Yue Qin, Dingbang Ma, Y. Wang, C. Liao, Yiping Wang
A probe-type all-fiber ultraviolet photodetector is proposed in this paper. A ZnO microwire is fixed on the end facet of a single-mode fiber through a glass tube with specific diameter to form a Fabry-Pérot interferometer. With this all-fiber structure, fast-response ultraviolet detection can be realized in an all-optical scheme. Since the refractive index of ZnO microwire increases under the illumination of ultraviolet, interference wavelengths of abovementioned device redshifts with the increase of ultraviolet light intensity. By employing a continuous 266-nm laser beam and chopping method, the sensitivity is obtained to be 0.268 nm/(W·cm-2 ) and the response time is only 0.56 ms. To be more specifically, the response speed of the device is further explored by a 266-nm pulsed laser, and the response time of the device is measured to be only 13 μs. The proposed device provides a new idea for the next generation of high-performance ultraviolet photodetectors and may find potential applications in the future.
{"title":"A probe-type fiber optic ultraviolet photodetector","authors":"Yue Qin, Dingbang Ma, Y. Wang, C. Liao, Yiping Wang","doi":"10.1117/12.2681883","DOIUrl":"https://doi.org/10.1117/12.2681883","url":null,"abstract":"A probe-type all-fiber ultraviolet photodetector is proposed in this paper. A ZnO microwire is fixed on the end facet of a single-mode fiber through a glass tube with specific diameter to form a Fabry-Pérot interferometer. With this all-fiber structure, fast-response ultraviolet detection can be realized in an all-optical scheme. Since the refractive index of ZnO microwire increases under the illumination of ultraviolet, interference wavelengths of abovementioned device redshifts with the increase of ultraviolet light intensity. By employing a continuous 266-nm laser beam and chopping method, the sensitivity is obtained to be 0.268 nm/(W·cm-2 ) and the response time is only 0.56 ms. To be more specifically, the response speed of the device is further explored by a 266-nm pulsed laser, and the response time of the device is measured to be only 13 μs. The proposed device provides a new idea for the next generation of high-performance ultraviolet photodetectors and may find potential applications in the future.","PeriodicalId":424244,"journal":{"name":"European Workshop on Optical Fibre Sensors","volume":"286 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123447994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Burnat, K. Szot-Karpińska, P. Sezemský, M. Janik, M. Koba, J. Niedziółka-Jönsson, Viteszlav Stranak, M. Śmietana
This work describes an experimental study towards label-free sensing of C-reactive protein (CRP) – a protein recognized as a inflammation marker. A multimode optical fiber with a section of its core coated with indium tin oxide (ITO) thin film was used as a sensor. ITO film allows for guiding lossy modes and can simultaneously be used as a transparent electrode for electrochemical measurements. Therefore, optical and electrochemical detection based on a single sensor was possible. Such a dual-domain approach is practical, especially when the results in one of the domains are not accurate enough, which was the case in this work. A case of different functionalization methods of ITO surface was also pointed out. The proposed sensor allows for recognition as low as ng/mL.
