South Sudan is expansive and sparsely populated with over 80% of the population living in rural areas. The country has no national grid connecting its cities and towns, thus making rural areas “good candidates” for stand-alone renewable energy systems. This study was conducted to determine the technical feasibility and economic viability of a stand-alone photovoltaic (PV) system compared to a diesel generator. A technoeconomic model was developed to forecast the performance of the PV system. The system was initially designed using the IEEE Recommended Practice for Sizing of Stand-Alone Photovoltaic Systems (IEEE P1562-2021) and the IEEE Recommended Practice for Sizing Lead-Acid Batteries for Stand-Alone Photovoltaic Systems (IEEE 1013-2019). The solar radiation data used for modeling were acquired from the Ineichen clear sky model and then transposed to the plane of array irradiation using pvlib python. The system optimization and sensitivity analysis was performed under various diesel fuel costs using the Hybrid Optimization of Multiple Energy Resources (HOMER) software. Results show that at a fuel price of $ 2 per liter, the levelized cost of electricity (LCOE) of the PV system is 64% lower than that of the diesel generator and that the system can earn 11% return on investment (ROI) and recover the investment in about 5.5 years. With a drop in price of diesel fuel to $1 per liter, the payback period increases to about 7 years. These results show that standalone PV systems are technically feasible and economically viable in rural and peri-urban areas of South Sudan.
{"title":"Techno-Economic Modeling of Stand-Alone Solar Photovoltaic Systems: A Case Scenario from South Sudan","authors":"Aban Ayik;Nelson Ijumba;Charles Kabiri;Philippe Goffin","doi":"10.23919/SAIEE.2024.10520213","DOIUrl":"https://doi.org/10.23919/SAIEE.2024.10520213","url":null,"abstract":"South Sudan is expansive and sparsely populated with over 80% of the population living in rural areas. The country has no national grid connecting its cities and towns, thus making rural areas “good candidates” for stand-alone renewable energy systems. This study was conducted to determine the technical feasibility and economic viability of a stand-alone photovoltaic (PV) system compared to a diesel generator. A technoeconomic model was developed to forecast the performance of the PV system. The system was initially designed using the IEEE Recommended Practice for Sizing of Stand-Alone Photovoltaic Systems (IEEE P1562-2021) and the IEEE Recommended Practice for Sizing Lead-Acid Batteries for Stand-Alone Photovoltaic Systems (IEEE 1013-2019). The solar radiation data used for modeling were acquired from the Ineichen clear sky model and then transposed to the plane of array irradiation using pvlib python. The system optimization and sensitivity analysis was performed under various diesel fuel costs using the Hybrid Optimization of Multiple Energy Resources (HOMER) software. Results show that at a fuel price of $ 2 per liter, the levelized cost of electricity (LCOE) of the PV system is 64% lower than that of the diesel generator and that the system can earn 11% return on investment (ROI) and recover the investment in about 5.5 years. With a drop in price of diesel fuel to $1 per liter, the payback period increases to about 7 years. These results show that standalone PV systems are technically feasible and economically viable in rural and peri-urban areas of South Sudan.","PeriodicalId":42493,"journal":{"name":"SAIEE Africa Research Journal","volume":"115 2","pages":"55-68"},"PeriodicalIF":1.4,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10520213","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140826007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-03DOI: 10.23919/SAIEE.2024.10520214
{"title":"Notes for authors","authors":"","doi":"10.23919/SAIEE.2024.10520214","DOIUrl":"https://doi.org/10.23919/SAIEE.2024.10520214","url":null,"abstract":"","PeriodicalId":42493,"journal":{"name":"SAIEE Africa Research Journal","volume":"115 2","pages":"69-69"},"PeriodicalIF":1.4,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10520214","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140826044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-03DOI: 10.23919/SAIEE.2024.10520216
{"title":"Editors and reviewers","authors":"","doi":"10.23919/SAIEE.2024.10520216","DOIUrl":"https://doi.org/10.23919/SAIEE.2024.10520216","url":null,"abstract":"","PeriodicalId":42493,"journal":{"name":"SAIEE Africa Research Journal","volume":"115 2","pages":"40-40"},"PeriodicalIF":1.4,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10520216","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140826030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-03DOI: 10.23919/SAIEE.2024.10520211
Graeme Young;David Rubin;Alan Clark
An investigation into moving electromagnetic nearfield hotspots inside a resonant cavity is presented. The investigation focused on simulating an alternative approach to microwave thermal ablation of tumours by manipulating the interaction between electromagnetic near fields instead of utilising an interstitial antenna. The methodology comprised comparing various electromagnetic field solvers, verifying the simulation techniques, characterising a rectangular resonant cavity, and attempting to manipulate the position of its hotspots by introducing a feed phase shift. The effects of dielectric media were also investigated. Progressive hotspot movement was achieved using input phase manipulation between 2.55 and 2.7 GHz with the feeds on opposite walls. No pattern change was evident at the system's eigenfrequencies, indicating a constant field pattern at its resonant peaks. Furthermore, it was determined that the characteristic modes of the system were narrowband, such that the addition of dielectric material altered the system's resonance. Therefore, the application of this method to thermal ablation, which requires high precision, accuracy and control, was deemed impractical. Future recommendations include using adjustable geometry to design field patterns, comparing dielectric media with significant thermal mass, and investigating the ‘inverse problem’ to create a specific current distribution around the resonant cavity and induce the desired hotspot patterns.
