2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)最新文献
Pub Date : 2019-06-10DOI: 10.1109/EEEIC.2019.8783244
N. Quang, Hang Le Thi Thuy, L. D. Bui, M. L. Di Silvestre, S. Favuzza, R. Musca, E. R. Sanseverino, G. Zizzo
The paper presents the study of the 500-kV Vietnamese power system. The oscillatory response of the system is analyzed both with a modal analysis and a time domain analysis. The 500-kV system of Vietnam is modeled in details, including all the power plants with the corresponding regulators. The model is developed in collaboration with the Institute of Energy Science IES-VAST of Vietnam and it is validated with the data provided by the National Load Dispatch Centre (NLDC) of Vietnam. The simulation results reveal a clear identification of potential inter-area oscillations between North and South of the Country. A worsening of the observed phenomenon should be considered as possible, especially in the perspective of the new installation of a significant amount of power from renewable sources into the Vietnamese system.
{"title":"Inter-area oscillations in the 500-kV Vietnamese power system","authors":"N. Quang, Hang Le Thi Thuy, L. D. Bui, M. L. Di Silvestre, S. Favuzza, R. Musca, E. R. Sanseverino, G. Zizzo","doi":"10.1109/EEEIC.2019.8783244","DOIUrl":"https://doi.org/10.1109/EEEIC.2019.8783244","url":null,"abstract":"The paper presents the study of the 500-kV Vietnamese power system. The oscillatory response of the system is analyzed both with a modal analysis and a time domain analysis. The 500-kV system of Vietnam is modeled in details, including all the power plants with the corresponding regulators. The model is developed in collaboration with the Institute of Energy Science IES-VAST of Vietnam and it is validated with the data provided by the National Load Dispatch Centre (NLDC) of Vietnam. The simulation results reveal a clear identification of potential inter-area oscillations between North and South of the Country. A worsening of the observed phenomenon should be considered as possible, especially in the perspective of the new installation of a significant amount of power from renewable sources into the Vietnamese system.","PeriodicalId":422977,"journal":{"name":"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132673703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-10DOI: 10.1109/EEEIC.2019.8783963
T. Bragatto, M. Cresta, V. Croce, M. Paulucci, F. Santori, D. Ziu
This paper proposes an innovative use of the 2nd life Li-ion batteries, enabling "Storage as a service" for enhancing distribution network operations. Two different use cases have been evaluated at the Distribution System Operator (DSO) of the city of Terni (Italy) during the H2020 ELSA project: in the first one, the DSO manages the battery storage system to provide ancillary services (e.g., balance of Reactive Power, primary reserve) in order to increase the power quality and improve of the Low Voltage management efficiency; in the second use case, the batteries are leveraged by the District Energy Manager in order to perform peak shaving and power smoothing, implementing a power profile requested by the DSO. Test results have shown that 2nd life Li-ion batteries are suitable for some services and their usage in the power distribution network is promising for widespread applications. The experimentation on District Energy Manager is being continued under the work of the H2020 eDREAM project.
{"title":"A real-life experience on 2nd life batteries services for Distribution System Operator","authors":"T. Bragatto, M. Cresta, V. Croce, M. Paulucci, F. Santori, D. Ziu","doi":"10.1109/EEEIC.2019.8783963","DOIUrl":"https://doi.org/10.1109/EEEIC.2019.8783963","url":null,"abstract":"This paper proposes an innovative use of the 2nd life Li-ion batteries, enabling \"Storage as a service\" for enhancing distribution network operations. Two different use cases have been evaluated at the Distribution System Operator (DSO) of the city of Terni (Italy) during the H2020 ELSA project: in the first one, the DSO manages the battery storage system to provide ancillary services (e.g., balance of Reactive Power, primary reserve) in order to increase the power quality and improve of the Low Voltage management efficiency; in the second use case, the batteries are leveraged by the District Energy Manager in order to perform peak shaving and power smoothing, implementing a power profile requested by the DSO. Test results have shown that 2nd life Li-ion batteries are suitable for some services and their usage in the power distribution network is promising for widespread applications. The experimentation on District Energy Manager is being continued under the work of the H2020 eDREAM project.","PeriodicalId":422977,"journal":{"name":"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","volume":"294 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116528407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-10DOI: 10.1109/EEEIC.2019.8783480
A. Cabrera-Tobar, Yasmany Fernández, José Huaca, Marcelo Pozo, O. G. Bellmunt, A. Massi Pavan
The integration of photovoltaic power plants in the distribution or transmission level is already a reality. Usually, the location chosen for these power plants consider high solar irradiance, but the temperature could be a drawback. Thus, the aim of this paper is to show the effect of solar irradiance and ambient temperature on the power generation of a photovoltaic power plant. For this, a real photovoltaic power plant is chosen in the Ecuadorian line in South America. The results show that the active power is reduced around 0.1 to 0.3 p.u when the ambient temperature is higher than 25 Celsius degrees although the solar irradiance is high.
