, fabrication techniques, and simulation methods applicable to the high temperature operation of THz QCLs. In addition, this paper provides a succinct summary of efforts in this field to pinpoint the remaining challenges and provide a comprehensive picture for future trends in THz QCL research.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3078177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
Biological tunable photonics: Emerging optoelectronic applications manipulated by living biomaterials 生物可调谐光子学:由活体生物材料操纵的新兴光电应用
IF 11.7 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2021-11-01 DOI: 10.1016/j.pquantelec.2021.100361
Yifan Zhang , Ziyihui Wang , Yu-Cheng Chen

Over the past few decades, optoelectronic devices have played a key role in human life and modern technology. To meet the development trends of the industry, photonics with tunable functions have emerged as building blocks with immense potential in controlling light–matter interactions, sensors, and integrated photonics. Compared with artificially designed materials and physical approaches, stimuli-responsive biointerfaces enable a higher level of functionalities and versatile means to tailor optical responses at the nanoscale. Recent advances in biological tunable photonics have attracted tremendous attention owing to the incorporation of living biomaterials into organic photonic and photoelectric devices. In this review, we highlight the advances made in biological tunable photonics during the past five years. We begin with an overview of the competency of natural biological materials, followed by the introduction of key stimuli that have a dominant influence on the development of active biointerfaces. Lastly, we present a comprehensive summary of optoelectronic applications that utilize living biomaterials as active controls. Such applications include bioactivated light-emitting diodes, biological lasers, active plasmonics, robotics, biological logic gates, light-harvesting antennas, molecular photonic wires, bioenergy, and biophotovoltaics. The opportunities and challenges for future research directions are also briefly discussed.

在过去的几十年里,光电器件在人类生活和现代技术中发挥了关键作用。为了适应产业的发展趋势,具有可调谐功能的光子学在控制光-物质相互作用、传感器和集成光子学方面具有巨大的潜力。与人工设计的材料和物理方法相比,刺激响应生物界面具有更高的功能水平和多种多样的手段,可以在纳米尺度上定制光学响应。生物可调谐光子学的最新进展引起了人们的极大关注,这是由于将活体生物材料纳入有机光子和光电器件中。本文综述了近五年来生物可调谐光子学的研究进展。我们首先概述了天然生物材料的能力,然后介绍了对活性生物界面的发展有主导影响的关键刺激。最后,我们全面总结了利用活体生物材料作为主动控制的光电应用。这些应用包括生物活性发光二极管、生物激光器、有源等离子体、机器人、生物逻辑门、光收集天线、分子光子线、生物能源和生物光伏。并简要讨论了未来研究方向面临的机遇和挑战。
{"title":"Biological tunable photonics: Emerging optoelectronic applications manipulated by living biomaterials","authors":"Yifan Zhang ,&nbsp;Ziyihui Wang ,&nbsp;Yu-Cheng Chen","doi":"10.1016/j.pquantelec.2021.100361","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2021.100361","url":null,"abstract":"<div><p>Over the past few decades, optoelectronic devices have played a key role in human life and modern technology. To meet the development trends of the industry, photonics with tunable functions have emerged as building blocks with immense potential in controlling light–matter interactions, sensors, and integrated photonics. Compared with artificially designed materials and physical approaches, stimuli-responsive biointerfaces enable a higher level of functionalities and versatile means to tailor optical responses at the nanoscale. Recent advances in biological tunable photonics have attracted tremendous attention owing to the incorporation of living biomaterials into organic photonic and photoelectric devices. In this review, we highlight the advances made in biological tunable photonics during the past five years. We begin with an overview of the competency of natural biological materials, followed by the introduction of key stimuli that have a dominant influence on the development of active biointerfaces. Lastly, we present a comprehensive summary of optoelectronic applications that utilize living biomaterials as active controls. Such applications include bioactivated light-emitting diodes, biological lasers, active plasmonics, robotics, biological logic gates, light-harvesting antennas, molecular photonic wires, bioenergy, and biophotovoltaics. The opportunities and challenges for future research directions are also briefly discussed.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1784749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Symmetric and asymmetric photonic spin-orbit interaction in metasurfaces 超表面中对称和非对称光子自旋轨道相互作用
IF 11.7 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2021-09-01 DOI: 10.1016/j.pquantelec.2021.100344
Xiangang Luo , Xiong Li , Mingbo Pu , Yinghui Guo , Fei Zhang , Xiaoliang Ma

Photonic spin and orbital angular momenta, which are determined by the polarization and spatial degrees of freedom of photons, are strongly coupled with each other in subwavelength structured metasurfaces. The photonic spin-orbit interaction (PSOI) results in the splitting of the degenerated system states. In this review, we focus on the principles of symmetric PSOI associated with the conjugated geometric phase modulation as well as the asymmetric PSOI resulting from the additional localized phase manipulation. Recent advances and important applications of symmetric and asymmetric PSOI in metasurfaces are also discussed. We finally highlight with our perspective on the remaining challenges and future trends in this field.

