首页 > 最新文献

Progress in Quantum Electronics最新文献

英文 中文
Er-doped crystalline active media for ~ 3 μm diode-pumped lasers 用于~ 3 μm二极管泵浦激光器的掺铒晶体有源介质
IF 11.7 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2020-11-01 DOI: 10.1016/j.pquantelec.2020.100276
Richard Švejkar, Jan Šulc, Helena Jelínková

Lasers based on erbium ions using 4I11/2 ​→ ​4I13/2 transition can generate laser radiation in the spectral range from 2.7 ​μm to 3 ​μm. Since the strong absorption peak of water is located at 3 ​μm, there has been an effort to develop a suitable laser source for various medical applications, e.g. dentistry, dermatology, urology, or surgery. Laser radiation from this wavelength range can also be used in spectroscopy, as a pumping source for optical parametric oscillators, or for further mid-infrared conversion.

This paper represents an overview of the erbium-doped active media (e.g. Er:YAG, Er:YAP, Er:GGG, Er:SrF2, Er:YLF, Er:Y2O3, Er:KYW, etc.) for laser radiation generation in the spectral range 2.7–3 ​μm. In the first part of this paper, the particular active media are discussed in detail. On the other hand, the experimental results summarized absorption and emission cross-section spectra together with decay times at upper (4I11/2) and lower (4I13/2) laser levels of all tested Er-doped samples at room temperature. Moreover, laser results in CW and pulsed laser regime with tunability curves, achieved in recent years, are presented, too.

采用4I11/2→4I13/2跃迁的铒离子激光器可产生2.7 ~ 3 μm光谱范围内的激光辐射。由于水的强吸收峰位于3 μm,因此一直在努力开发适合各种医疗应用的激光源,例如牙科,皮肤科,泌尿外科或外科。该波长范围内的激光辐射也可用于光谱学,作为光学参量振荡器的泵浦源,或用于进一步的中红外转换。本文综述了在2.7 ~ 3 μm光谱范围内产生激光辐射的掺铒活性介质(如Er:YAG、Er:YAP、Er:GGG、Er:SrF2、Er:YLF、Er:Y2O3、Er:KYW等)。在本文的第一部分,对特定的活性介质进行了详细的讨论。另一方面,实验结果总结了室温下所有掺铒样品在上(4I11/2)和下(4I13/2)激光能级下的吸收和发射截面光谱以及衰减时间。此外,还介绍了近年来在连续波和脉冲激光状态下取得的具有可调谐曲线的激光结果。
{"title":"Er-doped crystalline active media for ~ 3 μm diode-pumped lasers","authors":"Richard Švejkar,&nbsp;Jan Šulc,&nbsp;Helena Jelínková","doi":"10.1016/j.pquantelec.2020.100276","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2020.100276","url":null,"abstract":"<div><p><span>Lasers based on erbium ions using </span><sup>4</sup>I<sub>11/2</sub> ​→ ​<sup>4</sup>I<sub>13/2</sub><span><span> transition can generate laser radiation in the spectral range from 2.7 ​μm to 3 ​μm. Since the strong absorption peak of water is located at 3 ​μm, there has been an effort to develop a suitable laser source for various medical applications, e.g. dentistry, dermatology, urology, or surgery. Laser radiation from this wavelength range can also be used in spectroscopy, as a pumping source for optical parametric </span>oscillators, or for further mid-infrared conversion.</span></p><p>This paper represents an overview of the erbium-doped active media (e.g. Er:YAG, Er:YAP, Er:GGG, Er:SrF<sub>2</sub>, Er:YLF, Er:Y<sub>2</sub>O<sub>3</sub>, Er:KYW, etc.) for laser radiation generation in the spectral range 2.7–3 ​μm. In the first part of this paper, the particular active media are discussed in detail. On the other hand, the experimental results summarized absorption and emission cross-section spectra together with decay times at upper (<sup>4</sup>I<sub>11/2</sub>) and lower (<sup>4</sup>I<sub>13/2</sub>) laser levels of all tested Er-doped samples at room temperature. Moreover, laser results in CW and pulsed laser regime with tunability curves, achieved in recent years, are presented, too.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100276","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3386801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 23
Photonic Ge-Sb-Te phase change metamaterials and their applications 光子Ge-Sb-Te相变超材料及其应用
IF 11.7 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2020-11-01 DOI: 10.1016/j.pquantelec.2020.100299
Tun Cao , Rongzi Wang , Robert E. Simpson , Guixin Li

The ultrafast, reversible, nonvolatile and multistimuli responsive phase change of Ge-Sb-Te (GST) alloy makes it an interesting “smart” material. The optical features of GST undergo significant variation when its state changes between amorphous and crystalline, meaning that they are useful for tuning photonic components. A GST phase change material (PCM) can be efficiently triggered by stimuli such as short optical or electrical pulses, providing versatility in high-performance photonic applications and excellent capability to control light. In this review, we study the fundamentals of GST-tuned photonics and systematically summarise the progress in this area. We then introduce current developments in both GST-metal hybrid metamaterials and GST-based dielectric metamaterials, and investigate the strategy of designing reversibly switchable GST-based photonic devices and their advantages. These devices may have a vast array of potential applications in optical memories, switches, data storage, cloaking, photodetectors, modulators, antennas etc. Finally, the prospect of implementing GST PCM in emerging fields within photonics is considered.

