首页 > 最新文献

Solid State Ionics最新文献

英文 中文
Preparation and electrical conductivity of core-shell structured Ce0.8Sm0.2O1.90-δ@xBaCe0.8Sm0.2O2.95-δ (x = 0, 0.5, 1, 1.5) ceramics
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-01-01 DOI: 10.1016/j.ssi.2024.116756
Xing Lu , Bin Meng , Xinyu Ping , Congcong Fang , Ziran Chai , Zhenteng Wang , Weixin Zeng
Core-shell structured powders of Ce0.8Sm0.2O1.90-δ(SDC)@xBaCe0.8Sm0.2O2.95-δ(BCS) (x = 0, 0.5, 1, 1.5) were synthesized by a two-step co-precipitation method and then sintered to prepare the corresponding SDC@xBCS (x = 0, 0.5, 1, 1.5) ceramics. The XRD detection combined with SEM and TEM analysis confirms that the powders and ceramics are only composed of SDC and BCS phases, and no other phases are detected. The average diameter of the spherical core-shell structured SDC@xBCS powders is in 20–60 nm. A thin layer of BCS is coated on the surface of SDC in the synthesized SDC@BCS nanopowders, and a core-shell structure forms in the SDC@BCS composite ceramics. With the increase of the ratio of BCS:SDC from 1 to 1.5, the sample is more difficult to be densified. For x = 1, the sample of SDC@BCS achieves the highest electrical conductivity in four samples (x = 0, 0.5, 1, 1.5). At the test temperature of 600 °C, the electrical conductivity of the core-shell structured SDC@BCS ceramic (1:1) is higher than that of the common uniformly-mixed SDC-BCS samples, i.e., 1.545 × 10−2 S/cm and 0.685 × 10−2 S/cm in air and 10 %H2–90 %N2 atmosphere, respectively. At the same time, the specific grain boundary electrical conductivity of the core-shell structured SDC@BCS ceramics is also higher than that of uniformly mixed SDC-BCS composite ceramics. The construction of a core-shell structure can contribute to improving the electrical conductivity of the SDC-BCS composite ceramics.
{"title":"Preparation and electrical conductivity of core-shell structured Ce0.8Sm0.2O1.90-δ@xBaCe0.8Sm0.2O2.95-δ (x = 0, 0.5, 1, 1.5) ceramics","authors":"Xing Lu ,&nbsp;Bin Meng ,&nbsp;Xinyu Ping ,&nbsp;Congcong Fang ,&nbsp;Ziran Chai ,&nbsp;Zhenteng Wang ,&nbsp;Weixin Zeng","doi":"10.1016/j.ssi.2024.116756","DOIUrl":"10.1016/j.ssi.2024.116756","url":null,"abstract":"<div><div>Core-shell structured powders of Ce<sub>0.8</sub>Sm<sub>0.2</sub>O<sub>1.90-δ</sub>(SDC)@xBaCe<sub>0.8</sub>Sm<sub>0.2</sub>O<sub>2.95-δ</sub>(BCS) (x = 0, 0.5, 1, 1.5) were synthesized by a two-step co-precipitation method and then sintered to prepare the corresponding SDC@xBCS (x = 0, 0.5, 1, 1.5) ceramics. The XRD detection combined with SEM and TEM analysis confirms that the powders and ceramics are only composed of SDC and BCS phases, and no other phases are detected. The average diameter of the spherical core-shell structured SDC@xBCS powders is in 20–60 nm. A thin layer of BCS is coated on the surface of SDC in the synthesized SDC@BCS nanopowders, and a core-shell structure forms in the SDC@BCS composite ceramics. With the increase of the ratio of BCS:SDC from 1 to 1.5, the sample is more difficult to be densified. For x = 1, the sample of SDC@BCS achieves the highest electrical conductivity in four samples (x = 0, 0.5, 1, 1.5). At the test temperature of 600 °C, the electrical conductivity of the core-shell structured SDC@BCS ceramic (1:1) is higher than that of the common uniformly-mixed SDC-BCS samples, i.e., 1.545 × 10<sup>−2</sup> S/cm and 0.685 × 10<sup>−2</sup> S/cm in air and 10 %H<sub>2</sub>–90 %N<sub>2</sub> atmosphere, respectively. At the same time, the specific grain boundary electrical conductivity of the core-shell structured SDC@BCS ceramics is also higher than that of uniformly mixed SDC-BCS composite ceramics. The construction of a core-shell structure can contribute to improving the electrical conductivity of the SDC-BCS composite ceramics.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"419 ","pages":"Article 116756"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143147788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-performance anion exchange membranes based on semi-interpenetrating blends of polyethylene terephthalate and quaternized chitosan
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-01-01 DOI: 10.1016/j.ssi.2024.116761
Yaling Wen , Shuang Li , Mingchao Gang , Lulu Wang , Qiang Wang , Fan Zhang , Yang Zhang , Jilin Wang