光子自旋角动量和轨道角动量是由光子的偏振和空间自由度决定的,它们在亚波长结构超表面中是强耦合的。光子自旋轨道相互作用(PSOI)导致了系统简并态的分裂。在这篇综述中,我们重点讨论了与共轭几何相位调制相关的对称PSOI的原理,以及由额外的局部相位操作引起的不对称PSOI。讨论了对称和非对称PSOI在超表面中的最新进展和重要应用。最后,我们强调了我们对这一领域仍然存在的挑战和未来趋势的看法。
{"title":"Symmetric and asymmetric photonic spin-orbit interaction in metasurfaces","authors":"Xiangang Luo ,&nbsp;Xiong Li ,&nbsp;Mingbo Pu ,&nbsp;Yinghui Guo ,&nbsp;Fei Zhang ,&nbsp;Xiaoliang Ma","doi":"10.1016/j.pquantelec.2021.100344","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2021.100344","url":null,"abstract":"<div><p>Photonic spin and orbital angular momenta, which are determined by the polarization and spatial degrees of freedom of photons, are strongly coupled with each other in subwavelength structured metasurfaces. The photonic spin-orbit interaction (PSOI) results in the splitting of the degenerated system states. In this review, we focus on the principles of symmetric PSOI associated with the conjugated geometric phase modulation as well as the asymmetric PSOI resulting from the additional localized phase manipulation. Recent advances and important applications of symmetric and asymmetric PSOI in metasurfaces are also discussed. We finally highlight with our perspective on the remaining challenges and future trends in this field.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2021.100344","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1784751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Recent advances and applications of random lasers and random fiber lasers 随机激光器和随机光纤激光器的最新进展及应用
IF 11.7 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2021-08-01 DOI: 10.1016/j.pquantelec.2021.100343
Anderson S.L. Gomes , André L. Moura , Cid B. de Araújo , Ernesto P. Raposo

Random Lasers (RLs) and Random Fiber Lasers (RFLs) have been the subject of intense research since their first experimental demonstration in 1994 and 2007, respectively. These low coherence light sources rely on multiple scattering of light to provide optical feedback in a medium combining a properly excited gain material and a scattering disordered structure. It is the feedback mechanism which makes RLs/RFLs quite different from conventional lasers, with the later relying on an optical cavity usually formed by two static mirrors. This characteristic makes the RLs and RFLs devices to become cavityless, although not modeless, and present features of complex systems, whose statistics of intensity fluctuations are quite relevant. In addition, RLs can be designed in three-dimensional (3D) geometry, typically powders or colloids, in two-dimensional (2D) geometries, such as planar waveguides or thin-films, and one-dimensional (1D or quasi-1D) geometry, generally in optical fibers, known as the RFLs. The advantage of 1D geometry is the inherent directionality of the RFL emission, which otherwise is multidirectional in 3D geometry. In this review paper, we initially describe the basic theoretical framework supporting laser emission due to feedback in disordered structures. We then provide an updated vision of the types of RLs and RFLs that have been demonstrated and reported, from dyes solutions embedded with nano/submicron-scatterers composites to rare-earth doped micro or nanocrystals and random fiber Bragg gratings as the scattering structure. The influence of optical processes due to second-, third- and high-order nonlinearities on the intensity behavior of RLs are discussed. Subsequently, we review multidisciplinary studies that lead to the classification of RLs as complex systems exhibiting turbulence-like characteristics, photonic phase-transitions presenting replica symmetry breaking and intensity fluctuations satisfying Lévy-like statistics, and the so-called Floquet phase. Furthermore, we also highlight technological applications that includes sensing, optical amplification, and biomedical imaging. The review concludes pointing out potential directions in basic and applied research in the field of RL and RFL.

