Leslie Kurumundayil, K. Ramspeck, S. Rein, M. Demant
The future of the energy transition will lead to a terrawatt-scale photovoltaic market, which can be served cost-effectively primarily by means of high-throughput production of solar cells. In addition to high-throughput production, characterization must be adapted to highest cycle times. Therefore, we present an innovative approach to detect image defects in solar cells using on-the-fly electroluminescence measurements. When a solar cell passes a standard current–voltage (I–V) unit, the cell is stopped, contacted, measured, released, and afterwards again accelerated. In contrast to this, contacting and measuring the sample on-the-fly saves a lot of time. Yet, the resulting images are blurred due to high-speed motion. For the development of such an on-the-fly contact measurement tool, a deblurring method is developed in this work. Our deep-learning-based deblurring model enables to present a clean EL image of the solar cell to the human operator and allows for a proper defect detection, reaching a correlation coefficient of 0.84.
{"title":"Every cell needs a beautiful image: on-the-fly contacting measurements for high-throughput production","authors":"Leslie Kurumundayil, K. Ramspeck, S. Rein, M. Demant","doi":"10.1051/epjpv/2022033","DOIUrl":"https://doi.org/10.1051/epjpv/2022033","url":null,"abstract":"The future of the energy transition will lead to a terrawatt-scale photovoltaic market, which can be served cost-effectively primarily by means of high-throughput production of solar cells. In addition to high-throughput production, characterization must be adapted to highest cycle times. Therefore, we present an innovative approach to detect image defects in solar cells using on-the-fly electroluminescence measurements. When a solar cell passes a standard current–voltage (I–V) unit, the cell is stopped, contacted, measured, released, and afterwards again accelerated. In contrast to this, contacting and measuring the sample on-the-fly saves a lot of time. Yet, the resulting images are blurred due to high-speed motion. For the development of such an on-the-fly contact measurement tool, a deblurring method is developed in this work. Our deep-learning-based deblurring model enables to present a clean EL image of the solar cell to the human operator and allows for a proper defect detection, reaching a correlation coefficient of 0.84.","PeriodicalId":42768,"journal":{"name":"EPJ Photovoltaics","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57828445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eva-Maria Grommes, Felix Schemann, Frederik Klag, Sebastian Nows, U. Blieske
Compared to conventional photovoltaic (PV), there are more influencing factors in bifacial photovoltaics to be considered to calculate incoming irradiance and energy yield. Accurate models to investigate the influences of the elevation, the albedo of the ground, the shading conditions between the PV rows and many other rear-side related factors are required. This paper combines the ray tracing (RT) and view factor (VF) models to calculate the irradiance with a subsequent electrical yield calculation using the one-diode model. To verify the results of the developed open-source simulation program BifacialSimu, accurate data from a plant in Golden, USA (single-axis tracked) and a commercially operated plant in Germany (fixed-tilt) are used. Through comparisons to the actual data, it can be concluded that a combination of RT and VF models seems to be valid for longer simulation periods with several months since the relative errors balance out. The RT-only simulation accurately reproduces the precise hourly radiation and electrical yield pattern. Still, a continuous positive deviation was found, which does not even out over long periods and is thus less accurate than the VF/RT combination. A simulation for a single month with RT can take several hours. Thus, the best simulation mode results according to user requirements.