Ge-Sb-Te (GST)合金的超快速、可逆、非挥发性和多刺激响应相变使其成为一种有趣的“智能”材料。GST在晶态和非晶态之间变化时,其光学特性发生显著变化,这意味着它们可用于调谐光子元件。GST相变材料(PCM)可以通过短光脉冲或电脉冲等刺激有效触发,为高性能光子应用提供多功能性和出色的光控制能力。本文综述了gst调谐光子学的基本原理,并系统地总结了该领域的研究进展。然后,我们介绍了gst -金属混合超材料和gst基介电超材料的最新进展,并研究了设计可逆可切换gst基光子器件的策略及其优势。这些器件可能在光存储器、开关、数据存储、隐身、光电探测器、调制器、天线等方面具有广泛的潜在应用。最后,展望了GST PCM在光子学新兴领域的应用前景。
{"title":"Photonic Ge-Sb-Te phase change metamaterials and their applications","authors":"Tun Cao ,&nbsp;Rongzi Wang ,&nbsp;Robert E. Simpson ,&nbsp;Guixin Li","doi":"10.1016/j.pquantelec.2020.100299","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2020.100299","url":null,"abstract":"<div><p><span>The ultrafast, reversible, nonvolatile and multistimuli responsive phase change of Ge-Sb-Te (GST) alloy makes it an interesting “smart” material. The optical features of GST undergo significant variation when its state changes between amorphous<span><span><span> and crystalline, meaning that they are useful for tuning photonic components. A GST </span>phase change material (PCM) can be efficiently triggered by stimuli such as short optical or electrical pulses, providing versatility in high-performance photonic applications and excellent capability to control light. In this review, we study the fundamentals of GST-tuned photonics and systematically summarise the progress in this area. We then introduce current developments in both GST-metal hybrid </span>metamaterials<span> and GST-based dielectric metamaterials, and investigate the strategy of designing reversibly switchable GST-based </span></span></span>photonic devices<span> and their advantages. These devices may have a vast array of potential applications in optical memories, switches, data storage, cloaking, photodetectors, modulators, antennas etc. Finally, the prospect of implementing GST PCM in emerging fields within photonics is considered.</span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100299","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2620884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Underwater wireless optical communications: Opportunity, challenges and future prospects commentary on “Recent progress in and perspectives of underwater wireless optical communication” 水下无线光通信:机遇、挑战与未来展望——“水下无线光通信的最新进展与展望”述评
IF 11.7 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2020-09-01 DOI: 10.1016/j.pquantelec.2020.100275
Boon S. Ooi, Meiwei Kong, Tien Khee Ng
{"title":"Underwater wireless optical communications: Opportunity, challenges and future prospects commentary on “Recent progress in and perspectives of underwater wireless optical communication”","authors":"Boon S. Ooi,&nbsp;Meiwei Kong,&nbsp;Tien Khee Ng","doi":"10.1016/j.pquantelec.2020.100275","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2020.100275","url":null,"abstract":"","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100275","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1518672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Recent progress in and perspectives of underwater wireless optical communication 水下无线光通信的研究进展与展望
IF 11.7 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2020-09-01 DOI: 10.1016/j.pquantelec.2020.100274
Shijie Zhu , Xinwei Chen , Xiaoyan Liu , Guoqi Zhang , Pengfei Tian

Underwater wireless optical communication (UWOC) is an emerging and feasible underwater communication technology and has developed rapidly in recent years. Building a high-performance and practical UWOC system requires comprehensive consideration and optimization design from the device to the system, as well as from the internal modulation to the external environment. This paper provides an overview of the recent developments in UWOC systems, covering aspects about the system transmitters and receivers, advanced modulation formats and underwater channels. Some key technologies to improve transmission capacity of UWOC are classified and summarized to provide guidance for system design. The main challenges and perspectives to achieve a reliable UWOC system are also mentioned. The summary and analysis of these advances and techniques will shed light on the future development of UWOC technology and assist in the construction of the internet of underwater things.