{"title":"The effect of ambient temperature on the yield of a 3 MWp PV plant installed in Ecuador","authors":"A. Cabrera-Tobar, Yasmany Fernández, José Huaca, Marcelo Pozo, O. G. Bellmunt, A. Massi Pavan","doi":"10.1109/EEEIC.2019.8783480","DOIUrl":"https://doi.org/10.1109/EEEIC.2019.8783480","url":null,"abstract":"The integration of photovoltaic power plants in the distribution or transmission level is already a reality. Usually, the location chosen for these power plants consider high solar irradiance, but the temperature could be a drawback. Thus, the aim of this paper is to show the effect of solar irradiance and ambient temperature on the power generation of a photovoltaic power plant. For this, a real photovoltaic power plant is chosen in the Ecuadorian line in South America. The results show that the active power is reduced around 0.1 to 0.3 p.u when the ambient temperature is higher than 25 Celsius degrees although the solar irradiance is high.","PeriodicalId":422977,"journal":{"name":"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115677359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-10DOI: 10.1109/EEEIC.2019.8783591
Mohd. Kashif, Shadab Murshid, Bhim Singh
A continuous-control set model predictive control (C-MPC) for speed control of permanent magnet synchronous motor (PMSM) fed by a solar photovoltaic (PV) array driving water pump is implemented in this paper. The controller improves the dynamic performance and reduces the steady-state errors. The maximum power point operation of solar PV array is performed using perturb and observe maximum power tracking (MPPT) algorithm. The PMSM is operated by estimating the rotor angular position using back-emf based position sensing method. This eliminates the need of mechanical position sensor. The performance of C-MPC in PMSM drive-system under variable solar insolation, is obtained at starting, steady-state and during dynamics on MATLAB/Simulink platform. A laboratory prototype of the PMSM drive system is developed to validate the performance of the controller.
{"title":"Continuous Control Set Model Predictive Controller for PMSM Driven Solar PV Water Pumping System","authors":"Mohd. Kashif, Shadab Murshid, Bhim Singh","doi":"10.1109/EEEIC.2019.8783591","DOIUrl":"https://doi.org/10.1109/EEEIC.2019.8783591","url":null,"abstract":"A continuous-control set model predictive control (C-MPC) for speed control of permanent magnet synchronous motor (PMSM) fed by a solar photovoltaic (PV) array driving water pump is implemented in this paper. The controller improves the dynamic performance and reduces the steady-state errors. The maximum power point operation of solar PV array is performed using perturb and observe maximum power tracking (MPPT) algorithm. The PMSM is operated by estimating the rotor angular position using back-emf based position sensing method. This eliminates the need of mechanical position sensor. The performance of C-MPC in PMSM drive-system under variable solar insolation, is obtained at starting, steady-state and during dynamics on MATLAB/Simulink platform. A laboratory prototype of the PMSM drive system is developed to validate the performance of the controller.","PeriodicalId":422977,"journal":{"name":"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","volume":"312 4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121172159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-10DOI: 10.1109/EEEIC.2019.8783401
Gaurav Modi, Shailendra Kumar, Bhim Singh
This paper proposes a new control of a three phase solar PV-battery based microgrid. This microgrid has the capability of seamless transfer of power when the system mode of operation changes from grid connected mode to standalone mode and vice-versa. It provides an uninterruptible power to the load even in the absence of the grid and solar PV power. It also provides the power quality features at the point of common coupling (PCC) by mitigating the current harmonics drawn by the nonlinear load. The voltage source converter (VSC) works in a current controlled mode when the grid is present. However, in the absence of the grid, the VSC works in voltage controlled mode. In the current controlled mode, the normalized fractional least mean square (NFLMS) algorithm is used to estimate the load active fundamental component. An additional feed-forward term is used to improve the system dynamic in the inconsistent solar PV array output condition. In the voltage controlled mode, the synchronous rotating frame (SRF) based control algorithm is used to maintain the rated voltage across the load at rated frequency. An enhanced phase locked loop (EPLL) is used for the resynchronization process. The performance of the microgrid is validated by experimental results in various dynamics conditions.