{"title":"Simulation of the irradiance and yield calculation of bifacial PV systems in the USA and Germany by combining ray tracing and view factor model","authors":"Eva-Maria Grommes, Felix Schemann, Frederik Klag, Sebastian Nows, U. Blieske","doi":"10.1051/epjpv/2023003","DOIUrl":"https://doi.org/10.1051/epjpv/2023003","url":null,"abstract":"Compared to conventional photovoltaic (PV), there are more influencing factors in bifacial photovoltaics to be considered to calculate incoming irradiance and energy yield. Accurate models to investigate the influences of the elevation, the albedo of the ground, the shading conditions between the PV rows and many other rear-side related factors are required. This paper combines the ray tracing (RT) and view factor (VF) models to calculate the irradiance with a subsequent electrical yield calculation using the one-diode model. To verify the results of the developed open-source simulation program BifacialSimu, accurate data from a plant in Golden, USA (single-axis tracked) and a commercially operated plant in Germany (fixed-tilt) are used. Through comparisons to the actual data, it can be concluded that a combination of RT and VF models seems to be valid for longer simulation periods with several months since the relative errors balance out. The RT-only simulation accurately reproduces the precise hourly radiation and electrical yield pattern. Still, a continuous positive deviation was found, which does not even out over long periods and is thus less accurate than the VF/RT combination. A simulation for a single month with RT can take several hours. Thus, the best simulation mode results according to user requirements.","PeriodicalId":42768,"journal":{"name":"EPJ Photovoltaics","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57828622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Popławski, F. Silva, J. Vanel, P. Roca i Cabarrocas
Modulated photoluminescence (MPL) is a powerful technique for determining the effective minority carrier lifetime (τeff) of semiconductor materials and devices. MPL is based on the measurement of phase shifts between two sinusoidal waves (minimal amplitude excitation; and PL signal). In particular, in situ τeff has been proven to be an effective measurement at showing changes within a plasma-enhanced chemical vapor deposition reactor during fabrication of c-Si solar cells. However, the required time for a single measurement, using the previous method, was 40 s. In this paper a new input signal is proposed, called Dolphin's Wave, providing a method for decreasing the required measurement period to under 2 s, using superposition, frequency sweeps, and wavelets.
{"title":"In situ minority carrier lifetime via fast modulated photoluminescence","authors":"M. Popławski, F. Silva, J. Vanel, P. Roca i Cabarrocas","doi":"10.1051/epjpv/2023010","DOIUrl":"https://doi.org/10.1051/epjpv/2023010","url":null,"abstract":"Modulated photoluminescence (MPL) is a powerful technique for determining the effective minority carrier lifetime (τeff) of semiconductor materials and devices. MPL is based on the measurement of phase shifts between two sinusoidal waves (minimal amplitude excitation; and PL signal). In particular, in situ τeff has been proven to be an effective measurement at showing changes within a plasma-enhanced chemical vapor deposition reactor during fabrication of c-Si solar cells. However, the required time for a single measurement, using the previous method, was 40 s. In this paper a new input signal is proposed, called Dolphin's Wave, providing a method for decreasing the required measurement period to under 2 s, using superposition, frequency sweeps, and wavelets.","PeriodicalId":42768,"journal":{"name":"EPJ Photovoltaics","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57828814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Buehler, K. Kaufmann, Markus Patzold, Mawe Sprenger, S. Schoenfelder
Renewable energies have an increasing share in the energy supply. In order to ensure the security of this supply, the reliability of the systems is therefore increasingly important. In photovoltaic modules or in manufacturing, defective solar cells due to broken busbars, cross-connectors or faulty solder joints must be detected and repaired quickly and reliably. This paper shows how the magnetic field imaging method can be used to detect defects in solar cells and modules without contact during operation. For the evaluation of the measurement data several neural networks were used, which were trained with the help of results from finite element simulations. Different training data sets were set up in the simulation model by varying the electrical conductivities of the different parts of the solar cell. The influence of the neural network type and the variation of the training data sets as well as an advantage of a combination of simulated and experimental training data are presented and discussed.
{"title":"Identifying defects on solar cells using magnetic field measurements and artificial intelligence trained by a finite-element-model","authors":"K. Buehler, K. Kaufmann, Markus Patzold, Mawe Sprenger, S. Schoenfelder","doi":"10.1051/epjpv/2023005","DOIUrl":"https://doi.org/10.1051/epjpv/2023005","url":null,"abstract":"Renewable energies have an increasing share in the energy supply. In order to ensure the security of this supply, the reliability of the systems is therefore increasingly important. In photovoltaic modules or in manufacturing, defective solar cells due to broken busbars, cross-connectors or faulty solder joints must be detected and repaired quickly and reliably. This paper shows how the magnetic field imaging method can be used to detect defects in solar cells and modules without contact during operation. For the evaluation of the measurement data several neural networks were used, which were trained with the help of results from finite element simulations. Different training data sets were set up in the simulation model by varying the electrical conductivities of the different parts of the solar cell. The influence of the neural network type and the variation of the training data sets as well as an advantage of a combination of simulated and experimental training data are presented and discussed.","PeriodicalId":42768,"journal":{"name":"EPJ Photovoltaics","volume":"134 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57828640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Longeaud, J. Alvarez, Herinirina Fanevamampiandra, Thomas Bidaud, G. Hamon, M. Darnon, M. Gueunier‐Farret
Very high conversion efficiency is reached with triple junction solar devices integrated in concentrator photovoltaic (CPV) modules. However, reduction of the active area for micro-CPV applications increases the perimeter/area ratio, enhancing losses linked to the edges. It is therefore important to characterize the perimeter influence on the final conversion efficiency. For this purpose, I(V) characterization under dark and/or light could be used as a test of the sidewalls influence. We have designed an experiment to perform I(V) curves using the light of three lasers with adjustable powers at 405, 785, and 980 nm, preferentially absorbed by the top, middle or bottom junction of the device, respectively. This experiment was applied to commercial devices made from a stack of GaInP/GaAs/Ge. In parallel we have developed a numerical calculation modeling the device to reproduce the behaviors observed during I(V) experiments. Junction parameters and influence of leakage resistances are deduced from the fit of experimental results with the numerical calculation. The I(V) experiment as well as the numerical calculation are presented in details. It is also underlined that, combining both experiment and calculation, the I(V) characteristic of each junction as if it was isolated can be determined.