{"title":"Opto-electrochemical sensing of C-reactive protein using optical fiber lossy-mode resonance sensor","authors":"D. Burnat, K. Szot-Karpińska, P. Sezemský, M. Janik, M. Koba, J. Niedziółka-Jönsson, Viteszlav Stranak, M. Śmietana","doi":"10.1117/12.2678113","DOIUrl":"https://doi.org/10.1117/12.2678113","url":null,"abstract":"This work describes an experimental study towards label-free sensing of C-reactive protein (CRP) – a protein recognized as a inflammation marker. A multimode optical fiber with a section of its core coated with indium tin oxide (ITO) thin film was used as a sensor. ITO film allows for guiding lossy modes and can simultaneously be used as a transparent electrode for electrochemical measurements. Therefore, optical and electrochemical detection based on a single sensor was possible. Such a dual-domain approach is practical, especially when the results in one of the domains are not accurate enough, which was the case in this work. A case of different functionalization methods of ITO surface was also pointed out. The proposed sensor allows for recognition as low as ng/mL.","PeriodicalId":424244,"journal":{"name":"European Workshop on Optical Fibre Sensors","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116229548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Grantzioti, N. Samartzis, K. Bhorkar, S. Pissadakis, S. Yannopoulos, M. Konstantaki
We describe an optical fiber sensor for detection of ammonia vapors employing a fluorinated graphene-like overlayer on a tilted Bragg grating. Exploiting the laser-mediated explosive synthesis and transfer (LEST) of graphene (Gr) flakes a thin film of few-layer turbostratic graphene flakes doped with F atoms (~ 3.3 at. %) are deposited on the fiber at the location of the grating. The response of the sensor was investigated for NH4OH vapors while for reference, the effect of H2O was also monitored at identical conditions. Under increasing vapor pressure of NH4OH, wavelength shift is recorded not only in the cladding modes but also for the fundamental Bragg mode, indicating that the effect is not solely due to changes in the optical parameters of the overlayer. The monitored wavelength shift is initially negative turning to positive when vapor saturation is reached. Furthermore, there is a distinct difference in the magnitude of the monitored shifts with the higher order mode exhibiting 2.5x higher values compared to the Bragg mode. The study is ongoing and will also include overlayers of pure LEST Gr and LEST Gr decorated with Six nanoparticles.
{"title":"Tilted optical fiber Bragg grating with fluorinated graphene-like overlayer for ammonia detection","authors":"E. Grantzioti, N. Samartzis, K. Bhorkar, S. Pissadakis, S. Yannopoulos, M. Konstantaki","doi":"10.1117/12.2678525","DOIUrl":"https://doi.org/10.1117/12.2678525","url":null,"abstract":"We describe an optical fiber sensor for detection of ammonia vapors employing a fluorinated graphene-like overlayer on a tilted Bragg grating. Exploiting the laser-mediated explosive synthesis and transfer (LEST) of graphene (Gr) flakes a thin film of few-layer turbostratic graphene flakes doped with F atoms (~ 3.3 at. %) are deposited on the fiber at the location of the grating. The response of the sensor was investigated for NH4OH vapors while for reference, the effect of H2O was also monitored at identical conditions. Under increasing vapor pressure of NH4OH, wavelength shift is recorded not only in the cladding modes but also for the fundamental Bragg mode, indicating that the effect is not solely due to changes in the optical parameters of the overlayer. The monitored wavelength shift is initially negative turning to positive when vapor saturation is reached. Furthermore, there is a distinct difference in the magnitude of the monitored shifts with the higher order mode exhibiting 2.5x higher values compared to the Bragg mode. The study is ongoing and will also include overlayers of pure LEST Gr and LEST Gr decorated with Six nanoparticles.","PeriodicalId":424244,"journal":{"name":"European Workshop on Optical Fibre Sensors","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123000933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rodolfo Martínez-Manuel, Jonathan Esquivel-Hernández, Luis M. Valentín-Coronado, M. Shlyagin, S. Larochelle
An approach for directional bending monitoring based on a multimode fiber and a machine learning algorithm is presented. The sensor if formed by splicing a single mode fiber to a multimode elliptical-core fiber. Using this elliptical-core fiber, multimode interference generates an interferogram with non-uniform amplitude and non-periodic shape. These characteristics are important to process the sensing signal using a machine learning algorithm. The machine learning algorithm implemented is the well-known random forest algorithm. In the reported experiments, the fiber is bended in different directions and different magnitudes of bending, generating a specific interferogram in each position, then each bending position is identified by the random forest algorithm. Once the position is identified, the trajectory of the sensor can be calculated. Experimental demonstration for directional bending monitoring, based on a machine learning algorithm, is presented.