{"title":"NFLMS Algorithm for Solar PV-Battery Based Microgrid With Seamless Operation","authors":"Gaurav Modi, Shailendra Kumar, Bhim Singh","doi":"10.1109/EEEIC.2019.8783401","DOIUrl":"https://doi.org/10.1109/EEEIC.2019.8783401","url":null,"abstract":"This paper proposes a new control of a three phase solar PV-battery based microgrid. This microgrid has the capability of seamless transfer of power when the system mode of operation changes from grid connected mode to standalone mode and vice-versa. It provides an uninterruptible power to the load even in the absence of the grid and solar PV power. It also provides the power quality features at the point of common coupling (PCC) by mitigating the current harmonics drawn by the nonlinear load. The voltage source converter (VSC) works in a current controlled mode when the grid is present. However, in the absence of the grid, the VSC works in voltage controlled mode. In the current controlled mode, the normalized fractional least mean square (NFLMS) algorithm is used to estimate the load active fundamental component. An additional feed-forward term is used to improve the system dynamic in the inconsistent solar PV array output condition. In the voltage controlled mode, the synchronous rotating frame (SRF) based control algorithm is used to maintain the rated voltage across the load at rated frequency. An enhanced phase locked loop (EPLL) is used for the resynchronization process. The performance of the microgrid is validated by experimental results in various dynamics conditions.","PeriodicalId":422977,"journal":{"name":"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121219019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-10DOI: 10.1109/EEEIC.2019.8783868
A. Rosato, R. Araneo, A. Andreotti, M. Panella
A novel deep learning approach is proposed for the predictive analysis of trends in energy related time series, in particular those relevant to photovoltaic systems. Aim of the proposed approach is to grasp the trend of the time series, namely, if the series goes up, down or keep stable, instead of predicting the future numerical value. The modeling system is based on Long Short-Term Memory networks, which are a type of recurrent neural network able to extract information in samples located very far from the current one. This new approach has been tested in a real-world case study showing good robustness and accuracy.
{"title":"Predictive Analysis of Photovoltaic Power Generation Using Deep Learning","authors":"A. Rosato, R. Araneo, A. Andreotti, M. Panella","doi":"10.1109/EEEIC.2019.8783868","DOIUrl":"https://doi.org/10.1109/EEEIC.2019.8783868","url":null,"abstract":"A novel deep learning approach is proposed for the predictive analysis of trends in energy related time series, in particular those relevant to photovoltaic systems. Aim of the proposed approach is to grasp the trend of the time series, namely, if the series goes up, down or keep stable, instead of predicting the future numerical value. The modeling system is based on Long Short-Term Memory networks, which are a type of recurrent neural network able to extract information in samples located very far from the current one. This new approach has been tested in a real-world case study showing good robustness and accuracy.","PeriodicalId":422977,"journal":{"name":"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","volume":"414 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124427287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-10DOI: 10.1109/EEEIC.2019.8783799
M. Nizami, M. Hossain, S. Rafique, K. Mahmud, U. Irshad, G. Town
With a spike in popularity and sales, the electric vehicles (EVs) have revolutionized the transportation industry. As EV technology advances, the EVs are becoming more accessible and affordable. Therefore, a rapid proliferation of light-duty EVs have been noticed in the residential sector. Even though the increased charging demand of EVs is manageable in large-scale, the low-voltage (LV) residential networks might not be capable of managing localized capacity issues of large scale EV integration. Dynamic electricity tariff coupled with demand response and smart charging management can provide grid assistance to some extent. However, uncoordinated charging, if clustered in a residential distribution feeder, can risk grid assets because of overloading and can even jeopardize the reliability of the network by violating voltage constraints. This paper proposes a coordinated residential EV management system for power grid support. Charging and discharging of residential EV batteries are coordinated and optimized to address grid overloading during peak demand periods and voltage constraint violations. The EV management for grid support is formulated as a mixed-integer programming based optimization problem to minimize the inconveniences of EV owner while providing grid assistance. The proposed methodology is evaluated via a case study based on a residential feeder in Sydney, Australia with actual load demand data. The simulation results indicate the efficacy of the proposed EV management method for mitigating grid overloading and maintaining desired bus voltages.