{"title":"Determination of individual I(V) characteristics of each sub-cell of a triple junction device","authors":"C. Longeaud, J. Alvarez, Herinirina Fanevamampiandra, Thomas Bidaud, G. Hamon, M. Darnon, M. Gueunier‐Farret","doi":"10.1051/epjpv/2023011","DOIUrl":"https://doi.org/10.1051/epjpv/2023011","url":null,"abstract":"Very high conversion efficiency is reached with triple junction solar devices integrated in concentrator photovoltaic (CPV) modules. However, reduction of the active area for micro-CPV applications increases the perimeter/area ratio, enhancing losses linked to the edges. It is therefore important to characterize the perimeter influence on the final conversion efficiency. For this purpose, I(V) characterization under dark and/or light could be used as a test of the sidewalls influence. We have designed an experiment to perform I(V) curves using the light of three lasers with adjustable powers at 405, 785, and 980 nm, preferentially absorbed by the top, middle or bottom junction of the device, respectively. This experiment was applied to commercial devices made from a stack of GaInP/GaAs/Ge. In parallel we have developed a numerical calculation modeling the device to reproduce the behaviors observed during I(V) experiments. Junction parameters and influence of leakage resistances are deduced from the fit of experimental results with the numerical calculation. The I(V) experiment as well as the numerical calculation are presented in details. It is also underlined that, combining both experiment and calculation, the I(V) characteristic of each junction as if it was isolated can be determined.","PeriodicalId":42768,"journal":{"name":"EPJ Photovoltaics","volume":"47 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57828832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Islem Boujlel, P. Logerais, Rached Ben Younes, Mahamadou Abdou Tankari, Abdellatif Bouaichi
Photovoltaic (PV) modules in service undergo more or less severe degradation depending on their operating environments, ages and technologies. In this work, we investigated the coupled influence of the climatic conditions of operation and of the degree of deterioration of a PV module on its energy production. We considered four silicon PV modules characterized in standard test conditions. The PV conversion is modeled by a single diode model taking into account the presence of a fault. Matlab/Simulink software was used to calculate the energy supplied at a constant load for the PV module with and without defects. The ratio between the energy produced with fault and without fault allowed to quantify the percentage of loss. This loss was plotted according to the degrees of degradation of the short-circuit current Isc, the open-circuit voltage Voc, the series resistance Rs and the shunt resistance Rsh. It is shown that when irradiance is held constant, the energy loss is lower with increasing temperature for Isc and Rsh, and vice versa for Voc and Rs. While the temperature is kept constant, the energy loss is lower when the irradiance increases for Isc and Rsh, and inversely for Voc and Rs. A multicriteria analysis enabled to determine the most robust module among the four ones.