{"title":"Directional bending monitoring using a multimode elliptical-core fiber and a machine learning algorithm","authors":"Rodolfo Martínez-Manuel, Jonathan Esquivel-Hernández, Luis M. Valentín-Coronado, M. Shlyagin, S. Larochelle","doi":"10.1117/12.2678451","DOIUrl":"https://doi.org/10.1117/12.2678451","url":null,"abstract":"An approach for directional bending monitoring based on a multimode fiber and a machine learning algorithm is presented. The sensor if formed by splicing a single mode fiber to a multimode elliptical-core fiber. Using this elliptical-core fiber, multimode interference generates an interferogram with non-uniform amplitude and non-periodic shape. These characteristics are important to process the sensing signal using a machine learning algorithm. The machine learning algorithm implemented is the well-known random forest algorithm. In the reported experiments, the fiber is bended in different directions and different magnitudes of bending, generating a specific interferogram in each position, then each bending position is identified by the random forest algorithm. Once the position is identified, the trajectory of the sensor can be calculated. Experimental demonstration for directional bending monitoring, based on a machine learning algorithm, is presented.","PeriodicalId":424244,"journal":{"name":"European Workshop on Optical Fibre Sensors","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126489153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Hey Tow, Joao Pereira, M. Lindblom, M. Fernández-Ruiz, H. Martins, M. Rossi, Siw Nilsson, Harald van den Berg
Fibre-optic based sensing technologies are becoming popular in the field of geophysics since enable long range and high spatial resolution acoustic measurements. In this work, we present preliminary results obtained using quasi-distributed Fibre-Bragg grating sensing and Distributed Acoustic Sensing (DAS) to monitor seismic activities in an operational underground mine. 12 FBGs and 800 metres of fiber optic cable was installed in the tunnel lining an operational mine and recorded mine seismicity such as production blasts and a small seismic activity of magnitude 1.41 in September 2022.
{"title":"Monitoring mining induced seismicity using optical fibre sensors during mine exploitation","authors":"K. Hey Tow, Joao Pereira, M. Lindblom, M. Fernández-Ruiz, H. Martins, M. Rossi, Siw Nilsson, Harald van den Berg","doi":"10.1117/12.2678296","DOIUrl":"https://doi.org/10.1117/12.2678296","url":null,"abstract":"Fibre-optic based sensing technologies are becoming popular in the field of geophysics since enable long range and high spatial resolution acoustic measurements. In this work, we present preliminary results obtained using quasi-distributed Fibre-Bragg grating sensing and Distributed Acoustic Sensing (DAS) to monitor seismic activities in an operational underground mine. 12 FBGs and 800 metres of fiber optic cable was installed in the tunnel lining an operational mine and recorded mine seismicity such as production blasts and a small seismic activity of magnitude 1.41 in September 2022.","PeriodicalId":424244,"journal":{"name":"European Workshop on Optical Fibre Sensors","volume":"87 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114040669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Iele, A. Ricciardi, C. Pecorella, A. Cirillo, F. Ficuciello, B. Siciliano, R. La Rocca, V. Mirone, M. Consales, A. Cusano
We developed a miniaturized optical probe, based on a customized Fiber Bragg Grating, for mechanical characterization of biological tissues with sub-millimeter spatial resolution. The probe is integrated inside a metallic cannula (16 gauge) used for clinical applications, and it is driven by a robotic arm (KUKA LBR Med 7). The optical sensor has a resolution of less than 1 mN and measures the force on controlled tissue indentations. The functionality of the sensor was assessed by means of different tests carried out on real prostates obtained from radically surgeries of patients at different stages of the carcinoma (Gleason score from 6 to 8). Specifically, in this work, we demonstrate that our system provides results that are on line with to the biopsy analysis performed before and the surgery. Our findings lay the foundation for the development of compact optical fiber probes, with size compatible with needle/catheter, able to perform in vivo mechanical characterizations of the prostatic tissue with high sensitivity and spatial resolution.