{"title":"A Multi-agent system based residential electric vehicle management system for grid-support service","authors":"M. Nizami, M. Hossain, S. Rafique, K. Mahmud, U. Irshad, G. Town","doi":"10.1109/EEEIC.2019.8783799","DOIUrl":"https://doi.org/10.1109/EEEIC.2019.8783799","url":null,"abstract":"With a spike in popularity and sales, the electric vehicles (EVs) have revolutionized the transportation industry. As EV technology advances, the EVs are becoming more accessible and affordable. Therefore, a rapid proliferation of light-duty EVs have been noticed in the residential sector. Even though the increased charging demand of EVs is manageable in large-scale, the low-voltage (LV) residential networks might not be capable of managing localized capacity issues of large scale EV integration. Dynamic electricity tariff coupled with demand response and smart charging management can provide grid assistance to some extent. However, uncoordinated charging, if clustered in a residential distribution feeder, can risk grid assets because of overloading and can even jeopardize the reliability of the network by violating voltage constraints. This paper proposes a coordinated residential EV management system for power grid support. Charging and discharging of residential EV batteries are coordinated and optimized to address grid overloading during peak demand periods and voltage constraint violations. The EV management for grid support is formulated as a mixed-integer programming based optimization problem to minimize the inconveniences of EV owner while providing grid assistance. The proposed methodology is evaluated via a case study based on a residential feeder in Sydney, Australia with actual load demand data. The simulation results indicate the efficacy of the proposed EV management method for mitigating grid overloading and maintaining desired bus voltages.","PeriodicalId":422977,"journal":{"name":"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124170120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-10DOI: 10.1109/EEEIC.2019.8783812
M. Kia, S. H. Hosseini, Alireza Heidari, M. Lotfi, J. Catalão, M. Shafie‐khah, G. Osório, S. Santos
Secure and reliable operation is one of the main challenges in restructured power systems. Wind energy has been gaining increasing global attention as a clean and economic energy source, despite the operational challenges its intermittency brings. In this study, we present a formulation for electricity and reserve market clearance in the presence of wind farms. Uncertainties associated with generation and line outages are modeled as different system scenarios. The formulation incorporates the cost of different scenarios in a two-stage short-term (24-hours) clearing process, also considering different types of reserve. The model is then linearized in order to be compatible with standard mixed-integer linear programming solvers, aiming at solving the security constrained unit-commitment problem using as few variables and optimization constraints as possible. As shown, this will expedite the solution of the optimization problem. The model is validated by testing it on a case study based on the IEEE RTS1, for which results are presented and discussed.
{"title":"Stochastic Security Constrained Unit Commitment with High Penetration of Wind Farms","authors":"M. Kia, S. H. Hosseini, Alireza Heidari, M. Lotfi, J. Catalão, M. Shafie‐khah, G. Osório, S. Santos","doi":"10.1109/EEEIC.2019.8783812","DOIUrl":"https://doi.org/10.1109/EEEIC.2019.8783812","url":null,"abstract":"Secure and reliable operation is one of the main challenges in restructured power systems. Wind energy has been gaining increasing global attention as a clean and economic energy source, despite the operational challenges its intermittency brings. In this study, we present a formulation for electricity and reserve market clearance in the presence of wind farms. Uncertainties associated with generation and line outages are modeled as different system scenarios. The formulation incorporates the cost of different scenarios in a two-stage short-term (24-hours) clearing process, also considering different types of reserve. The model is then linearized in order to be compatible with standard mixed-integer linear programming solvers, aiming at solving the security constrained unit-commitment problem using as few variables and optimization constraints as possible. As shown, this will expedite the solution of the optimization problem. The model is validated by testing it on a case study based on the IEEE RTS1, for which results are presented and discussed.","PeriodicalId":422977,"journal":{"name":"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128690937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-10DOI: 10.1109/EEEIC.2019.8783878
Aurelio Paolillo, D. L. Carní, M. Kermani, L. Martirano, A. Aiello
The home and building automation systems evolution, creates the necessity to define new formalities for the clear and univocal description of their functionalities. To describe the operation of such a system, it is necessary therefore to add a further level that keeps in mind the logical connections among devices and their configurations. The addition of this level makes unambiguous the description of the plant functionalities. From the current state of the art it arises the demand of creating a software that allows the home automation system designer to exclusively focus on the logical functionalities of the system, furnishing to the system integrator the general details for the hardware settings. Particularly, the new network implementation details (KNX system, proprietary systems, etc.) will be completely transparent to the designer. The objective is to get a project documentation that is possible to adapt both for KNX home automation systems and for proprietary systems managed by a gateway (Xiaomi or Google Home).