High ionic conductivity and long-term durability of anion exchange membranes (AEMs) are indispensable to facilitate the commercial application of anion-exchange membrane fuel cells (AEMFCs). Herein, novel high performance AEMs are synthesized for the first time. Specifically, quaternized chitosan (QCS) with high ion content without chloromethylation is selected as the ion conduction phase, due to its low cost and biodegradability. Polyethylene terephthalate (PET) with high film-forming ability, excellent strength, dimensional stability, and physical properties is selected as the mechanical support material. Moreover, semi-interpenetrating polymer networks (s-IPNs) architecture is formed by cross-linking QCS with glutaraldehyde (GA) to enhance the compatibility and optimize the advantages of each polymer matrix. Consequently, the homogeneous semi-IPN AEMs combines the benefits of ionic network and rigid linear polymer, achieving high performance, surpassing the simple blend AEM. The PHM-4 exhibits excellent mechanical properties (24.5 MPa, 17.94 %), outstanding ionic conductivity (89.64 mS/cm, 80 °C), as well as excellent alkaline stability (91.5 % retaining of initial conductivity after immersing in 6 M NaOH at 80 °C for 500 h). Furthermore, the single fuel cell based on PHM-4 displays high performance of 305 mW/cm2 (80 °C). This study proposes a new strategy for the synthesis of high-performance semi-IPN AEMs, further enhancing the application value of QCS based AEMs in fuel cells.
{"title":"High-performance anion exchange membranes based on semi-interpenetrating blends of polyethylene terephthalate and quaternized chitosan","authors":"Yaling Wen ,&nbsp;Shuang Li ,&nbsp;Mingchao Gang ,&nbsp;Lulu Wang ,&nbsp;Qiang Wang ,&nbsp;Fan Zhang ,&nbsp;Yang Zhang ,&nbsp;Jilin Wang","doi":"10.1016/j.ssi.2024.116761","DOIUrl":"10.1016/j.ssi.2024.116761","url":null,"abstract":"<div><div>High ionic conductivity and long-term durability of anion exchange membranes (AEMs) are indispensable to facilitate the commercial application of anion-exchange membrane fuel cells (AEMFCs). Herein, novel high performance AEMs are synthesized for the first time. Specifically, quaternized chitosan (QCS) with high ion content without chloromethylation is selected as the ion conduction phase, due to its low cost and biodegradability. Polyethylene terephthalate (PET) with high film-forming ability, excellent strength, dimensional stability, and physical properties is selected as the mechanical support material. Moreover, semi-interpenetrating polymer networks (s-IPNs) architecture is formed by cross-linking QCS with glutaraldehyde (GA) to enhance the compatibility and optimize the advantages of each polymer matrix. Consequently, the homogeneous semi-IPN AEMs combines the benefits of ionic network and rigid linear polymer, achieving high performance, surpassing the simple blend AEM. The PHM-4 exhibits excellent mechanical properties (24.5 MPa, 17.94 %), outstanding ionic conductivity (89.64 mS/cm, 80 °C), as well as excellent alkaline stability (91.5 % retaining of initial conductivity after immersing in 6 M NaOH at 80 °C for 500 h). Furthermore, the single fuel cell based on PHM-4 displays high performance of 305 mW/cm<sup>2</sup> (80 °C). This study proposes a new strategy for the synthesis of high-performance semi-IPN AEMs, further enhancing the application value of QCS based AEMs in fuel cells.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"419 ","pages":"Article 116761"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143147790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physicochemical properties of short-side-chain perfluorosulfonic acid membranes at elevated temperatures
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-01-01 DOI: 10.1016/j.ssi.2024.116747
Harilal, Yi-Lin Kao, Chao Pan, David Aili, Qingfeng Li
Water and CO2 electrolysis at elevated temperatures in cells equipped with short-side-chain perfluorosulfonic acid membranes could potentially allow for new approaches to tuning catalyst kinetics and selectivity, but the membrane characteristics under such conditions remains to be described. In this work, a short-side-chain perfluorosulfonic acid membrane (Aquivion) is characterized at temperatures up to 150 °C and high humidification levels with respect to tensile behavior, ionic conductivity, permeability of hydrogen and methanol, and stability. The membrane is found to retain mechanical robustness at temperatures up to at least 130 °C while dehydration at temperatures above 100 °C under ambient pressure results in a significant conductivity decay. The densification of the membrane matrix at temperatures above the boiling point of water under varied pressures leads to reduced hydrogen and methanol permeability. Pressurization up to 5 bars effectively mitigates the conductivity decay due to the presence of liquid water but also results in increased permeability. The membrane stability test, as characterized by hydrogen crossover measurements, shows that humidification is a harsher stressor than temperature in the studied range.