水下无线光通信(UWOC)是近年来发展迅速的一种新兴的、可行的水下通信技术。构建高性能实用的UWOC系统,需要从器件到系统,从内部调制到外部环境进行综合考虑和优化设计。本文综述了UWOC系统的最新发展,包括系统的发射机和接收机、先进的调制格式和水下信道。对提高UWOC传输容量的一些关键技术进行了分类和总结,为系统设计提供指导。并提出了实现可靠UWOC系统的主要挑战和前景。对这些进展和技术进行总结和分析,将为未来UWOC技术的发展提供启示,并有助于水下物联网的建设。
{"title":"Recent progress in and perspectives of underwater wireless optical communication","authors":"Shijie Zhu ,&nbsp;Xinwei Chen ,&nbsp;Xiaoyan Liu ,&nbsp;Guoqi Zhang ,&nbsp;Pengfei Tian","doi":"10.1016/j.pquantelec.2020.100274","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2020.100274","url":null,"abstract":"<div><p><span><span>Underwater wireless optical communication (UWOC) is an emerging and feasible </span>underwater communication technology and has developed rapidly in recent years. Building a high-performance and practical UWOC system requires comprehensive consideration and optimization design from the device to the system, as well as from the internal modulation to the external environment. This paper provides an overview of the recent developments in UWOC systems, covering aspects about the system transmitters and receivers, advanced </span>modulation formats and underwater channels. Some key technologies to improve transmission capacity of UWOC are classified and summarized to provide guidance for system design. The main challenges and perspectives to achieve a reliable UWOC system are also mentioned. The summary and analysis of these advances and techniques will shed light on the future development of UWOC technology and assist in the construction of the internet of underwater things.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100274","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2183580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 94
Rectifying antennas for energy harvesting from the microwaves to visible light: A review 微波可见光能量收集整流天线研究进展
IF 11.7 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2020-08-01 DOI: 10.1016/j.pquantelec.2020.100265
C.A. Reynaud , D. Duché , J.-J. Simon , E. Sanchez-Adaime , O. Margeat , J. Ackermann , V. Jangid , C. Lebouin , D. Brunel , F. Dumur , D. Gigmes , G. Berginc , C.A. Nijhuis , L. Escoubas

Rectifying antennas are often prensented as a potentiel technological breakthrough for energy harvesting. First theorized in the 1970’s, the downsizing of an antenna coupled with a rectifier has become technologically achievable with the progresses of fabrication techniques such as electron beam or photolithography. However, reaching infrared or visible region of the electromagnetic spectra still entails challenges on the integration of a rectifier operating in the terahertz range. New bottom up approaches are likely to bring a promising solution to this issue. To improve our understanding of the key points of rectifying antennas’ design for the infrared and visible light, and the challenges of device fabrication, this work reviews the progresses of this technology, going back from the first historical RF energy harvesting systems and covering the most innovative trends to this date.

整流天线通常被认为是能量收集的潜在技术突破。随着电子束或光刻等制造技术的进步,天线与整流器的小型化在技术上已经可以实现,这在20世纪70年代首次理论化。然而,达到电磁波谱的红外或可见区域仍然需要在太赫兹范围内集成整流器的挑战。新的自下而上的方法可能会为这个问题带来一个有希望的解决方案。为了提高我们对红外线和可见光整流天线设计的关键点的理解,以及设备制造的挑战,本工作回顾了该技术的进展,从历史上第一个射频能量收集系统开始,涵盖了迄今为止最具创新性的趋势。
{"title":"Rectifying antennas for energy harvesting from the microwaves to visible light: A review","authors":"C.A. Reynaud ,&nbsp;D. Duché ,&nbsp;J.-J. Simon ,&nbsp;E. Sanchez-Adaime ,&nbsp;O. Margeat ,&nbsp;J. Ackermann ,&nbsp;V. Jangid ,&nbsp;C. Lebouin ,&nbsp;D. Brunel ,&nbsp;F. Dumur ,&nbsp;D. Gigmes ,&nbsp;G. Berginc ,&nbsp;C.A. Nijhuis ,&nbsp;L. Escoubas","doi":"10.1016/j.pquantelec.2020.100265","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2020.100265","url":null,"abstract":"<div><p><span>Rectifying antennas are often prensented as a potentiel technological breakthrough for energy harvesting. First theorized in the 1970’s, the downsizing of an antenna coupled with a </span>rectifier<span><span><span> has become technologically achievable with the progresses of fabrication techniques such as electron beam or </span>photolithography<span>. However, reaching infrared or visible region of the electromagnetic spectra still entails challenges on the integration of a rectifier operating in the terahertz range. New bottom up approaches are likely to bring a promising solution to this issue. To improve our understanding of the key points of rectifying antennas’ design for the infrared and </span></span>visible light<span>, and the challenges of device fabrication, this work reviews the progresses of this technology, going back from the first historical RF energy harvesting systems and covering the most innovative trends to this date.</span></span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100265","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2183581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Watt-level ultrafast laser inscribed thulium waveguide lasers 瓦级超快激光镶嵌铥波导激光器
IF 11.7 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2020-08-01 DOI: 10.1016/j.pquantelec.2020.100266
Esrom Kifle , Pavel Loiko , Carolina Romero , Javier Rodríguez Vázquez de Aldana , Magdalena Aguiló , Francesc Díaz , Patrice Camy , Uwe Griebner , Valentin Petrov , Xavier Mateos