{"title":"A multicriteria analysis of the potential degradations of a photovoltaic module to assess its robustness","authors":"Islem Boujlel, P. Logerais, Rached Ben Younes, Mahamadou Abdou Tankari, Abdellatif Bouaichi","doi":"10.1051/epjpv/2023017","DOIUrl":"https://doi.org/10.1051/epjpv/2023017","url":null,"abstract":"Photovoltaic (PV) modules in service undergo more or less severe degradation depending on their operating environments, ages and technologies. In this work, we investigated the coupled influence of the climatic conditions of operation and of the degree of deterioration of a PV module on its energy production. We considered four silicon PV modules characterized in standard test conditions. The PV conversion is modeled by a single diode model taking into account the presence of a fault. Matlab/Simulink software was used to calculate the energy supplied at a constant load for the PV module with and without defects. The ratio between the energy produced with fault and without fault allowed to quantify the percentage of loss. This loss was plotted according to the degrees of degradation of the short-circuit current Isc, the open-circuit voltage Voc, the series resistance Rs and the shunt resistance Rsh. It is shown that when irradiance is held constant, the energy loss is lower with increasing temperature for Isc and Rsh, and vice versa for Voc and Rs. While the temperature is kept constant, the energy loss is lower when the irradiance increases for Isc and Rsh, and inversely for Voc and Rs. A multicriteria analysis enabled to determine the most robust module among the four ones.","PeriodicalId":42768,"journal":{"name":"EPJ Photovoltaics","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57828902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anna J. Carr, Ji Liu, Ashish Binani, Kay Cesar, Bas B. Van Aken
The business case of novel integrated applications of solar energy is often regarded as a straightforward extrapolation of standard solar parks. But when the design of the solar park is remarkably different from typical solar parks, the operating conditions of the PV panels could also be changed. We have applied the digital twin to an R&D location with nine rows of eight bifacial PV panels in a vertical east/west orientation with varying row-row distances. We simulated the in-plane irradiances, based on measured GHI, which turned out to be in good agreement with observations of in-plane irradiances. But, using default free-standing PV heat transfer coefficients, the modelled module temperatures were too high and the simulated module powers too low. Applying an in-house developed method, we found that the heat transfer coefficient Uc is nearly double, and the vertically placed modules operate at a much lower temperature. The adjusted value for Uc leads to a 2.5% higher annual energy yield and higher performance ratio, partially offsetting the energy loss due to the less than optimal configuration. In conclusion, the digital twin increased the understanding of the vertical PV system and support future decision making, for instance for the application of vertical PV in combination with agriculture, where the low ground coverage ratio of vertical PV matches well with the needs from the agricultural sector.
{"title":"Thermal model in digital twin of vertical PV system helps to explain unexpected yield gains","authors":"Anna J. Carr, Ji Liu, Ashish Binani, Kay Cesar, Bas B. Van Aken","doi":"10.1051/epjpv/2023027","DOIUrl":"https://doi.org/10.1051/epjpv/2023027","url":null,"abstract":"The business case of novel integrated applications of solar energy is often regarded as a straightforward extrapolation of standard solar parks. But when the design of the solar park is remarkably different from typical solar parks, the operating conditions of the PV panels could also be changed. We have applied the digital twin to an R&D location with nine rows of eight bifacial PV panels in a vertical east/west orientation with varying row-row distances. We simulated the in-plane irradiances, based on measured GHI, which turned out to be in good agreement with observations of in-plane irradiances. But, using default free-standing PV heat transfer coefficients, the modelled module temperatures were too high and the simulated module powers too low. Applying an in-house developed method, we found that the heat transfer coefficient Uc is nearly double, and the vertically placed modules operate at a much lower temperature. The adjusted value for Uc leads to a 2.5% higher annual energy yield and higher performance ratio, partially offsetting the energy loss due to the less than optimal configuration. In conclusion, the digital twin increased the understanding of the vertical PV system and support future decision making, for instance for the application of vertical PV in combination with agriculture, where the low ground coverage ratio of vertical PV matches well with the needs from the agricultural sector.","PeriodicalId":42768,"journal":{"name":"EPJ Photovoltaics","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135448950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andreas Fischer, Ioan Voicu Vulcanean, Sebastian Pingel, Anamaria Steinmetz
Within this paper a systematic analysis of particle transfer onto SHJ Solar cell precursors by handling with suction cups and the impact on the pseudo efficiency is presented. The study establishes a correlation between particle area coverage and a resulting loss of pseudo solar cell parameters. The analysis was carried out on one hand by means of SEM measurements at the contact points between suction cup and wafer to quantify particle transfer and on the other hand by means of suns photoluminescence imaging measurements to evaluate the resulting losses. It is shown that the choice of contact material and the wafer temperature have a significant influence on the transferred particle number, their size and the resulting particle area coverage. A local electrical defect was observed at these particle-rich spots, which also affected a larger area around this insufficiently passivated region. This had a significant negative effect on the pseudo efficiency, which is more pronounced for increasing particle area coverage. If the particle density is increased by 0.1% within an area of 800 mm 2 , the pseudo efficiency in this area decreases by almost 1.2% Relative . The correlation found can be used to predict an efficiency loss using standard photoluminescence images.