随机激光器(RLs)和随机光纤激光器(RFLs)分别于1994年和2007年首次进行实验演示以来,一直是研究的热点。这些低相干光源依赖于光的多次散射,在结合适当激发增益材料和散射无序结构的介质中提供光反馈。反馈机制使RLs/ rfl与传统激光器有很大不同,后者依赖于通常由两个静态反射镜形成的光学腔。这一特性使得RLs和RFLs器件虽然不是无模态,但成为无空腔的器件,呈现出复杂系统的特征,其强度波动的统计是非常相关的。此外,RLs可以设计成三维(3D)几何形状,通常是粉末或胶体,二维(2D)几何形状,如平面波导或薄膜,一维(1D或准1D)几何形状,通常在光纤中,称为rfl。一维几何的优势在于RFL发射的固有方向性,而在三维几何中则是多向的。在这篇综述中,我们首先描述了支持无序结构中反馈激光发射的基本理论框架。然后,我们提供了已经证明和报道的RLs和rfl类型的最新愿景,从嵌入纳米/亚微米散射体复合材料的染料溶液到掺杂稀土的微或纳米晶体和随机光纤布拉格光栅作为散射结构。讨论了二阶、三阶和高阶非线性引起的光学过程对光强特性的影响。随后,我们回顾了多学科的研究,这些研究将RLs分类为具有湍流特征的复杂系统,呈现复制对称性破坏和满足l样统计量的强度波动的光子相变,以及所谓的Floquet相位。此外,我们还重点介绍了包括传感、光学放大和生物医学成像在内的技术应用。最后,对RL和RFL的基础研究和应用研究提出了可能的发展方向。
{"title":"Recent advances and applications of random lasers and random fiber lasers","authors":"Anderson S.L. Gomes ,&nbsp;André L. Moura ,&nbsp;Cid B. de Araújo ,&nbsp;Ernesto P. Raposo","doi":"10.1016/j.pquantelec.2021.100343","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2021.100343","url":null,"abstract":"<div><p><span>Random Lasers (RLs) and Random Fiber Lasers (RFLs) have been the subject of intense research since their first experimental demonstration in 1994 and 2007, respectively. These low coherence light sources rely on multiple scattering of light to provide optical feedback in a medium combining a properly excited gain material and a scattering disordered structure. It is the feedback mechanism which makes RLs/RFLs quite different from conventional lasers, with the later relying on an optical cavity usually formed by two static<span> mirrors. This characteristic makes the RLs and RFLs devices to become cavityless, although not modeless, and present features of complex systems, whose statistics of intensity fluctuations are quite relevant. In addition, RLs can be designed in three-dimensional (3D) geometry, typically powders or colloids, in two-dimensional (2D) geometries, such as planar waveguides<span><span> or thin-films, and one-dimensional (1D or quasi-1D) geometry, generally in optical fibers<span>, known as the RFLs. The advantage of 1D geometry is the inherent directionality of the RFL emission, which otherwise is multidirectional in 3D geometry. In this review paper, we initially describe the basic theoretical framework supporting laser emission due to feedback in disordered structures. We then provide an updated vision of the types of RLs and RFLs that have been demonstrated and reported, from dyes solutions embedded with nano/submicron-scatterers composites to rare-earth doped micro or nanocrystals and random </span></span>fiber Bragg gratings<span><span> as the scattering structure. The influence of optical processes due to second-, third- and high-order nonlinearities on the intensity behavior of RLs are discussed. Subsequently, we review multidisciplinary studies that lead to the classification of RLs as complex systems exhibiting turbulence-like characteristics, photonic phase-transitions presenting replica </span>symmetry breaking and intensity fluctuations satisfying Lévy-like statistics, and the so-called Floquet phase. Furthermore, we also highlight technological applications that include</span></span></span></span><del>s</del><span> sensing, optical amplification, and biomedical imaging. The review concludes pointing out potential directions in basic and applied research in the field of RL and RFL.</span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2021.100343","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2363134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 75