We report on the first watt-level ultrafast laser inscribed Thulium waveguide (WG) lasers. Depressed-index buried channel WGs with a circular cladding (type III) are produced in monoclinic Tm3+:KLu(WO4)2 crystals. Laser operation is achieved under conventional (3H63H4) and in-band (3H63F4) pumping. In the former case, employing a Raman fiber laser emitting at 1679 ​nm as pump, the continuous-wave Tm channel WG laser generated 1.37 ​W ​at 1915–1923 ​nm with a record-high slope efficiency of 82.7% (with respect to the absorbed pump power), a threshold of only 17 ​mW and a spatially single-mode output with linear polarization. The WG propagation losses were 0.2 ​± ​0.3 ​dB/cm. Passive Q-switching of Tm channel WG lasers is achieved using Cr2+:ZnS and Cr2+:ZnSe saturable absorbers. With Cr2+:ZnS, record-short pulses of 2.6 ns/6.9 ​μJ ​at a repetition rate of 8.0 ​kHz were generated. The developed WGs are promising for compact GHz mode-locked lasers at ~2 ​μm.

本文报道了第一台瓦级超快激光内嵌铥波导激光器。采用单斜Tm3+:KLu(WO4)2晶体制备了具有圆形包层的低折射率埋沟道WGs (III型)。激光操作在常规(3H6→3H4)和带内(3H6→3F4)泵浦下实现。在前一种情况下,采用发射波长为1679 nm的拉曼光纤激光器作为泵浦,连续波Tm通道WG激光器在1915-1923 nm产生1.37 W,斜率效率达到82.7%(相对于吸收的泵浦功率),阈值仅为17 mW,空间单模输出为线偏振。WG传播损耗为0.2±0.3 dB/cm。采用Cr2+:ZnS和Cr2+:ZnSe可饱和吸收剂实现了Tm通道WG激光器的无源q开关。用Cr2+:ZnS可产生2.6 ns/6.9 μJ的记录短脉冲,重复频率为8.0 kHz。开发的WGs有望用于~2 μm的紧凑GHz锁模激光器。
{"title":"Watt-level ultrafast laser inscribed thulium waveguide lasers","authors":"Esrom Kifle ,&nbsp;Pavel Loiko ,&nbsp;Carolina Romero ,&nbsp;Javier Rodríguez Vázquez de Aldana ,&nbsp;Magdalena Aguiló ,&nbsp;Francesc Díaz ,&nbsp;Patrice Camy ,&nbsp;Uwe Griebner ,&nbsp;Valentin Petrov ,&nbsp;Xavier Mateos","doi":"10.1016/j.pquantelec.2020.100266","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2020.100266","url":null,"abstract":"<div><p><span><span><span>We report on the first watt-level ultrafast laser inscribed </span>Thulium </span>waveguide (WG) lasers. Depressed-index buried channel WGs with a circular cladding (type III) are produced in monoclinic Tm</span><sup>3+</sup>:KLu(WO<sub>4</sub>)<sub>2</sub> crystals. Laser operation is achieved under conventional (<sup>3</sup>H<sub>6</sub> → <sup>3</sup>H<sub>4</sub>) and in-band (<sup>3</sup>H<sub>6</sub> → <sup>3</sup>F<sub>4</sub><span><span>) pumping. In the former case, employing a Raman fiber laser emitting at 1679 ​nm as pump, the continuous-wave Tm channel WG laser generated 1.37 ​W ​at 1915–1923 ​nm with a record-high slope efficiency of 82.7% (with respect to the absorbed pump power), a threshold of only 17 ​mW and a spatially single-mode output with </span>linear polarization. The WG propagation losses were 0.2 ​± ​0.3 ​dB/cm. Passive Q-switching of Tm channel WG lasers is achieved using Cr</span><sup>2+</sup>:ZnS and Cr<sup>2+</sup>:ZnSe saturable absorbers. With Cr<sup>2+</sup>:ZnS, record-short pulses of 2.6 ns/6.9 ​μJ ​at a repetition rate of 8.0 ​kHz were generated. The developed WGs are promising for compact GHz mode-locked lasers at ~2 ​μm.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100266","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2620886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Spectral coherence, Part I: Passive-resonator linewidth, fundamental laser linewidth, and Schawlow-Townes approximation 光谱相干性,第一部分:无源谐振器线宽,基本激光线宽,和肖洛-汤斯近似
IF 11.7 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2020-08-01 DOI: 10.1016/j.pquantelec.2020.100255
Markus Pollnau , Marc Eichhorn