{"title":"The Feasibility of Positioning Electromagnetic Near Field Hotspots within a Resonant Cavity for Microwave Thermal Ablation","authors":"Graeme Young;David Rubin;Alan Clark","doi":"10.23919/SAIEE.2024.10520211","DOIUrl":"https://doi.org/10.23919/SAIEE.2024.10520211","url":null,"abstract":"An investigation into moving electromagnetic nearfield hotspots inside a resonant cavity is presented. The investigation focused on simulating an alternative approach to microwave thermal ablation of tumours by manipulating the interaction between electromagnetic near fields instead of utilising an interstitial antenna. The methodology comprised comparing various electromagnetic field solvers, verifying the simulation techniques, characterising a rectangular resonant cavity, and attempting to manipulate the position of its hotspots by introducing a feed phase shift. The effects of dielectric media were also investigated. Progressive hotspot movement was achieved using input phase manipulation between 2.55 and 2.7 GHz with the feeds on opposite walls. No pattern change was evident at the system's eigenfrequencies, indicating a constant field pattern at its resonant peaks. Furthermore, it was determined that the characteristic modes of the system were narrowband, such that the addition of dielectric material altered the system's resonance. Therefore, the application of this method to thermal ablation, which requires high precision, accuracy and control, was deemed impractical. Future recommendations include using adjustable geometry to design field patterns, comparing dielectric media with significant thermal mass, and investigating the ‘inverse problem’ to create a specific current distribution around the resonant cavity and induce the desired hotspot patterns.","PeriodicalId":42493,"journal":{"name":"SAIEE Africa Research Journal","volume":"115 2","pages":"48-54"},"PeriodicalIF":1.4,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10520211","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140826029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-03DOI: 10.23919/SAIEE.2024.10520212
Kyppy N. Simani;Yuval O. Genga;Yu-Chieh J. Yen
Energy consumption from the residential sector forms a large portion of the electricity grid demand. The growing accessibility of residential load profile data presents an opportunity for improved residential load forecasting and the implementation of demand-side management (DSM) strategies. Machine learning is a tool well-suited for predicting stochastic processes, such as residential power usage due to human behavior. Long short-term memory (LSTM) recurrent neural networks are especially suited for predicting time-series data such as electrical load profiles. This paper investigates the impact of LSTM hyperparameters to the predictive performance of models, which include the tradeoffs associated with training data size, horizon ratios, model fidelity, prediction horizon and computational intensity. This paper provides a framework to evaluate the choice of LSTM hyperparameters for understanding trade-offs in a practical application of load profile predictions for the context of Grid-interactive Efficient Buildings (GEBs).