{"title":"An innovative Home and Building Automation design tool for Nanogrids Applications","authors":"Aurelio Paolillo, D. L. Carní, M. Kermani, L. Martirano, A. Aiello","doi":"10.1109/EEEIC.2019.8783878","DOIUrl":"https://doi.org/10.1109/EEEIC.2019.8783878","url":null,"abstract":"The home and building automation systems evolution, creates the necessity to define new formalities for the clear and univocal description of their functionalities. To describe the operation of such a system, it is necessary therefore to add a further level that keeps in mind the logical connections among devices and their configurations. The addition of this level makes unambiguous the description of the plant functionalities. From the current state of the art it arises the demand of creating a software that allows the home automation system designer to exclusively focus on the logical functionalities of the system, furnishing to the system integrator the general details for the hardware settings. Particularly, the new network implementation details (KNX system, proprietary systems, etc.) will be completely transparent to the designer. The objective is to get a project documentation that is possible to adapt both for KNX home automation systems and for proprietary systems managed by a gateway (Xiaomi or Google Home).","PeriodicalId":422977,"journal":{"name":"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","volume":"10 6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131105016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-10DOI: 10.1109/EEEIC.2019.8783729
F. Napolitano, F. Tossani, A. Borghetti, C. Nucci, G. Podporkin
The proper insulation coordination of power apparatuses requires the knowledge of the withstand capability of the insulation against overvoltages stressing the given apparatus. By using a multivariate Monte Carlo procedure and the parameter probability distributions of the Cigré waveforms of the lightning current at the channel base, we provide a characterization of the parameter distributions of the induced voltage waveforms in a single conductor overhead line. A simplified formula is proposed to reproduce the curve that represents the expected annual number of lightning that induce voltages larger than the insulation level of the line in case insulators flashovers are not considered in the appraisal. The results for the case of an ideal insulation level are compared to those obtained by considering the flashovers in medium voltage insulators represented by means of the disruptive effect (DE) criterion. The parameters of the DE model are estimated by using the voltage-time-to-breakdown curve inferred from laboratory test results.
{"title":"Statistical Characterization of Lightning Induced Overvoltage Waveforms in Overhead Lines","authors":"F. Napolitano, F. Tossani, A. Borghetti, C. Nucci, G. Podporkin","doi":"10.1109/EEEIC.2019.8783729","DOIUrl":"https://doi.org/10.1109/EEEIC.2019.8783729","url":null,"abstract":"The proper insulation coordination of power apparatuses requires the knowledge of the withstand capability of the insulation against overvoltages stressing the given apparatus. By using a multivariate Monte Carlo procedure and the parameter probability distributions of the Cigré waveforms of the lightning current at the channel base, we provide a characterization of the parameter distributions of the induced voltage waveforms in a single conductor overhead line. A simplified formula is proposed to reproduce the curve that represents the expected annual number of lightning that induce voltages larger than the insulation level of the line in case insulators flashovers are not considered in the appraisal. The results for the case of an ideal insulation level are compared to those obtained by considering the flashovers in medium voltage insulators represented by means of the disruptive effect (DE) criterion. The parameters of the DE model are estimated by using the voltage-time-to-breakdown curve inferred from laboratory test results.","PeriodicalId":422977,"journal":{"name":"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","volume":"149 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129601678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)