{"title":"Physicochemical properties of short-side-chain perfluorosulfonic acid membranes at elevated temperatures","authors":"Harilal,&nbsp;Yi-Lin Kao,&nbsp;Chao Pan,&nbsp;David Aili,&nbsp;Qingfeng Li","doi":"10.1016/j.ssi.2024.116747","DOIUrl":"10.1016/j.ssi.2024.116747","url":null,"abstract":"<div><div>Water and CO<sub>2</sub> electrolysis at elevated temperatures in cells equipped with short-side-chain perfluorosulfonic acid membranes could potentially allow for new approaches to tuning catalyst kinetics and selectivity, but the membrane characteristics under such conditions remains to be described. In this work, a short-side-chain perfluorosulfonic acid membrane (Aquivion) is characterized at temperatures up to 150 °C and high humidification levels with respect to tensile behavior, ionic conductivity, permeability of hydrogen and methanol, and stability. The membrane is found to retain mechanical robustness at temperatures up to at least 130 °C while dehydration at temperatures above 100 °C under ambient pressure results in a significant conductivity decay. The densification of the membrane matrix at temperatures above the boiling point of water under varied pressures leads to reduced hydrogen and methanol permeability. Pressurization up to 5 bars effectively mitigates the conductivity decay due to the presence of liquid water but also results in increased permeability. The membrane stability test, as characterized by hydrogen crossover measurements, shows that humidification is a harsher stressor than temperature in the studied range.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"419 ","pages":"Article 116747"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143146612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of electrochemical cell based on i-carrageenan doped NH4HCO2 solid electrolyte
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-01-01 DOI: 10.1016/j.ssi.2024.116757
V. Moniha , K. Venkatesh , M. Premalatha , S. Monisha , S. Selvalakshmi , B. Archana , M. Alagar , B. Sundaresan
Solution casting method was used to develop a natural polymer electrolyte (NPE) based on iota carrageenan (iCG) using different amounts of NH4HCO2. Distilled Water was chosen as the solvent. The structural, thermal, electrical, and electrochemical analyses of the iCG: NH4HCO2 system confirmed its non-crystalline nature, low glass transition temperature (Tg = 48 °C), maximum DC conductivity and electrochemical stability (3.11 V). The maximum DC conductivity for the composition 1 g iCG: 0.4 wt% NH4HCO2 was observed to be 1.94 × 10−3 S cm−1. A primary proton battery (PPB) was constructed by sandwiching the optimum electrolyte between MnO2 as the cathode and Zn/ZnSO4·7H2O as the anode to evaluate the efficiency of the 1 g iCG: 0.4 wt% NH4HCO2 NPE. Additionally, a single PEMFC was fabricated with 1 g iCG: 0.4 wt% NH4HCO2 NPE. An OCV for PPB and PEM fuel cell were found to be 1.60 V and 616 mV, respectively.