The degree of spectral coherence characterizes the spectral purity of light. It can be equivalently expressed in the time domain by the decay time τ or the quality factor Q of the light-emitting oscillator, the coherence time τ coh or length coh of emitted light or, via Fourier transformation to the frequency domain, the linewidth Δν of emitted light. We quantify these parameters for the reference situation of a passive Fabry-Pérot resonator. We investigate its spectral line shapes, mode profiles, and Airy distributions and verify that the sum of all mode profiles generates the corresponding Airy distribution. The Fabry-Pérot resonator is described, as an oscillator, by its Lorentzian linewidth and finesse and, as a scanning spectrometer, by its Airy linewidth and finesse. Furthermore, stimulated and spontaneous emission are analyzed semi-classically by employing Maxwell′s equations and the law of energy conservation. Investigation of emission by atoms inside a Fabry-Pérot resonator, the Lorentz oscillator model, the Kramers-Kronig relations, the amplitude-phase diagram, and the summation of quantized electric fields consistently suggests that stimulated and spontaneous emission of light occur with a phase 90° in lead of the incident field. These findings question the quantum-optical picture, which proposed, firstly, that stimulated emission occurred in phase, whereas spontaneous emission occurred at an arbitrary phase angle with respect to the incident field and, secondly, that the laser linewidth were due to amplitude and phase fluctuations induced by spontaneous emission. We emphasize that the first derivation of the Schawlow-Townes laser linewidth was entirely semi-classical but included the four approximations that (i) it is a truly continuous-wave (cw) laser, (ii) it is an ideal four-level laser, (iii) its resonator exhibits no intrinsic losses, and (iv) one photon is coupled spontaneously into the lasing mode per photon-decay time τc of the resonator, independent of the pump rate. After discussing the inconsistencies of existing semi-classical and quantum-optical descriptions of the laser linewidth, we introduce the spectral-coherence factor, which quantifies spectral coherence in an active compared to its underlying passive mode, and derive semi-classically, based on the principle that the gain elongates the photon-decay time and narrows the linewidth, the fundamental linewidth of a single lasing mode. This linewidth is valid for lasers with an arbitrary energy-level system, operating below, at, or above threshold and in a cw or a transient lasing regime, with the gain being smaller, equal, or larger compared to the losses. By applying approximations (i)-(iv) we reproduce the original Schawlow-Townes equation. It provides the hi