Mid-infrared supercontinuum generation in soft-glass specialty optical fibers: A review 软玻璃特种光纤中红外超连续谱的产生研究进展
IF 11.7 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2021-08-01 DOI: 10.1016/j.pquantelec.2021.100342
Than Singh Saini, Ravindra Kumar Sinha

Mid-infrared region (2–20 ​μm) is an important region of electromagnetic spectrum. Most of the molecules including CH4, CO, NO, NO2, C6H6, TNT, NH3, SF6, HNO3, greenhouse gas radiation etc. have their fundamental vibrations in this domain. Thus, the mid-infrared region is known as ‘molecular fingerprint region’ and desirable to get the signature of these molecules. Tellurite and chalcogenide glasses have the advantages of a wide transparency window (up to ~20 ​μm) and very high optical nonlinearities, making them decent candidates for the mid-infrared supercontinuum generation. Photonic crystal fibers provide the wavelength-scale periodic arrangement of microstructure along their length. The core of the photonic crystal fibers and two-dimensional photonic crystal based on diverse geometries and the materials, permitting supercontinuum generation due to various nonlinear effects in an enormously broad spectral range. In this review paper, we report the recent developments in the field of mid-infrared supercontinuum generation in both the tellurite and chalcogenide glass state-of-the-art optical fibers. Particular attention is paid to the mid-infrared supercontinuum generation in the step-index, suspended-core, tapered, and photonic crystal fibers or microstructured optical fibers in tellurite and chalcogenide glasses. The coherence property of mid-infrared supercontinuum generation in all-normal dispersion engineered specialty optical fibers is also reviewed.

中红外区域(2 ~ 20 μm)是电磁波谱的重要区域。大多数分子,包括CH4、CO、NO、NO2、C6H6、TNT、NH3、SF6、HNO3、温室气体辐射等,其基本振动都在这个域中。因此,中红外区域被称为“分子指纹区”,并希望得到这些分子的签名。碲酸盐和硫系玻璃具有宽透明窗口(高达~20 μm)和非常高的光学非线性的优点,使它们成为中红外超连续谱产生的理想候选者。光子晶体光纤提供沿其长度的波长尺度的周期性结构排列。光子晶体的核心是光纤和基于不同几何形状和材料的二维光子晶体,由于各种非线性效应,在极宽的光谱范围内可以产生超连续谱。本文综述了碲酸盐和硫族玻璃两种新型光纤中红外超连续谱的研究进展。特别注意在阶梯折射率,悬芯,锥形和光子晶体光纤或微结构光纤在碲酸盐和硫系玻璃中的中红外超连续谱产生。综述了全向色散工程特种光纤中红外超连续谱产生的相干性。
{"title":"Mid-infrared supercontinuum generation in soft-glass specialty optical fibers: A review","authors":"Than Singh Saini,&nbsp;Ravindra Kumar Sinha","doi":"10.1016/j.pquantelec.2021.100342","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2021.100342","url":null,"abstract":"<div><p><span>Mid-infrared region (2–20 ​μm) is an important region of electromagnetic spectrum. Most of the molecules including CH</span><sub>4</sub>, CO, NO, NO<sub>2</sub>, C<sub>6</sub>H<sub>6</sub>, TNT, NH<sub>3</sub>, SF<sub>6</sub>, HNO<sub>3</sub><span>, greenhouse gas radiation etc. have their fundamental vibrations in this domain. Thus, the </span><strong>mid-infrared</strong><span> region is known as ‘molecular fingerprint region’ and desirable to get the signature of these molecules. Tellurite and chalcogenide glasses have the advantages of a wide transparency window </span><strong>(up to ~20 ​μm)</strong><span><span><span> and very high optical nonlinearities, making them decent candidates for the mid-infrared supercontinuum generation. </span>Photonic crystal fibers provide the wavelength-scale periodic arrangement of microstructure along their length. The core of the </span>photonic crystal<span> fibers and two-dimensional photonic crystal based on diverse geometries and the materials, permitting