{"title":"Fabrication of electrochemical cell based on i-carrageenan doped NH4HCO2 solid electrolyte","authors":"V. Moniha ,&nbsp;K. Venkatesh ,&nbsp;M. Premalatha ,&nbsp;S. Monisha ,&nbsp;S. Selvalakshmi ,&nbsp;B. Archana ,&nbsp;M. Alagar ,&nbsp;B. Sundaresan","doi":"10.1016/j.ssi.2024.116757","DOIUrl":"10.1016/j.ssi.2024.116757","url":null,"abstract":"<div><div>Solution casting method was used to develop a natural polymer electrolyte (NPE) based on iota carrageenan (iCG) using different amounts of NH<sub>4</sub>HCO<sub>2</sub>. Distilled Water was chosen as the solvent. The structural, thermal, electrical, and electrochemical analyses of the iCG: NH<sub>4</sub>HCO<sub>2</sub> system confirmed its non-crystalline nature, low glass transition temperature (T<sub>g</sub> = 48 °C), maximum DC conductivity and electrochemical stability (3.11 V). The maximum DC conductivity for the composition 1 g iCG: 0.4 wt% NH<sub>4</sub>HCO<sub>2</sub> was observed to be 1.94 × 10<sup>−3</sup> S cm<sup>−1</sup>. A primary proton battery (PPB) was constructed by sandwiching the optimum electrolyte between MnO<sub>2</sub> as the cathode and Zn/ZnSO<sub>4</sub>·7H<sub>2</sub>O as the anode to evaluate the efficiency of the 1 g iCG: 0.4 wt% NH<sub>4</sub>HCO<sub>2</sub> NPE. Additionally, a single PEMFC was fabricated with 1 g iCG: 0.4 wt% NH<sub>4</sub>HCO<sub>2</sub> NPE. An OCV for PPB and PEM fuel cell were found to be 1.60 V and 616 mV, respectively.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"419 ","pages":"Article 116757"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143147787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Positive impact of the architecture of the oxygen electrode based on LNO and CGO for solid oxide electrochemical cells
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-01-01 DOI: 10.1016/j.ssi.2024.116744
Michael Spann , Jérôme Laurencin , Elisabeth Djurado
The Ruddlesden-Popper phase, strontium- and cobalt-free lanthanum nickelate, La2NiO4+δ (LNO), is a mixed-conducting oxide phase and a promising oxygen electrode for SOCs (solid oxide electrochemical cells), thanks to its high diffusion of oxygen and its surface exchange properties. The electrochemical performance is strongly related to the charge transfer at the triple phase boundaries in the surface path and the excorporation/incorporation reaction in the bulk path. In this context, this study explores a strategy to increase the number of active sites in LNO-based electrodes, by designing nanostructured active functional layers and incorporating gadolinium-doped ceria (CGO). Two architectural scenarios are proposed compared to a pure LNO reference: a uniform distribution of CGO in the volume of the LNO and a continuous compositional gradient, both fabricated for the first time by electrostatic spray deposition (ESD).
These designs are investigated based on phase structure, microstructure, elemental chemical composition, and electrochemical properties using SEM-EDS, XRD, and electrochemical impedance spectroscopy. Polarization resistance values are discussed as a function of the distribution of contact points in the electrode volume and LNO crystallization. The results suggest that the presented approach to achieve CGO: LNO-based gradient electrodes allows controlling the localization of the interfaces between the two phases, thereby optimizing charge transfer.
{"title":"Positive impact of the architecture of the oxygen electrode based on LNO and CGO for solid oxide electrochemical cells","authors":"Michael Spann ,&nbsp;Jérôme Laurencin ,&nbsp;Elisabeth Djurado","doi":"10.1016/j.ssi.2024.116744","DOIUrl":"10.1016/j.ssi.2024.116744","url":null,"abstract":"<div><div>The Ruddlesden-Popper phase, strontium- and cobalt-free lanthanum nickelate, La<sub>2</sub>NiO<sub>4+δ</sub> (LNO), is a mixed-conducting oxide phase and a promising oxygen electrode for SOCs (solid oxide electrochemical cells), thanks to its high diffusion of oxygen and its surface exchange properties. The electrochemical performance is strongly related to the charge transfer at the triple phase boundaries in the surface path and the excorporation/incorporation reaction in the bulk path. In this context, this study explores a strategy to increase the number of active sites in LNO-based electrodes, by designing nanostructured active functional layers and incorporating gadolinium-doped ceria (CGO). Two architectural scenarios are proposed compared to a pure LNO reference: a <em>uniform</em> distribution of CGO in the volume of the LNO and a continuous compositional <em>gradient</em>, both fabricated for the first time by electrostatic spray deposition (ESD).</div><div>These designs are investigated based on phase structure, microstructure, elemental chemical composition, and electrochemical properties using SEM-EDS, XRD, and electrochemical impedance spectroscopy. Polarization resistance values are discussed as a function of the distribution of contact points in the electrode volume and LNO crystallization. The results suggest that the presented approach to achieve CGO: LNO-based <em>gradient</em> electrodes allows controlling the localization of the interfaces between the two phases, thereby optimizing charge transfer.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"419 ","pages":"Article 116744"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143146172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tunable grain boundary conductivity in sodium doped high entropy oxides
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-01-01 DOI: 10.1016/j.ssi.2024.116745
Justin Cortez , Alexander Dupuy , Hasti Vahidi , Yiheng Xiao , William J. Bowman , Julie M. Schoenung
Concerns with the safety and sourcing of lithium-ion batteries have prompted significant research into sodium-based systems. High entropy oxides (HEO), which contain five or more oxide components in equimolar amounts, are well suited for battery applications due to their ability to accommodate a substantial quantity of mobile charge carriers (such as sodium), while also demonstrating promising cycling stability, electrical conductivity, and battery capacity retention. Here we investigate the underexplored influence of sodium doping, processing, and microstructure on charge transport in bulk sintered (Co,Cu,Mg,Ni,Zn)1-xNaxO. We find that the conductivity increases with increasing dopant amount, up to 1.4 × 10−5 S∙cm−1 at x = 0.33. Much of this increase is attributed to the high grain boundary conductivity, which originates from a NaxCoO2 layered structure that forms in the grain boundaries during processing. X-ray diffraction and transmission electron microscopy confirm the presence of the layered structure, while electrochemical impedance spectroscopy highlights the distinct contribution to the impedance response. The relative contributions of the grain boundaries and the bulk to the charge transport are discussed, along with how processing conditions and composition can be used to effectively engineer grain boundaries in doped HEO materials.