{"title":"Impact of organic particles from wafer handling equipment on silicon heterojunction pseudo-efficiency","authors":"Andreas Fischer, Ioan Voicu Vulcanean, Sebastian Pingel, Anamaria Steinmetz","doi":"10.1051/epjpv/2023023","DOIUrl":"https://doi.org/10.1051/epjpv/2023023","url":null,"abstract":"Within this paper a systematic analysis of particle transfer onto SHJ Solar cell precursors by handling with suction cups and the impact on the pseudo efficiency is presented. The study establishes a correlation between particle area coverage and a resulting loss of pseudo solar cell parameters. The analysis was carried out on one hand by means of SEM measurements at the contact points between suction cup and wafer to quantify particle transfer and on the other hand by means of suns photoluminescence imaging measurements to evaluate the resulting losses. It is shown that the choice of contact material and the wafer temperature have a significant influence on the transferred particle number, their size and the resulting particle area coverage. A local electrical defect was observed at these particle-rich spots, which also affected a larger area around this insufficiently passivated region. This had a significant negative effect on the pseudo efficiency, which is more pronounced for increasing particle area coverage. If the particle density is increased by 0.1% within an area of 800 mm 2 , the pseudo efficiency in this area decreases by almost 1.2% Relative . The correlation found can be used to predict an efficiency loss using standard photoluminescence images.","PeriodicalId":42768,"journal":{"name":"EPJ Photovoltaics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135007274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Soresi, Mattia da Lisca, C. Besancon, N. Vaissière, A. Larrue, C. Calò, J. Alvarez, C. Longeaud, L. Largeau, Pablo García Linares, É. Tournié, J. Kleider, J. Decobert
The integration of III-V multi-junction solar cells on Si substrates is currently one of the most promising possibilities to combine high photovoltaic performance with a reduction of the manufacturing costs. In this work, we propose a prospective study for the realization of an InP/InGaAs tandem solar cell lattice-matched to InP on a commercially available Si template by direct MOVPE growth. The InP top cell and the InGaAs bottom cell were firstly separately grown and optimized using InP substrates, which exhibited conversion efficiencies of 13.5% and 11.4%, respectively. The two devices were then combined in a tandem device by introducing an intermediate InP/AlInAs lattice-matched tunnel junction, showing an efficiency of 18.4%. As an intermediate step towards the realization of the tandem device on Si, the InP and InGaAs single junction solar cells were grown on top of a commercial InP/GaP/Si template. This transitional stage enabled to isolate and evaluate the effects of the growth of III-V on Si on the photovoltaic performance through the comparison with the aforementioned devices on InP. Each cell was electrically characterized by external quantum efficiency and dark and illuminated current-voltage under solar simulator. The material quality was also analyzed by means of X-ray diffraction, Atomic-Force Microscopy, Transmission Electron and Scanning Electron Microscopy. The III-V on Si devices showed efficiencies of 3.6% and 2.0% for the InP and InGaAs solar cells, respectively.