supercontinuum generation due to various nonlinear effects<span> in an enormously broad spectral range. In this review paper, we report the recent developments in the field of mid-infrared supercontinuum generation in both the tellurite and chalcogenide glass state-of-the-art optical fibers<span>. Particular attention is paid to the mid-infrared supercontinuum generation in the step-index, suspended-core, tapered, and photonic crystal fibers or microstructured optical fibers in tellurite and chalcogenide glasses. The coherence property of mid-infrared supercontinuum generation in all-normal dispersion engineered specialty optical fibers is also reviewed.</span></span></span></span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2021.100342","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3078178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Optical near-field measurement for spin-orbit interaction of light 光自旋轨道相互作用的光学近场测量
IF 11.7 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2021-08-01 DOI: 10.1016/j.pquantelec.2021.100341
Peng Shi, Aiping Yang, Fanfei Meng, Jiashuo Chen, Yuquan Zhang, Zhenwei Xie, Luping Du, Xiaocong Yuan

Since the seminal work by J. H. Poynting, light has been known to carry momentum and angular momentum. The typical dynamical features of light and its interactions—termed spin–orbit interactions (SOIs), which have been investigated intensely over the last 30 years—play a crucial role in various light-matter interactions, for example: spin Hall effect, spin–orbit conversion, helicity-controlled unidirectional excitation of light, and their inverse effects, which leads to plenty of applications including optical manipulation, communications, imaging, sensing, nanometrology, on-chip optoelectronic technologies and interdisciplinary researches. In particular, the SOI of light in isotropic inhomogeneous media is a fine, subwavelength effect accomplished through the intrinsic coupling between light's phase, polarization and position. Therefore, the traditional methods of near-field measurements, such as near field scanning optical microscopy (NSOM), have been widely employed to reveal the optical SOIs intuitively by measuring the intensity of light. Very recently, with modern advanced nanofabrication techniques, many measurement techniques based on nanoparticles, nanoantennas, and nanoprobes of special designs have been proposed to understand the optical SOIs visually by characterizing the polarization and spin/orbital features of light. This endeavor has led to the development of chiral quantum optics, spin optics, and topological photonics, and resulted in novel applications requiring optical manipulations and angular momentum communications, chiral imaging, nanometrology, and robust spin-based devices and techniques for quantum technologies. Here, we review the near-field techniques for measurements of optical SOIs together with their potential applications. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields and typical phenomena involving optical SOIs. Then, we overview the theoretical basis and latest achievements of the near-field measurement techniques, including NSOM, optical manipulations, nanoantenna, and nanoprobes of special designs, all relevant to optical SOIs. A comprehensive classification is then constructed of all known methods of optical near-field measurements for the SOI of light and novel techniques identified for future applications.