{"title":"Tunable grain boundary conductivity in sodium doped high entropy oxides","authors":"Justin Cortez ,&nbsp;Alexander Dupuy ,&nbsp;Hasti Vahidi ,&nbsp;Yiheng Xiao ,&nbsp;William J. Bowman ,&nbsp;Julie M. Schoenung","doi":"10.1016/j.ssi.2024.116745","DOIUrl":"10.1016/j.ssi.2024.116745","url":null,"abstract":"<div><div>Concerns with the safety and sourcing of lithium-ion batteries have prompted significant research into sodium-based systems. High entropy oxides (HEO), which contain five or more oxide components in equimolar amounts, are well suited for battery applications due to their ability to accommodate a substantial quantity of mobile charge carriers (such as sodium), while also demonstrating promising cycling stability, electrical conductivity, and battery capacity retention. Here we investigate the underexplored influence of sodium doping, processing, and microstructure on charge transport in bulk sintered (Co,Cu,Mg,Ni,Zn)<sub>1-x</sub>Na<sub>x</sub>O. We find that the conductivity increases with increasing dopant amount, up to 1.4 × 10<sup>−5</sup> S∙cm<sup>−1</sup> at x = 0.33. Much of this increase is attributed to the high grain boundary conductivity, which originates from a Na<sub>x</sub>CoO<sub>2</sub> layered structure that forms in the grain boundaries during processing. X-ray diffraction and transmission electron microscopy confirm the presence of the layered structure, while electrochemical impedance spectroscopy highlights the distinct contribution to the impedance response. The relative contributions of the grain boundaries and the bulk to the charge transport are discussed, along with how processing conditions and composition can be used to effectively engineer grain boundaries in doped HEO materials.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"419 ","pages":"Article 116745"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143147785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical properties and application of Bi-doped Ba3Ca1.18Nb1.82−xBixO9−δ electrolyte
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-01-01 DOI: 10.1016/j.ssi.2024.116748
Xinyu Cai, Ying Li, Lixin Yang
Ba3Ca1.18Nb1.82−xBixO9-δ (x = 0, 0.1, 0.2, 0.3) proton conductor materials with different Bi doping ratios are prepared. The Bi element was successfully doped into the lattice of Ba3Ca1.18Nb1.82−xBixO9−δ proton conductor to form a single perovskite phase. The effects of Bi doping on grain boundary are evaluated by the analysis of relaxation time distribution (DRT). The proper Bi doping ratio for Ba3Ca1.18Nb1.82−xBixO9−δ (x = 0, 0.1, 0.2, 0.3) can improves the grain boundaries performance. With the increase of Bi doping ratio, the conductivity of the sample increases first and then decreases. Among all the samples, Ba3Ca1.18Nb1.72Bi0.1O9-δ (BCNB10) has the highest conductivity and satisfactory proton transport properties. In the wet air atmosphere at 700 °C, the proton transference number of BCNB10 is still higher than 0.6. The Ba3Ca1.18Nb1.72Bi0.1O9-δ-based fuel cell has a power density of 59.7 mW cm2 at 700 °C. The results show that BCNB10 is a promising fuel cell electrolyte material with high performance.