光谱的相干度表征了光的光谱纯度。它可以在时域中等效地表示为发光振荡器的衰减时间τ或质量因子Q,发射光的相干时间τ coh或长度r coh,或者通过在频域的傅里叶变换表示为发射光的线宽Δν。我们将这些参数量化为无源法布里-普氏谐振器的参考情况。我们研究了它的谱线形状、模式分布和Airy分布,并验证了所有模式分布的总和产生相应的Airy分布。法布里-帕姆罗特谐振器被描述为,一个振荡器,通过它的洛伦兹线宽和精细度,作为一个扫描光谱仪,通过它的艾里线宽和精细度。利用麦克斯韦方程组和能量守恒定律对受激辐射和自发辐射进行了半经典分析。对法布里-帕姆罗特谐振腔内原子发射的研究、洛伦兹振子模型、Kramers-Kronig关系、幅相图和量子化电场的总和一致表明,受激光和自发光的发射发生在入射场的前导相位为90°。这些发现对量子光学图像提出了质疑,首先,受激发射发生在相位上,而自发发射发生在相对于入射场的任意相角上,其次,激光线宽是由自发发射引起的幅度和相位波动引起的。我们强调,Schawlow-Townes激光线宽的第一个推导完全是半经典的,但包括四个近似:(i)它是一个真正的连续波(cw)激光器,(ii)它是一个理想的四能级激光器,(iii)它的谐振腔没有本征损耗,以及(iv)一个光子自发耦合到激光模式每个光子衰减时间τc谐振腔,独立于泵浦速率。在讨论了现有的半经典和量子光学描述激光线宽的不一致性之后,我们引入了光谱相干系数,它量化了主动模式下与底层被动模式下的光谱相干性,并基于增益延长光子衰减时间和收窄线宽的原理,推导出了半经典的单激光模式的基本线宽。该线宽适用于任意能级系统的激光器,在连续波或瞬态激光状态下工作,低于、等于或高于阈值,增益小于、等于或大于损耗。通过应用近似(i)-(iv),我们再现了原始的Schawlow-Townes方程。它提供了迄今为止在激光作为自发发射放大器的描述和肖洛-汤斯方程之间缺失的联系。自发发射要求在连续波激光模式下,增益小于损耗。我们还验证了基于密度算子主方程的激光线宽的量子光学方法中,增益小于损耗。最后,我们给出了坚果壳中激光线宽的推导。
{"title":"Spectral coherence, Part I: Passive-resonator linewidth, fundamental laser linewidth, and Schawlow-Townes approximation","authors":"Markus Pollnau ,&nbsp;Marc Eichhorn","doi":"10.1016/j.pquantelec.2020.100255","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2020.100255","url":null,"abstract":"<div><p>The degree of spectral coherence characterizes the spectral purity of light. It can be equivalently expressed in the time domain by the decay time <em>τ</em> or the quality factor <em>Q</em><span> of the light-emitting oscillator, the coherence time </span><em>τ</em> <sup><em>coh</em></sup> or length <span><math><mi>ℓ</mi></math></span><sup><em>coh</em></sup><span> of emitted light or, via Fourier transformation to the frequency domain, the linewidth Δ</span><em>ν</em><span><span><span> of emitted light. We quantify these parameters for the reference situation of a passive Fabry-Pérot resonator. We investigate its </span>spectral line shapes, mode profiles, and Airy distributions and verify that the sum of all mode profiles generates the corresponding Airy distribution. The Fabry-Pérot resonator is described, as an oscillator, by its Lorentzian linewidth and finesse and, as a scanning spectrometer, by its Airy linewidth and finesse. Furthermore, stimulated and spontaneous emission are analyzed semi-classically by employing Maxwell′s equations and the law of energy conservation. Investigation of emission by atoms inside a Fabry-Pérot resonator, the Lorentz oscillator model, the Kramers-Kronig relations, the amplitude-phase diagram, and the summation of quantized electric fields consistently suggests that stimulated and spontaneous emission of light occur with a phase 90° in lead of the incident field. These findings question the quantum-optical picture, which proposed, firstly, that </span>stimulated emission occurred in phase, whereas spontaneous emission occurred at an arbitrary phase angle with respect to the incident field and, secondly, that the laser linewidth were due to amplitude and phase fluctuations induced by spontaneous emission. We emphasize that the first derivation of the Schawlow-Townes laser linewidth was entirely semi-classical but included the four approximations that (i) it is a truly continuous-wave (cw) laser, (ii) it is an ideal four-level laser, (iii) its resonator exhibits no intrinsic losses, and (iv) one photon is coupled spontaneously into the lasing mode per photon-decay time </span><em>τ</em><sub><em>c</em></sub> of the resonator, independent of the pump rate. After discussing the inconsistencies of existing semi-classical and quantum-optical descriptions of the laser linewidth, we introduce the spectral-coherence factor, which quantifies spectral coherence in an active compared to its underlying passive mode, and derive semi-classically, based on the principle that the gain elongates the photon-decay time and narrows the linewidth, the fundamental linewidth of a single lasing mode. This linewidth is valid for lasers with an arbitrary energy-level system, operating below, at, or above threshold and in a cw or a transient lasing regime, with the gain being smaller, equal, or larger compared to the losses. By applying approximations (i)-(iv) we reproduce the original Schawlow-Townes equation. It provides the hi","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100255","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2620887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 30
Terahertz sources based on stimulated polariton scattering 基于受激极子散射的太赫兹源
IF 11.7 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2020-05-01 DOI: 10.1016/j.pquantelec.2020.100254
Andrew J. Lee, David J. Spence, Helen M. Pask

In this paper we review the field of terahertz (THz) sources which make use of the nonlinear, stimulated polariton scattering (SPS) process. A historical perspective of the technology is offered, in addition to an investigation of modern SPS-based THz sources. Breakthroughs in these source technologies have coincided with rapid developments in laser technology over the past 10 years. We are now in an age where pulsed SPS-THz sources are generating peak powers in excess of 50 ​kW, and continuous wave SPS-THz sources can be produced using diode pump powers as low as 2.3 ​W. The versatility of this approach to THz generation has enabled the generation of coherent THz radiation across continuous wave (CW), nanosecond-, and picosecond-pulsed modalities, with sources spanning the frequency range 0.5–13 ​THz. Being based on robust and well-developed, crystalline solid-state laser technology, these sources hold great promise as an enabling technology for a plethora of THz applications.