{"title":"Using LSTM to Perform Load Predictions for Grid-Interactive Buildings","authors":"Kyppy N. Simani;Yuval O. Genga;Yu-Chieh J. Yen","doi":"10.23919/SAIEE.2024.10520212","DOIUrl":"https://doi.org/10.23919/SAIEE.2024.10520212","url":null,"abstract":"Energy consumption from the residential sector forms a large portion of the electricity grid demand. The growing accessibility of residential load profile data presents an opportunity for improved residential load forecasting and the implementation of demand-side management (DSM) strategies. Machine learning is a tool well-suited for predicting stochastic processes, such as residential power usage due to human behavior. Long short-term memory (LSTM) recurrent neural networks are especially suited for predicting time-series data such as electrical load profiles. This paper investigates the impact of LSTM hyperparameters to the predictive performance of models, which include the tradeoffs associated with training data size, horizon ratios, model fidelity, prediction horizon and computational intensity. This paper provides a framework to evaluate the choice of LSTM hyperparameters for understanding trade-offs in a practical application of load profile predictions for the context of Grid-interactive Efficient Buildings (GEBs).","PeriodicalId":42493,"journal":{"name":"SAIEE Africa Research Journal","volume":"115 2","pages":"42-47"},"PeriodicalIF":1.4,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10520212","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140826043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-15DOI: 10.23919/SAIEE.2023.10319382
{"title":"Notes for authors","authors":"","doi":"10.23919/SAIEE.2023.10319382","DOIUrl":"https://doi.org/10.23919/SAIEE.2023.10319382","url":null,"abstract":"","PeriodicalId":42493,"journal":{"name":"SAIEE Africa Research Journal","volume":"114 4","pages":"129-129"},"PeriodicalIF":1.4,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10319382","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138138388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-15DOI: 10.23919/SAIEE.2023.10319376
{"title":"Editors and reviewers","authors":"","doi":"10.23919/SAIEE.2023.10319376","DOIUrl":"https://doi.org/10.23919/SAIEE.2023.10319376","url":null,"abstract":"","PeriodicalId":42493,"journal":{"name":"SAIEE Africa Research Journal","volume":"114 4","pages":"96-96"},"PeriodicalIF":1.4,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10319376","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138138382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-15DOI: 10.23919/SAIEE.2023.10319378
Asmaa Hilmi;Soufiane Mezroui;Ahmed El Oualkadi
The chaotic map including 2D-Henon and Tent maps, have been widely used in modern cryptography, due to its high level of security and low cost of computation, compared to traditional algorithms. This study suggests a method for sharing images that are dependent on both confusion and diffusion for securing a gray-scale image. First, a new perturbation method of pixels based on Henon map to generate the permutation matrix for scrambling the plain image is proposed. The confused image should be encrypted, in which we combine the Frobenius endomorphism and Tent chaotic map to generate a key encryption. Using the eXclusive-OR operation, the substitution process is realized between the key encryption and confused image. The simulation results of the proposed scheme maintain a lossless encryption quality, and the security analysis, which includes differential attack entropy, correlation coefficient, and histogram analysis illustrate that the proposed approach reveals a high performance.
{"title":"An image encryption based on confusion-diffusion using two chaotic maps and Frobenius endomorphism","authors":"Asmaa Hilmi;Soufiane Mezroui;Ahmed El Oualkadi","doi":"10.23919/SAIEE.2023.10319378","DOIUrl":"https://doi.org/10.23919/SAIEE.2023.10319378","url":null,"abstract":"The chaotic map including 2D-Henon and Tent maps, have been widely used in modern cryptography, due to its high level of security and low cost of computation, compared to traditional algorithms. This study suggests a method for sharing images that are dependent on both confusion and diffusion for securing a gray-scale image. First, a new perturbation method of pixels based on Henon map to generate the permutation matrix for scrambling the plain image is proposed. The confused image should be encrypted, in which we combine the Frobenius endomorphism and Tent chaotic map to generate a key encryption. Using the eXclusive-OR operation, the substitution process is realized between the key encryption and confused image. The simulation results of the proposed scheme maintain a lossless encryption quality, and the security analysis, which includes differential attack entropy, correlation coefficient, and histogram analysis illustrate that the proposed approach reveals a high performance.","PeriodicalId":42493,"journal":{"name":"SAIEE Africa Research Journal","volume":"114 4","pages":"98-105"},"PeriodicalIF":1.4,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10319378","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138138384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-15DOI: 10.23919/SAIEE.2023.10319380
Adedotun T. Ajibare;Sunday O. Oladejo;Stephen O. Ekwe;Lateef A. Akinyemi;Daniel Ramotsoela
In this study, the specific absorption rate (SAR) and exposure index (EI) of access points (APs) and user equipment (UEs) in fourth-generation (4G) and fifth-generation (5G) wireless technologies are examined with regard to the effects of exposure to radiofrequency (RF) electromagnetic fields (EMF) radiation and the implications of their reduction. We characterize the EI using a classical mathematical method while considering the power density, the SAR, the electric field strength, and the tissue's density and conductivity. As such, a novel exposure-index open-loop power control algorithm is proposed to evaluate the realistic RF-EMF radiation exposure on human users from both the downlink (DL) and uplink (UL) communication devices. To solve an EI minimization problem using the open-loop power control algorithm, we formulate it in the form of a mixed-integer nonlinear programming (MINLP) problem. As the energy capacity (i.e., power density) in wireless networks determines the radiation exposure (SAR and EI), it minimizes the EI by controlling and managing the transmitted and received powers under the restrictions of Quality of Service (QoS), interference, and power, while ensuring the users' QoS requirements are met. Our proposed scheme is numerically compared to other heuristic algorithms and exposure limits established by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and other similar organizations. Lastly, we compare the emissions from 4G and 5G networks to the emissions from UL and DL transmissions. Our simulation findings indicate that our proposed technique is a good alternative. Our assessment, in terms of numerical results and evaluation, also verifies that the exposures are bearable, fall within the recommended limits, and are minimized without impairing the users' QoS.