我们开发了一种基于定制光纤布拉格光栅的小型化光学探针,用于亚毫米空间分辨率的生物组织力学表征。该探头集成在用于临床应用的金属套管(16号)内,由机械臂(KUKA LBR Med 7)驱动。光学传感器的分辨率小于1 mN,可测量受控制组织压痕上的力。传感器的功能是通过对不同阶段癌症患者进行根根性手术获得的真实前列腺进行的不同测试来评估的(Gleason评分从6到8)。具体来说,在这项工作中,我们证明了我们的系统提供的结果与术前和手术前进行的活检分析一致。我们的研究结果为紧凑型光纤探针的发展奠定了基础,其尺寸与针/导管兼容,能够以高灵敏度和空间分辨率进行前列腺组织的体内力学表征。
{"title":"Optical fiber probe for prostate cancer screening: ex vivo study","authors":"A. Iele, A. Ricciardi, C. Pecorella, A. Cirillo, F. Ficuciello, B. Siciliano, R. La Rocca, V. Mirone, M. Consales, A. Cusano","doi":"10.1117/12.2678083","DOIUrl":"https://doi.org/10.1117/12.2678083","url":null,"abstract":"We developed a miniaturized optical probe, based on a customized Fiber Bragg Grating, for mechanical characterization of biological tissues with sub-millimeter spatial resolution. The probe is integrated inside a metallic cannula (16 gauge) used for clinical applications, and it is driven by a robotic arm (KUKA LBR Med 7). The optical sensor has a resolution of less than 1 mN and measures the force on controlled tissue indentations. The functionality of the sensor was assessed by means of different tests carried out on real prostates obtained from radically surgeries of patients at different stages of the carcinoma (Gleason score from 6 to 8). Specifically, in this work, we demonstrate that our system provides results that are on line with to the biopsy analysis performed before and the surgery. Our findings lay the foundation for the development of compact optical fiber probes, with size compatible with needle/catheter, able to perform in vivo mechanical characterizations of the prostatic tissue with high sensitivity and spatial resolution.","PeriodicalId":424244,"journal":{"name":"European Workshop on Optical Fibre Sensors","volume":"77 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123215509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Gómez-Galdós, P. Roldán-Varona, M. Ochoa, M. G. Fernández-Manteca, J. F. Algorri, J. López-Higuera, A. Cobo, L. Rodríguez-Cobo
In this work, we designed a fused silica lab-on-chip that combines optical techniques such as absorption, Raman scattering and fluorescence to quantify phytoplankton type and concentration in water. In the absorption stage of the chip, a Fabry-Perot resonator significantly enhances the spectral response. Scattering and fluorescence spectroscopy are considered with light focusing on sample channel. The design process, and more specifically the integrated in-chip aspheric lenses, is carried out by ray-tracing simulations.
{"title":"Lab-on-chip design for multiparameter phytoplankton analysis","authors":"C. Gómez-Galdós, P. Roldán-Varona, M. Ochoa, M. G. Fernández-Manteca, J. F. Algorri, J. López-Higuera, A. Cobo, L. Rodríguez-Cobo","doi":"10.1117/12.2678291","DOIUrl":"https://doi.org/10.1117/12.2678291","url":null,"abstract":"In this work, we designed a fused silica lab-on-chip that combines optical techniques such as absorption, Raman scattering and fluorescence to quantify phytoplankton type and concentration in water. In the absorption stage of the chip, a Fabry-Perot resonator significantly enhances the spectral response. Scattering and fluorescence spectroscopy are considered with light focusing on sample channel. The design process, and more specifically the integrated in-chip aspheric lenses, is carried out by ray-tracing simulations.","PeriodicalId":424244,"journal":{"name":"European Workshop on Optical Fibre Sensors","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128981660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Soriano-Amat, P. Guay, H. Martins, S. Martín-López, M. González-Herráez, J. Genest, M. Fernández-Ruiz
Time-expanded phase-sensitive (TE-φ )OTDR is a distributed optical fiber sensing (DOFS) technique that takes advantage of the dual-frequency comb technology to offer distributed, dynamic, and high-spatial resolution measurements. The performance delivered by this recent approach is unmatched by any other DOFS, combining the high resolution of OFDR with the potential for long range and fast sampling of φ OTDR. In this contribution, we present an optimized TE-φ OTDR scheme with important improvements with respect to the traditional one. In particular, the new architecture uses electrooptical phase modulation instead of intensity modulation, increasing the energy-efficiency. Additionally, it employs an optical hybrid to double the spectral efficiency of the system, which in practical terms results in doubling the spatial resolution for the same interrogating comb bandwidth. The proposed architecture has been experimentally validated through a scheme providing 5 mm of spatial resolution, 80 m of range and 70 Hz sampling rate with a simple, compact and low-cost setup using field-programmable gate arrays (FPGA) and relatively low bandwidth photodetection (2 MHz).