{"title":"Electrochemical properties and application of Bi-doped Ba3Ca1.18Nb1.82−xBixO9−δ electrolyte","authors":"Xinyu Cai,&nbsp;Ying Li,&nbsp;Lixin Yang","doi":"10.1016/j.ssi.2024.116748","DOIUrl":"10.1016/j.ssi.2024.116748","url":null,"abstract":"<div><div>Ba<sub>3</sub>Ca<sub>1.18</sub>Nb<sub>1.82−x</sub>Bi<sub>x</sub>O<sub>9-δ</sub> (x = 0, 0.1, 0.2, 0.3) proton conductor materials with different Bi doping ratios are prepared. The Bi element was successfully doped into the lattice of Ba<sub>3</sub>Ca<sub>1.18</sub>Nb<sub>1.82−x</sub>Bi<sub>x</sub>O<sub>9−δ</sub> proton conductor to form a single perovskite phase. The effects of Bi doping on grain boundary are evaluated by the analysis of relaxation time distribution (DRT). The proper Bi doping ratio for Ba<sub>3</sub>Ca<sub>1.18</sub>Nb<sub>1.82−x</sub>Bi<sub>x</sub>O<sub>9−δ</sub> (x = 0, 0.1, 0.2, 0.3) can improves the grain boundaries performance. With the increase of Bi doping ratio, the conductivity of the sample increases first and then decreases. Among all the samples, Ba<sub>3</sub>Ca<sub>1.18</sub>Nb<sub>1.72</sub>Bi<sub>0.1</sub>O<sub>9-δ</sub> (BCNB10) has the highest conductivity and satisfactory proton transport properties. In the wet air atmosphere at 700 °C, the proton transference number of BCNB10 is still higher than 0.6. The Ba<sub>3</sub>Ca<sub>1.18</sub>Nb<sub>1.72</sub>Bi<sub>0.1</sub>O<sub>9-δ</sub>-based fuel cell has a power density of 59.7 mW cm<sup>2</sup> at 700 °C. The results show that BCNB10 is a promising fuel cell electrolyte material with high performance.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"419 ","pages":"Article 116748"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143146174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced performance of medium-temperature solid oxide fuel cells using CaSnO3-ZnO heterostructure as electrolyte
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-01-01 DOI: 10.1016/j.ssi.2024.116760
Xinyu Feng , Hanzhen Liu , Zhenhang Lu , Xuanyu Lin , Xin Tang
The advancement of novel heterostructure electrolytes and the enhancement of solid oxide fuel cell (SOFC) performance represent a promising strategy for developing medium-temperature SOFCs. This study focuses on synthesizing CaSnO3 via the sol-gel technique and fabricating CaSnO3-ZnO composites to serve as electrolytes for medium-temperature SOFCs. At 550 °C, the 2Ca8Zn composite demonstrated an ionic conductivity of 0.204 S cm−1, a peak power density of 700 mW cm−2, and intermittent durability lasting up to 24 h under identical thermal conditions. Upon further investigation of the energy band structure, it has been revealed that CaSnO3-ZnO composites are promising candidates for serving as electrolytes in medium-temperature SOFCs. The findings indicate that the combination of calcium and zinc oxides can form n-n heterojunctions within the material, which enhance ionic conductivity by creating space charge regions, while simultaneously suppressing electronic conductivity. Consequently, CaSnO3-ZnO nanocomposites are anticipated to pave the way for advancements in intermediate-temperature solid oxide fuel cells.
{"title":"Enhanced performance of medium-temperature solid oxide fuel cells using CaSnO3-ZnO heterostructure as electrolyte","authors":"Xinyu Feng ,&nbsp;Hanzhen Liu ,&nbsp;Zhenhang Lu ,&nbsp;Xuanyu Lin ,&nbsp;Xin Tang","doi":"10.1016/j.ssi.2024.116760","DOIUrl":"10.1016/j.ssi.2024.116760","url":null,"abstract":"<div><div>The advancement of novel heterostructure electrolytes and the enhancement of solid oxide fuel cell (SOFC) performance represent a promising strategy for developing medium-temperature SOFCs. This study focuses on synthesizing CaSnO<sub>3</sub> via the sol-gel technique and fabricating CaSnO<sub>3</sub>-ZnO composites to serve as electrolytes for medium-temperature SOFCs. At 550 °C, the 2Ca<img>8Zn composite demonstrated an ionic conductivity of 0.204 S cm<sup>−1</sup>, a peak power density of 700 mW cm<sup>−2</sup>, and intermittent durability lasting up to 24 h under identical thermal conditions. Upon further investigation of the energy band structure, it has been revealed that CaSnO<sub>3</sub>-ZnO composites are promising candidates for serving as electrolytes in medium-temperature SOFCs. The findings indicate that the combination of calcium and zinc oxides can form n-n heterojunctions within the material, which enhance ionic conductivity by creating space charge regions, while simultaneously suppressing electronic conductivity. Consequently, CaSnO<sub>3</sub>-ZnO nanocomposites are anticipated to pave the way for advancements in intermediate-temperature solid oxide fuel cells.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"419 ","pages":"Article 116760"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143147786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-diffusion of constituent elements in nominally undoped LaAlO3 single crystals
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-01-01 DOI: 10.1016/j.ssi.2024.116755
Peter Fielitz , René Gustus , Kirsten I. Schiffmann , Günter Borchardt
The interface between the insulators LaAlO3 and SrTiO3 has very interesting electronic properties. The production of such heterointerfaces comprises high temperature steps. Therefore knowledge of the mobilities of the constituent elements in the two partner oxides is required. As the majority of the published oxygen mobility data is based on electrical conductivity measurements with a rather large scatter, a check with a direct method was required, i. e. 18O2 exchange in combination with SIMS depth profiling. Our present results are in agreement with recently published 18O2/SIMS data. For the two native cations no data at all were available in the literature. Using the rare stable isotope 138La and the pseudo-stable radionuclide 26Al in combination with SIMS depth profiling, for the first time upper limits of the tracer diffusivities could be determined at one temperature (1500 °C) for the very slow host cations in nominally undoped (100) oriented LaAlO3 single crystals. The experimental observations of this work for LaAlO3 are very similar to the situation in SrTiO3 concerning the cation tracer diffusivities in nominally undoped single crystals. Both the experimental findings in LaAlO3 and in SrTiO3 are in plausible qualitative agreement with the results of calculated activation energies for native ion migration in various perovskite oxides.