自从J. H. Poynting的开创性工作以来,人们已经知道光携带动量和角动量。光及其相互作用的典型动力学特征——被称为自旋轨道相互作用(SOIs)——在过去30年里得到了广泛的研究,在各种光-物质相互作用中起着至关重要的作用,例如:自旋霍尔效应、自旋轨道转换、螺旋控制的光单向激发及其逆效应,在光学操纵、通信、成像、传感、纳米计量、片上光电技术和跨学科研究等领域有着广泛的应用。特别是,光在各向同性非均匀介质中的SOI是一种精细的亚波长效应,通过光的相位、偏振和位置之间的内在耦合来实现。因此,传统的近场测量方法,如近场扫描光学显微镜(NSOM),已被广泛采用,通过测量光的强度来直观地揭示光学SOIs。近年来,随着现代先进的纳米制造技术的发展,人们提出了许多基于纳米粒子、纳米天线和特殊设计的纳米探针的测量技术,通过表征光的偏振和自旋/轨道特征来直观地理解光学SOIs。这一努力导致了手性量子光学、自旋光学和拓扑光子学的发展,并导致了新的应用,需要光学操作和角动量通信、手性成像、纳米计量学和强大的基于自旋的量子技术设备和技术。在这里,我们回顾了近场测量技术及其潜在的应用。我们首先从理论上概述了一般光场的动量和角动量性质以及涉及光学SOIs的典型现象。在此基础上,综述了近场测量技术的理论基础和最新进展,包括NSOM、光学操作、纳米天线和特殊设计的纳米探针等。然后,对所有已知的光SOI光学近场测量方法和确定用于未来应用的新技术进行了全面分类。
{"title":"Optical near-field measurement for spin-orbit interaction of light","authors":"Peng Shi,&nbsp;Aiping Yang,&nbsp;Fanfei Meng,&nbsp;Jiashuo Chen,&nbsp;Yuquan Zhang,&nbsp;Zhenwei Xie,&nbsp;Luping Du,&nbsp;Xiaocong Yuan","doi":"10.1016/j.pquantelec.2021.100341","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2021.100341","url":null,"abstract":"<div><p><span><span>Since the seminal work by J. H. Poynting, light has been known to carry momentum and angular momentum. The typical dynamical features of light and its interactions—termed spin–orbit interactions (SOIs), which have been investigated intensely over the last 30 years—play a crucial role in various light-matter interactions, for example: spin </span>Hall effect<span><span><span>, spin–orbit conversion, helicity-controlled unidirectional excitation of light, and their inverse effects, which leads to plenty of applications including optical manipulation, communications, imaging, sensing, nanometrology<span>, on-chip optoelectronic technologies and interdisciplinary researches. In particular, the SOI of light in isotropic </span></span>inhomogeneous media is a fine, subwavelength effect accomplished through the intrinsic coupling between light's phase, polarization and position. Therefore, the traditional methods of near-field measurements, such as </span>near field<span> scanning optical microscopy (NSOM), have been widely employed to reveal the optical SOIs intuitively by measuring the intensity of light. Very recently, with modern advanced nanofabrication techniques, many measurement techniques based on </span></span></span>nanoparticles<span>, nanoantennas, and nanoprobes of special designs have been proposed to understand the optical SOIs visually by characterizing the polarization and spin/orbital features of light. This endeavor has led to the development of chiral quantum optics<span>, spin optics<span>, and topological photonics, and resulted in novel applications requiring optical manipulations and angular momentum communications, chiral imaging, nanometrology, and robust spin-based devices and techniques for quantum technologies. Here, we review the near-field techniques for measurements of optical SOIs together with their potential applications. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields and typical phenomena involving optical SOIs. Then, we overview the theoretical basis and latest achievements of the near-field measurement techniques, including NSOM, optical manipulations, nanoantenna, and nanoprobes of special designs, all relevant to optical SOIs. A comprehensive classification is then constructed of all known methods of optical near-field measurements for the SOI of light and novel techniques identified for future applications.</span></span></span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2021.100341","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2139614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Two dimensional photonic crystal slab biosensors using label free refractometric sensing schemes: A review 使用无标签折射传感方案的二维光子晶体板生物传感器:综述
IF 11.7 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2021-05-01 DOI: 10.1016/j.pquantelec.2020.100298