{"title":"Sub-centimeter spatial resolution dynamic strain sensing using time-expanded ΦOTDR","authors":"M. Soriano-Amat, P. Guay, H. Martins, S. Martín-López, M. González-Herráez, J. Genest, M. Fernández-Ruiz","doi":"10.1117/12.2678093","DOIUrl":"https://doi.org/10.1117/12.2678093","url":null,"abstract":"Time-expanded phase-sensitive (TE-φ )OTDR is a distributed optical fiber sensing (DOFS) technique that takes advantage of the dual-frequency comb technology to offer distributed, dynamic, and high-spatial resolution measurements. The performance delivered by this recent approach is unmatched by any other DOFS, combining the high resolution of OFDR with the potential for long range and fast sampling of φ OTDR. In this contribution, we present an optimized TE-φ OTDR scheme with important improvements with respect to the traditional one. In particular, the new architecture uses electrooptical phase modulation instead of intensity modulation, increasing the energy-efficiency. Additionally, it employs an optical hybrid to double the spectral efficiency of the system, which in practical terms results in doubling the spatial resolution for the same interrogating comb bandwidth. The proposed architecture has been experimentally validated through a scheme providing 5 mm of spatial resolution, 80 m of range and 70 Hz sampling rate with a simple, compact and low-cost setup using field-programmable gate arrays (FPGA) and relatively low bandwidth photodetection (2 MHz).","PeriodicalId":424244,"journal":{"name":"European Workshop on Optical Fibre Sensors","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128113567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Romanet, Alexandre Matic, M. Zerbib, K. Phan Huy, Jordan Labbe, Hélène Celle, J. Beugnot
We demonstrate the potential of Brillouin distributed fiber sensor for the measurement of groundwater flow in an experimental site of Port Douvot close to the city of Besan¸con. The flow measurement is obtained by using active heating method based on heat pulse instrument. An industrial sensor cable with single mode fiber and multimode fiber was immersed on ground. We compare distributed Brillouin sensor reflectometry (BOTDR) and Analysis (BOTDA) on single mode fiber (SMF) and multimode optical fiber (MMF) with a spatial resolution of 1 m, a temperature resolution of 0.2 °C and an acquisition time of 1 min. These parameters are compatible with hydrology application. Active heating of borehole water in conjunction with fiber optic distributed temperature sensor measurements are realized. Contrary to Raman based distributed temperature sensor, Brillouin instrument allows measuring absolute temperature measurement and simplify the implementation on the setup. We demonstrate in this paper that Brillouin scattering based temperature sensor can be used for hydrogeology application.