{"title":"Self-diffusion of constituent elements in nominally undoped LaAlO3 single crystals","authors":"Peter Fielitz ,&nbsp;René Gustus ,&nbsp;Kirsten I. Schiffmann ,&nbsp;Günter Borchardt","doi":"10.1016/j.ssi.2024.116755","DOIUrl":"10.1016/j.ssi.2024.116755","url":null,"abstract":"<div><div>The interface between the insulators LaAlO<sub>3</sub> and SrTiO<sub>3</sub> has very interesting electronic properties. The production of such heterointerfaces comprises high temperature steps. Therefore knowledge of the mobilities of the constituent elements in the two partner oxides is required. As the majority of the published oxygen mobility data is based on electrical conductivity measurements with a rather large scatter, a check with a direct method was required, i. e. <sup>18</sup>O<sub>2</sub> exchange in combination with SIMS depth profiling. Our present results are in agreement with recently published <sup>18</sup>O<sub>2</sub>/SIMS data. For the two native cations no data at all were available in the literature. Using the rare stable isotope <sup>138</sup>La and the pseudo-stable radionuclide <sup>26</sup>Al in combination with SIMS depth profiling, for the first time upper limits of the tracer diffusivities could be determined at one temperature (1500 °C) for the very slow host cations in nominally undoped (100) oriented LaAlO<sub>3</sub> single crystals. The experimental observations of this work for LaAlO<sub>3</sub> are very similar to the situation in SrTiO<sub>3</sub> concerning the cation tracer diffusivities in nominally undoped single crystals. Both the experimental findings in LaAlO<sub>3</sub> and in SrTiO<sub>3</sub> are in plausible qualitative agreement with the results of calculated activation energies for native ion migration in various perovskite oxides.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"419 ","pages":"Article 116755"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143147789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular dynamics simulation of water absorption and mechanical weakening in coal rocks based on Monte Carlo methods 基于蒙特卡洛方法的煤岩吸水和机械削弱的分子动力学模拟
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-11-25 DOI: 10.1016/j.ssi.2024.116743
Lifan Jiao , ChaoYu Hao , Dong Duan , WeiDong Lu , YuanPing Gan , Jiaji Qi , WangRui Yang , YanKun Chen
Aiming at the problem of roadway destabilization in water encountered in the roadway of the back mining roadway of an extra-thick coal seam in Xinjiang Dabei Coal Mine, this paper used molecular dynamics simulation to study the interaction between coal and water and analyzed the adsorption characteristics of water molecules and the change of mechanical properties of coal. Firstly, the model of C181H138N2O24 bituminous coal was constructed by test, the coal-water adsorption was simulated based on the Monte Carlo method, and the coal-water adsorption configuration was analyzed. The results showed that: the saturation adsorption capacity was about 60 water molecules/cell, and the water molecule adsorption was concentrated in the vicinity of oxygen-containing groups and hydrogen atoms; the increase of water molecule content led to the decrease of heat of adsorption and diffusion capacity, and the heat of adsorption decreased by 9.1 %, and the diffusion coefficient of the early stage of adsorption was about three times of that of the final stage; the mechanical parameters of the coal body were significantly decreased, and the bulk modulus, Young's modulus, and shear modulus were respectively decreased by 21.90 %, 36.76 %, and 38.87 %, Poisson's ratio increased by 14.81 %, Poisson's ratio variability was low, volumetric modulus variability was medium, Young's modulus and shear modulus variability was high. The decrease in strength after coal water adsorption is due to the significant volume expansion of the coal body, the saturation expansion rate reaches 12.47 %, and at the same time, the total energy of the coal model decreases, where the weakening effect produced by the changes in the bonding and non-bonding energies results in the decrease in the mechanical strength of the coal molecules, and the weakening of the stability of the coal rock. The results of the study reveal the deformation and damage mechanism of the softening and deformation of the back-mining roadway in contact with water in Xinjiang Dabei Coal Mine, which provides a basis for the subsequent disaster prevention and control.