Qing Shi , Jianlong Zhao , Lijuan Liang

Biosensor technology is a quite attractive and rapidly developing research field in recent years, and the sub field of optical photonic crystal (PC) biosensor based on label free sensing technology has also made great progress in this period. This review mainly concentrates on advances in the label free refractometric sensing based two dimensional (2D) PC slab biosensors particularly in the last decade, emphasizing the development and evolution of structural design. It begins with a brief discussion on the basic principles and design methods of label free 2D PC biosensors. Then, the sensors are classified according to the designed geometric structure and research progress of various sensors is reviewed, highlighting efforts dedicated to improving the transducer configuration and integration. Additionally, surface functionalization methods for different materials to produce reproducible surface properties and different detection methods for biological targets are introduced for evaluation. 2D PC refractometric biosensors have been applied to a great many applications varying from biotechnology, food safety, water quality monitoring to clinical diagnosis. Finally, the authors’ views on current limitations of the slab for biosensing as well as the optimizable aspects are presented.

生物传感器技术是近年来一个非常有吸引力和发展迅速的研究领域,基于无标签传感技术的光子晶体(PC)生物传感器子领域也在这一时期取得了很大的进展。本文主要综述了基于二维平板生物传感器的无标签折射传感技术的进展,特别是近十年来,重点介绍了结构设计的发展和演变。本文首先简要讨论了无标签二维PC生物传感器的基本原理和设计方法。然后,根据设计的几何结构对传感器进行分类,回顾了各种传感器的研究进展,重点介绍了传感器配置和集成的改进工作。此外,介绍了不同材料的表面功能化方法,以产生可重复的表面特性,以及不同的生物靶点检测方法,以进行评估。二维PC折射生物传感器已被广泛应用于生物技术、食品安全、水质监测和临床诊断等领域。最后,作者对目前平板生物传感的局限性以及可优化的方面提出了看法。
{"title":"Two dimensional photonic crystal slab biosensors using label free refractometric sensing schemes: A review","authors":"Qing Shi ,&nbsp;Jianlong Zhao ,&nbsp;Lijuan Liang","doi":"10.1016/j.pquantelec.2020.100298","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2020.100298","url":null,"abstract":"<div><p>Biosensor<span><span><span> technology is a quite attractive and rapidly developing research field in recent years, and the sub field of optical photonic crystal (PC) biosensor based on </span>label free sensing technology has also made great progress in this period. This review mainly concentrates on advances in the label free refractometric sensing based two dimensional (2D) PC slab biosensors particularly in the last decade, emphasizing the development and evolution of structural design. It begins with a brief discussion on the basic principles and design methods of label free 2D PC biosensors. Then, the sensors are classified according to the designed geometric structure and research progress of various sensors is reviewed, highlighting efforts dedicated to improving the transducer configuration and integration. Additionally, </span>surface functionalization methods for different materials to produce reproducible surface properties and different detection methods for biological targets are introduced for evaluation. 2D PC refractometric biosensors have been applied to a great many applications varying from biotechnology, food safety, water quality monitoring to clinical diagnosis. Finally, the authors’ views on current limitations of the slab for biosensing as well as the optimizable aspects are presented.</span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100298","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2363135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
III-nitride semiconductor lasers grown on Si 在硅上生长的氮化半导体激光器
IF 11.7 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2021-05-01 DOI: 10.1016/j.pquantelec.2021.100323
Meixin Feng , Jianxun Liu , Qian Sun , Hui Yang