{"title":"Distributed Brillouin optical fiber temperature sensor for groundwater flow measurement","authors":"M. Romanet, Alexandre Matic, M. Zerbib, K. Phan Huy, Jordan Labbe, Hélène Celle, J. Beugnot","doi":"10.1117/12.2679978","DOIUrl":"https://doi.org/10.1117/12.2679978","url":null,"abstract":"We demonstrate the potential of Brillouin distributed fiber sensor for the measurement of groundwater flow in an experimental site of Port Douvot close to the city of Besan¸con. The flow measurement is obtained by using active heating method based on heat pulse instrument. An industrial sensor cable with single mode fiber and multimode fiber was immersed on ground. We compare distributed Brillouin sensor reflectometry (BOTDR) and Analysis (BOTDA) on single mode fiber (SMF) and multimode optical fiber (MMF) with a spatial resolution of 1 m, a temperature resolution of 0.2 °C and an acquisition time of 1 min. These parameters are compatible with hydrology application. Active heating of borehole water in conjunction with fiber optic distributed temperature sensor measurements are realized. Contrary to Raman based distributed temperature sensor, Brillouin instrument allows measuring absolute temperature measurement and simplify the implementation on the setup. We demonstrate in this paper that Brillouin scattering based temperature sensor can be used for hydrogeology application.","PeriodicalId":424244,"journal":{"name":"European Workshop on Optical Fibre Sensors","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125360292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Bruno, M. Janneh, S. Guardato, G. Donnarumma, G. Iannaccone, G. Gruca, S. Werzinger, A. Gunda, N. Rijnveld, A. Cutolo, M. Pisco, A. Cusano
We report on the development and field test of fiber optic hydrophones (FOHs). In details, we focused on the development of acoustic hydrophones for towed arrays applications and seismic hydrophones for seismological monitoring applications. In both cases, the sensing configuration is based on a Michelson interferometer where a fiber coil is wrapped around a compliant mandrel acting as a sensitive element. For the first application, acoustic hydrophones were characterized in an instrumented tank at Leonardo Finmeccanica premises. The hydrophone exhibited a responsivity of about 19 nm/Pa in the frequency range 3÷10 kHz with a resolution down to 300μPa /√Hz. The same FOHs were used as a basic building block to develop a towed array with five elements. By using the same enabling technology, but tailoring the physical and geometrical properties of hydrophones, we developed seismic hydrophones. The sensing system was integrated in the seismologic monitoring system and installed at Campi-Flegrei caldera. During the field trials, we detected several earthquakes occurred in the area and compared the results with a reference piezoelectric hydrophone. The seismic sequence was used to retrieve the sensor responsivity in the frequency range 1-80Hz. The sensing system exhibited a responsivity of about 300nm/Pa and an average noise floor level down to 100μPa/√Hz. The reported field trials demonstrated the capability of FOHs to operate in relevant environments and realistic scenarios.
{"title":"Fiber optic hydrophones for underwater monitoring","authors":"F. Bruno, M. Janneh, S. Guardato, G. Donnarumma, G. Iannaccone, G. Gruca, S. Werzinger, A. Gunda, N. Rijnveld, A. Cutolo, M. Pisco, A. Cusano","doi":"10.1117/12.2678297","DOIUrl":"https://doi.org/10.1117/12.2678297","url":null,"abstract":"We report on the development and field test of fiber optic hydrophones (FOHs). In details, we focused on the development of acoustic hydrophones for towed arrays applications and seismic hydrophones for seismological monitoring applications. In both cases, the sensing configuration is based on a Michelson interferometer where a fiber coil is wrapped around a compliant mandrel acting as a sensitive element. For the first application, acoustic hydrophones were characterized in an instrumented tank at Leonardo Finmeccanica premises. The hydrophone exhibited a responsivity of about 19 nm/Pa in the frequency range 3÷10 kHz with a resolution down to 300μPa /√Hz. The same FOHs were used as a basic building block to develop a towed array with five elements. By using the same enabling technology, but tailoring the physical and geometrical properties of hydrophones, we developed seismic hydrophones. The sensing system was integrated in the seismologic monitoring system and installed at Campi-Flegrei caldera. During the field trials, we detected several earthquakes occurred in the area and compared the results with a reference piezoelectric hydrophone. The seismic sequence was used to retrieve the sensor responsivity in the frequency range 1-80Hz. The sensing system exhibited a responsivity of about 300nm/Pa and an average noise floor level down to 100μPa/√Hz. The reported field trials demonstrated the capability of FOHs to operate in relevant environments and realistic scenarios.","PeriodicalId":424244,"journal":{"name":"European Workshop on Optical Fibre Sensors","volume":"88 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123090559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}