本文综述了利用非线性受激极化子散射(SPS)过程的太赫兹(THz)源的研究进展。除了对现代基于sps的太赫兹源的调查外,还提供了该技术的历史观点。这些光源技术的突破与过去10年来激光技术的快速发展相吻合。我们现在处于脉冲SPS-THz源产生峰值功率超过50 kW的时代,连续波SPS-THz源可以使用低至2.3 W的二极管泵浦功率产生。这种太赫兹产生方法的通用性使连续波(CW)、纳秒和皮秒脉冲模式的相干太赫兹辐射能够产生,源的频率范围为0.5-13太赫兹。基于强大和发达的晶体固态激光技术,这些光源作为一种使能技术,在太赫兹的大量应用中具有很大的前景。
{"title":"Terahertz sources based on stimulated polariton scattering","authors":"Andrew J. Lee,&nbsp;David J. Spence,&nbsp;Helen M. Pask","doi":"10.1016/j.pquantelec.2020.100254","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2020.100254","url":null,"abstract":"<div><p>In this paper we review the field of terahertz (THz) sources which make use of the nonlinear, stimulated polariton scattering (SPS) process. A historical perspective of the technology is offered, in addition to an investigation of modern SPS-based THz sources. Breakthroughs in these source technologies have coincided with rapid developments in laser technology over the past 10 years. We are now in an age where pulsed SPS-THz sources are generating peak powers in excess of 50 ​kW, and continuous wave SPS-THz sources can be produced using diode pump powers as low as 2.3 ​W. The versatility of this approach to THz generation has enabled the generation of coherent THz radiation across continuous wave (CW), nanosecond-, and picosecond-pulsed modalities, with sources spanning the frequency range 0.5–13 ​THz. Being based on robust and well-developed, crystalline solid-state laser technology, these sources hold great promise as an enabling technology for a plethora of THz applications.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100254","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2620888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display 全彩色微型led显示屏的生长、转移印刷和色彩转换技术
IF 11.7 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2020-05-01 DOI: 10.1016/j.pquantelec.2020.100263
Xiaojie Zhou , Pengfei Tian , Chin-Wei Sher , Jiang Wu , Hezhuang Liu , Ran Liu , Hao-Chung Kuo

Micro light-emitting diode (micro-LED) display, mainly based on inorganic GaN-based LED, is an emerging technique with high contrast, low power consumption, long lifetime and fast response time compared to liquid crystal display (LCD) and organic light-emitting diode (OLED) display. Therefore, many research institutes and companies have conducted in-depth research on micro-LED in the full-colour display, gradually realizing the commercialization of micro-LED. And the current research results of micro-LED indicate that it can be widely used in display, visible light communication (VLC), biomedicine and other fields. Although micro-LED has broad commercial prospects, it still faces great challenges, such as the effect of size reduction on performance, the realization of high-density integration on a single wafer for independent addressing of full-colour micro-LED display, the improvement of repair technique and yield et al. This paper reviews the key solutions to the technical difficulties of the full-colour micro-LED display. Specifically, this review analyzes and discusses a variety of advanced full-colour micro-LED display techniques with a focus on three aspects: growth technique, transfer printing technique and colour conversion technique. This review demonstrates the opportunities, progress and challenges of these techniques, aiming to guide the development of full-colour micro-LED display.

微发光二极管(Micro -LED)显示是一种基于无机氮化镓基LED的新兴技术,与液晶显示(LCD)和有机发光二极管(OLED)显示相比,具有高对比度、低功耗、长寿命和快速响应时间等特点。因此,许多研究机构和公司都对micro-LED在全彩显示中的应用进行了深入的研究,逐步实现了micro-LED的商业化。而目前微型led的研究成果表明,它可以广泛应用于显示、可见光通信(VLC)、生物医学等领域。尽管micro-LED具有广阔的商业前景,但它仍然面临着巨大的挑战,如尺寸缩小对性能的影响、实现全彩micro-LED显示屏独立寻址的单片高密度集成、修复技术和良率的提高等。本文综述了全彩微型led显示屏技术难点的关键解决方案。具体来说,本文对各种先进的全彩微型led显示技术进行了分析和讨论,重点从生长技术、转移印花技术和色彩转换技术三个方面进行了分析和讨论。本文综述了这些技术的机遇、进展和挑战,旨在指导全彩微型led显示屏的发展。
{"title":"Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display","authors":"Xiaojie Zhou ,&nbsp;Pengfei Tian ,&nbsp;Chin-Wei Sher ,&nbsp;Jiang Wu ,&nbsp;Hezhuang Liu ,&nbsp;Ran Liu ,&nbsp;Hao-Chung Kuo","doi":"10.1016/j.pquantelec.2020.100263","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2020.100263","url":null,"abstract":"<div><p>Micro light-emitting diode (micro-LED) display, mainly based on inorganic GaN-based LED, is an emerging technique with high contrast, low power consumption, long lifetime and fast response time compared to liquid crystal display<span> (LCD) and organic light-emitting diode (OLED) display. Therefore, many research institutes and companies have conducted in-depth research on micro-LED in the full-colour display, gradually realizing the commercialization of micro-LED. And the current research results of micro-LED indicate that it can be widely used in display, visible light communication (VLC), biomedicine and other fields. Although micro-LED has broad commercial prospects, it still faces great challenges, such as the effect of size reduction on performance, the realization of high-density integration on a single wafer for independent addressing of full-colour micro-LED display, the improvement of repair technique and yield et al. This paper reviews the key solutions to the technical difficulties of the full-colour micro-LED display. Specifically, this review analyzes and discusses a variety of advanced full-colour micro-LED display techniques with a focus on three aspects: growth technique, transfer printing technique and colour conversion technique. This review demonstrates the opportunities, progress and challenges of these techniques, aiming to guide the development of full-colour micro-LED display.</span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100263","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2620889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 134
Generation, optimization, and application of ultrashort femtosecond pulse in mode-locked fiber lasers 超短飞秒脉冲在锁模光纤激光器中的产生、优化和应用
IF 11.7 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2020-05-01 DOI: 10.1016/j.pquantelec.2020.100264
Ying Han , Yubin Guo , Bo Gao , Chunyang Ma , Ruohan Zhang , Han Zhang