III-nitride semiconductor laser directly grown on Si is a potential on-chip light source for Si photonics. Moreover, it may greatly lower the manufacture cost of laser diodes and further expand their applications. Therefore, III-nitride lasers grown on Si have been pursued for about two decades. Different from GaN homoepitaxy on free-standing GaN substrates, III-nitride semiconductors grown on Si substrates are usually rich with strain and threading dislocations due to the large mismatch in both lattice constant and coefficient of thermal expansion between GaN and Si substrates, which hindered the realization of electrically injected lasing. The key challenges in the direct growth of high-quality III-nitride semiconductor laser materials on Si substrates, as well as their corresponding solutions, are discussed in detail. Afterwards, a comprehensive review is presented on the recent progress of III-nitride semiconductor lasers grown on Si, including Fabry-Pérot cavity lasers, microdisk lasers, and the lasers with nanostructures, as well as the monolithic integration of lasers on Si. Finally, the further development of III-nitride semiconductor lasers grown on Si is also discussed, including the material quality improvement and novel device structures for enhancing optical confinement and reducing electrical resistance, with a great prospect for better performance and reliability.

在硅上直接生长的氮化半导体激光器是一种潜在的硅光子学片上光源。此外,它可以大大降低激光二极管的制造成本,进一步扩大其应用范围。因此,在硅上生长的iii -氮化物激光器已经被研究了大约二十年。与在独立GaN衬底上生长的GaN同外延不同,在Si衬底上生长的iii -氮化物半导体由于GaN衬底与Si衬底之间晶格常数和热膨胀系数的巨大不匹配,通常会产生丰富的应变和螺纹位错,从而阻碍了电注入激光的实现。详细讨论了在Si衬底上直接生长高质量iii -氮化物半导体激光材料所面临的主要挑战以及相应的解决方案。其次,综述了近年来在硅基上生长的iii -氮化物半导体激光器的研究进展,包括法布里-帕姆罗腔激光器、微盘激光器、纳米结构激光器以及硅基激光器的单片集成。最后,讨论了硅基iii -氮化半导体激光器的进一步发展,包括材料质量的改进和新型器件结构,以增强光约束和降低电阻,具有更好的性能和可靠性的广阔前景。
{"title":"III-nitride semiconductor lasers grown on Si","authors":"Meixin Feng ,&nbsp;Jianxun Liu ,&nbsp;Qian Sun ,&nbsp;Hui Yang","doi":"10.1016/j.pquantelec.2021.100323","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2021.100323","url":null,"abstract":"<div><p><span>III-nitride semiconductor laser<span> directly grown on Si is a potential on-chip light source for Si photonics. Moreover, it may greatly lower the manufacture cost of laser diodes and further expand their applications. Therefore, III-nitride lasers grown on Si have been pursued for about two decades. Different from GaN </span></span>homoepitaxy<span><span> on free-standing GaN substrates, III-nitride semiconductors grown on Si substrates are usually rich with strain and threading dislocations due to the large mismatch in both lattice constant and coefficient of thermal expansion between GaN and Si substrates, which hindered the realization of electrically injected lasing. The key challenges in the direct growth of high-quality III-nitride semiconductor laser materials on Si substrates, as well as their corresponding solutions, are discussed in detail. Afterwards, a comprehensive review is presented on the recent progress of III-nitride semiconductor lasers grown on Si, including Fabry-Pérot </span>cavity lasers<span>, microdisk lasers, and the lasers with nanostructures, as well as the monolithic integration of lasers on Si. Finally, the further development of III-nitride semiconductor lasers grown on Si is also discussed, including the material quality improvement and novel device structures for enhancing optical confinement and reducing electrical resistance, with a great prospect for better performance and reliability.</span></span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2021.100323","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3078179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
期刊
Progress in Quantum Electronics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1