针对新疆大北煤矿特厚煤层回采巷道遇水巷道失稳问题,本文采用分子动力学模拟研究了煤与水的相互作用,分析了水分子的吸附特性和煤的力学性能变化。首先,通过试验构建了C181H138N2O24烟煤模型,基于蒙特卡洛法模拟了煤与水的吸附,分析了煤与水的吸附构型。结果表明:饱和吸附容量约为 60 个水分子/胞,水分子吸附集中在含氧基团和氢原子附近;水分子含量的增加导致吸附热量和扩散量的降低,吸附热量降低了 9.1 %,吸附初期的扩散系数约为吸附末期的3倍;煤体力学参数显著降低,体积模量、杨氏模量和剪切模量分别降低了21.90 %、36.76 %和38.87 %,泊松比增加了14.81 %,泊松比变异性低,体积模量变异性中等,杨氏模量和剪切模量变异性高。煤吸水后强度下降的原因是煤体体积显著膨胀,饱和膨胀率达到 12.47 %,同时煤模型总能量下降,其中键能和非键能变化产生的削弱效应导致煤分子机械强度下降,煤岩稳定性减弱。研究结果揭示了新疆大北煤矿回采巷道遇水软化变形破坏机理,为后续灾害防治提供了依据。
{"title":"Molecular dynamics simulation of water absorption and mechanical weakening in coal rocks based on Monte Carlo methods","authors":"Lifan Jiao ,&nbsp;ChaoYu Hao ,&nbsp;Dong Duan ,&nbsp;WeiDong Lu ,&nbsp;YuanPing Gan ,&nbsp;Jiaji Qi ,&nbsp;WangRui Yang ,&nbsp;YanKun Chen","doi":"10.1016/j.ssi.2024.116743","DOIUrl":"10.1016/j.ssi.2024.116743","url":null,"abstract":"<div><div>Aiming at the problem of roadway destabilization in water encountered in the roadway of the back mining roadway of an extra-thick coal seam in Xinjiang Dabei Coal Mine, this paper used molecular dynamics simulation to study the interaction between coal and water and analyzed the adsorption characteristics of water molecules and the change of mechanical properties of coal. Firstly, the model of C<sub>181</sub>H<sub>138</sub>N<sub>2</sub>O<sub>24</sub> bituminous coal was constructed by test, the coal-water adsorption was simulated based on the Monte Carlo method, and the coal-water adsorption configuration was analyzed. The results showed that: the saturation adsorption capacity was about 60 water molecules/cell, and the water molecule adsorption was concentrated in the vicinity of oxygen-containing groups and hydrogen atoms; the increase of water molecule content led to the decrease of heat of adsorption and diffusion capacity, and the heat of adsorption decreased by 9.1 %, and the diffusion coefficient of the early stage of adsorption was about three times of that of the final stage; the mechanical parameters of the coal body were significantly decreased, and the bulk modulus, Young's modulus, and shear modulus were respectively decreased by 21.90 %, 36.76 %, and 38.87 %, Poisson's ratio increased by 14.81 %, Poisson's ratio variability was low, volumetric modulus variability was medium, Young's modulus and shear modulus variability was high. The decrease in strength after coal water adsorption is due to the significant volume expansion of the coal body, the saturation expansion rate reaches 12.47 %, and at the same time, the total energy of the coal model decreases, where the weakening effect produced by the changes in the bonding and non-bonding energies results in the decrease in the mechanical strength of the coal molecules, and the weakening of the stability of the coal rock. The results of the study reveal the deformation and damage mechanism of the softening and deformation of the back-mining roadway in contact with water in Xinjiang Dabei Coal Mine, which provides a basis for the subsequent disaster prevention and control.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"418 ","pages":"Article 116743"},"PeriodicalIF":3.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142699689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Solid State Ionics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1