在硅衬底上集成III-V多结太阳能电池是目前最有希望将高光伏性能与降低制造成本相结合的可能性之一。在这项工作中,我们提出了一项前瞻性研究,即通过直接MOVPE生长在商业可用的Si模板上实现与InP匹配的InP/InGaAs串联太阳能电池晶格。首先在InP衬底上分别培养和优化了InP顶部电池和InGaAs底部电池,其转换效率分别为13.5%和11.4%。然后,通过引入中间的InP/AlInAs晶格匹配隧道结,将两个器件组合成串联器件,效率达到18.4%。作为实现硅基串联器件的中间步骤,在商业化的InP/GaP/Si模板上生长了InP和InGaAs单结太阳能电池。这个过渡阶段可以通过与上述器件在InP上的比较来分离和评估III-V在Si上的生长对光伏性能的影响。在太阳模拟器下对每个电池进行了外部量子效率和黑暗和照明电流电压的电学表征。并用x射线衍射、原子力显微镜、透射电子显微镜和扫描电子显微镜对材料质量进行了分析。III-V on Si器件对InP和InGaAs太阳能电池的效率分别为3.6%和2.0%。
{"title":"Epitaxy and characterization of InP/InGaAs tandem solar cells grown by MOVPE on InP and Si substrates","authors":"S. Soresi, Mattia da Lisca, C. Besancon, N. Vaissière, A. Larrue, C. Calò, J. Alvarez, C. Longeaud, L. Largeau, Pablo García Linares, É. Tournié, J. Kleider, J. Decobert","doi":"10.1051/epjpv/2022027","DOIUrl":"https://doi.org/10.1051/epjpv/2022027","url":null,"abstract":"The integration of III-V multi-junction solar cells on Si substrates is currently one of the most promising possibilities to combine high photovoltaic performance with a reduction of the manufacturing costs. In this work, we propose a prospective study for the realization of an InP/InGaAs tandem solar cell lattice-matched to InP on a commercially available Si template by direct MOVPE growth. The InP top cell and the InGaAs bottom cell were firstly separately grown and optimized using InP substrates, which exhibited conversion efficiencies of 13.5% and 11.4%, respectively. The two devices were then combined in a tandem device by introducing an intermediate InP/AlInAs lattice-matched tunnel junction, showing an efficiency of 18.4%. As an intermediate step towards the realization of the tandem device on Si, the InP and InGaAs single junction solar cells were grown on top of a commercial InP/GaP/Si template. This transitional stage enabled to isolate and evaluate the effects of the growth of III-V on Si on the photovoltaic performance through the comparison with the aforementioned devices on InP. Each cell was electrically characterized by external quantum efficiency and dark and illuminated current-voltage under solar simulator. The material quality was also analyzed by means of X-ray diffraction, Atomic-Force Microscopy, Transmission Electron and Scanning Electron Microscopy. The III-V on Si devices showed efficiencies of 3.6% and 2.0% for the InP and InGaAs solar cells, respectively.","PeriodicalId":42768,"journal":{"name":"EPJ Photovoltaics","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57828109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aistis Rapolas Zubas, Marie Fischer, Estelle Gervais, Sina Herceg, S. Nold
A product made from virgin raw materials that ends up in a landfill presents a linear supply chain model. Today's photovoltaic (PV) industry is still largely based on this model. With the increasing volume of production, the raw materials required for it, and consequently the volume of waste, the application of circular economy principles in the PV sector can significantly increase its environmental efficiency. This study analyzes the impact of circularity on the supply chain of PV silicon used for PV module production. Four scenarios based on the combination of technological pathways and circularity options are created. Their evaluation is carried out by the methodologies of Material Circularity Indicator (MCI) and Life Cycle Assessment (LCA). The State-of-art case of the PV polysilicon supply chain corresponds to the MCI score of 0.54. Closed-loop circularity solutions provide the MCI score of 0.80 presenting the potential for a circular economy approach in the industry. LCA results show the reduction of environmental impact by 12% with improved circularity. The study presents the benefits of potential circularity options within the supply chain as well as the impact of technological development on the polysilicon demand.
{"title":"Combining circularity and environmental metrics to assess material flows of PV silicon","authors":"Aistis Rapolas Zubas, Marie Fischer, Estelle Gervais, Sina Herceg, S. Nold","doi":"10.1051/epjpv/2022031","DOIUrl":"https://doi.org/10.1051/epjpv/2022031","url":null,"abstract":"A product made from virgin raw materials that ends up in a landfill presents a linear supply chain model. Today's photovoltaic (PV) industry is still largely based on this model. With the increasing volume of production, the raw materials required for it, and consequently the volume of waste, the application of circular economy principles in the PV sector can significantly increase its environmental efficiency. This study analyzes the impact of circularity on the supply chain of PV silicon used for PV module production. Four scenarios based on the combination of technological pathways and circularity options are created. Their evaluation is carried out by the methodologies of Material Circularity Indicator (MCI) and Life Cycle Assessment (LCA). The State-of-art case of the PV polysilicon supply chain corresponds to the MCI score of 0.54. Closed-loop circularity solutions provide the MCI score of 0.80 presenting the potential for a circular economy approach in the industry. LCA results show the reduction of environmental impact by 12% with improved circularity. The study presents the benefits of potential circularity options within the supply chain as well as the impact of technological development on the polysilicon demand.","PeriodicalId":42768,"journal":{"name":"EPJ Photovoltaics","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57828422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}