Ultrafast femtosecond mode-locked fiber laser plays an indispensable role in medical imaging, space ranging, ophthalmology, terahertz spectroscopy, material micromachining, and so on. It’s not only an important tool for people to explore the world, but also a pillar field of laser technology. This review present the generation of femtosecond pulses in ultrafast mode-locked fiber lasers using active, passive, hybrid mode-locking techniques, the emphasis is given to passively mode-locked fiber lasers. In terms of the optimization of femtosecond pulses, we introduce the external compression technique to obtain shorter pulse width, chirped pulse amplification technique to increase pulse energy and obtain high energy femtosecond pulses at the practical band. Furthermore, the coherent beam combination and divided pulse amplification technique to further boost pulse energy are summarized. At the end of this review, we present a detailed overview of the applications of femtosecond pulses including the generation of supercontinuum and tunable femtosecond pulses, and some practical applications. Several perspectives and research directions of femtosecond pulses are also addressed.

超快飞秒锁模光纤激光器在医学成像、空间测距、眼科、太赫兹光谱学、材料微加工等领域发挥着不可缺少的作用。它不仅是人们探索世界的重要工具,也是激光技术的支柱领域。本文综述了利用主动、被动和混合锁模技术在超快锁模光纤激光器中产生飞秒脉冲的研究进展,重点介绍了被动锁模光纤激光器。在飞秒脉冲的优化方面,我们引入了外压缩技术来获得更短的脉冲宽度,啁啾脉冲放大技术来增加脉冲能量,在实际波段获得高能量的飞秒脉冲。总结了相干光束组合和分脉冲放大技术,进一步提高了脉冲能量。最后,我们对飞秒脉冲的应用进行了详细的综述,包括超连续谱和可调谐飞秒脉冲的产生,以及一些实际应用。对飞秒脉冲的发展前景和研究方向进行了展望。
{"title":"Generation, optimization, and application of ultrashort femtosecond pulse in mode-locked fiber lasers","authors":"Ying Han ,&nbsp;Yubin Guo ,&nbsp;Bo Gao ,&nbsp;Chunyang Ma ,&nbsp;Ruohan Zhang ,&nbsp;Han Zhang","doi":"10.1016/j.pquantelec.2020.100264","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2020.100264","url":null,"abstract":"<div><p>Ultrafast femtosecond mode-locked fiber laser plays an indispensable role in medical imaging, space ranging, ophthalmology, terahertz spectroscopy<span>, material micromachining, and so on. It’s not only an important tool for people to explore the world, but also a pillar field of laser technology. This review present the generation of femtosecond pulses in ultrafast mode-locked fiber lasers using active, passive, hybrid mode-locking techniques, the emphasis is given to passively mode-locked fiber lasers. In terms of the optimization of femtosecond pulses, we introduce the external compression technique to obtain shorter pulse width, chirped pulse amplification technique to increase pulse energy and obtain high energy femtosecond pulses at the practical band. Furthermore, the coherent beam combination and divided pulse amplification technique to further boost pulse energy are summarized. At the end of this review, we present a detailed overview of the applications of femtosecond pulses including the generation of supercontinuum and tunable femtosecond pulses, and some practical applications. Several perspectives and research directions of femtosecond pulses are also addressed.</span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":11.7,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100264","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2620890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 61
期刊
Progress in Quantum Electronics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1