{"title":"Radiofrequency electromagnetic radiation exposure assessment, analysis, computation, and minimization technique in 5G networks: A perspective on QoS trade-offs","authors":"Adedotun T. Ajibare;Sunday O. Oladejo;Stephen O. Ekwe;Lateef A. Akinyemi;Daniel Ramotsoela","doi":"10.23919/SAIEE.2023.10319380","DOIUrl":"https://doi.org/10.23919/SAIEE.2023.10319380","url":null,"abstract":"In this study, the specific absorption rate (SAR) and exposure index (EI) of access points (APs) and user equipment (UEs) in fourth-generation (4G) and fifth-generation (5G) wireless technologies are examined with regard to the effects of exposure to radiofrequency (RF) electromagnetic fields (EMF) radiation and the implications of their reduction. We characterize the EI using a classical mathematical method while considering the power density, the SAR, the electric field strength, and the tissue's density and conductivity. As such, a novel exposure-index open-loop power control algorithm is proposed to evaluate the realistic RF-EMF radiation exposure on human users from both the downlink (DL) and uplink (UL) communication devices. To solve an EI minimization problem using the open-loop power control algorithm, we formulate it in the form of a mixed-integer nonlinear programming (MINLP) problem. As the energy capacity (i.e., power density) in wireless networks determines the radiation exposure (SAR and EI), it minimizes the EI by controlling and managing the transmitted and received powers under the restrictions of Quality of Service (QoS), interference, and power, while ensuring the users' QoS requirements are met. Our proposed scheme is numerically compared to other heuristic algorithms and exposure limits established by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and other similar organizations. Lastly, we compare the emissions from 4G and 5G networks to the emissions from UL and DL transmissions. Our simulation findings indicate that our proposed technique is a good alternative. Our assessment, in terms of numerical results and evaluation, also verifies that the exposures are bearable, fall within the recommended limits, and are minimized without impairing the users' QoS.","PeriodicalId":42493,"journal":{"name":"SAIEE Africa Research Journal","volume":"114 4","pages":"114-127"},"PeriodicalIF":1.4,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10319380","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138138386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-15DOI: 10.23919/SAIEE.2023.10319379
Paula Akossiwa Atchike;Jamal Zbitou;Ahmed El Oualkadi;Pascal Dherbécourt
Electronic devices with high performances like Power Amplifiers (PA) are very important for Wireless communications. This paper proposes a design of a class AB power amplifier operating at 2.45 GHz, in the S-band frequency. The Cree's CG2H40045F GaN HEMT (High Electron Mobility Transistor) is used for this design. The Gallium Nitride (GaN) technology has been chosen in light of its advantageous properties such as high breakdown voltage, high band gap, as well as high thermal conditions. The paper investigates the different design trade-offs for finding a good balance between various key parameters of the PA (linearity, efficiency, and gain). A design approach has been proposed and the microstrip lines based on the Smith Chart tool available in ADS software have been used for the matching process. The class AB was selected to reach a good agreement between linearity and efficiency, provided by this class. After various process applications from DC characterization to simulations, the proposed design achieves a power added efficiency more than 50% at power saturation with a gain of 15 dB in schematic simulation. The layout dimensions are 55.5 × 64.45 mm 2