首页 > 最新文献

Solid State Ionics最新文献

英文 中文
Effect of heat treatment on the interface resistance between LiFePO4 and Li7La3Zr2O12 热处理对 LiFePO4 和 Li7La3Zr2O12 之间界面电阻的影响
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-07-02 DOI: 10.1016/j.ssi.2024.116638
E.A. Il'ina

All-solid-state lithium batteries are in great demand, but the problem of high interfacial resistance between the cathode and solid electrolyte needs to be addressed. The effect of heat treatment of the cathode half-cells on the LiFePO4 | Li7La3Zr2O12 interfacial resistance was studied. According to differential scanning calorimetry, the interaction between the cathode material and Li7La3Zr2O12 begins at 699 °C. It was also shown via X-ray diffraction data that increasing the annealing temperature from 600 to 700 °C leads to the appearance of impurities related to the interaction of the solid electrolyte with LiFePO4 (La2Zr2O7 and LaFeO3). A scanning electron microscopy study demonstrated that LiFePO4 has good contact with ceramic electrolyte without and after heat treatment. The lowest resistance at the LiFePO4 | Li7La3Zr2O12 interface (∼2000 and 30 Ohm cm2 at 100 and 300 °C, respectively) was obtained for half-cells without heat treatment. Thus, heat treatment leads to an increase in the interfacial resistance caused by the interaction of LiFePO4 with Li7La3Zr2O12

全固态锂电池的需求量很大,但正极和固体电解质之间的高界面电阻问题亟待解决。研究了正极半电池热处理对 LiFePO4 | Li7La3Zr2O12 界面电阻的影响。根据差示扫描量热法,阴极材料与 Li7La3Zr2O12 之间的相互作用始于 699 ℃。X 射线衍射数据还显示,退火温度从 600 ℃ 升至 700 ℃ 会导致出现与固体电解质与 LiFePO4(La2Zr2O7 和 LaFeO3)相互作用有关的杂质。扫描电子显微镜研究表明,未经热处理和热处理后,磷酸铁锂与陶瓷电解质接触良好。未经热处理的半电池在 LiFePO4 | Li7La3Zr2O12 接口处的电阻最低(100 和 300 °C 时分别为 2000 和 30 欧姆平方厘米)。因此,热处理会导致 LiFePO4 与 Li7La3Zr2O12 相互作用所产生的界面电阻增加。
{"title":"Effect of heat treatment on the interface resistance between LiFePO4 and Li7La3Zr2O12","authors":"E.A. Il'ina","doi":"10.1016/j.ssi.2024.116638","DOIUrl":"https://doi.org/10.1016/j.ssi.2024.116638","url":null,"abstract":"<div><p>All-solid-state lithium batteries are in great demand, but the problem of high interfacial resistance between the cathode and solid electrolyte needs to be addressed. The effect of heat treatment of the cathode half-cells on the LiFePO<sub>4</sub> | Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> interfacial resistance was studied. According to differential scanning calorimetry, the interaction between the cathode material and Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> begins at 699 °C. It was also shown via X-ray diffraction data that increasing the annealing temperature from 600 to 700 °C leads to the appearance of impurities related to the interaction of the solid electrolyte with LiFePO<sub>4</sub> (La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> and LaFeO<sub>3</sub>). A scanning electron microscopy study demonstrated that LiFePO<sub>4</sub> has good contact with ceramic electrolyte without and after heat treatment. The lowest resistance at the LiFePO<sub>4</sub> | Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> interface (∼2000 and 30 Ohm cm<sup>2</sup> at 100 and 300 °C, respectively) was obtained for half-cells without heat treatment. Thus, heat treatment leads to an increase in the interfacial resistance caused by the interaction of LiFePO<sub>4</sub> with Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub></p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141540284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic effects of binary lithium salts on ion transport and dielectric relaxation in poly(methyl methacrylate) grafted natural rubber solid polymer electrolytes 二元锂盐对聚甲基丙烯酸甲酯接枝天然橡胶固体聚合物电解质中离子传输和介电弛豫的协同效应
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-07-02 DOI: 10.1016/j.ssi.2024.116634
Rawdah Whba , Mohd Sukor Su’ait , Kai Ling Chai , Azizan Ahmad

A series of solid polymer electrolyte films were prepared using a casting solution with a polymer matrix comprising 49% poly(methyl methacrylate)-grafted natural rubber (MG49). These films incorporated binary lithium salts: lithium tetrafluoroborate (LiBF4) combined with either lithium trifluoromethanesulfonate (LiTf) or lithium iodide (LiI). These films' dielectric properties and ion association behavior were examined using potentiostatic electrochemical impedance spectroscopy (EIS) and Fourier transform infrared (FTIR) deconvolution. The key findings demonstrated that the increase in both the dielectric constant (ɛr) and dielectric loss (ɛi) was significantly correlated with enhanced ionic conductivity, reaching a value of 1.89 × 10−6 S cm−1, which was attributed to enhanced ionic and segmental mobility. A peak observed in the Mi versus frequency plot confirmed the ionic conductor behavior. The (30:70) ratio of LiBF4 to LiI exhibited the highest performance, with superior ionic conductivity, dielectric behavior, tangent loss, number of charge carriers, mobility, and diffusion coefficient, surpassing the performance of the single salt or LiBF4 to LiTf. This indicates that the combination of LiBF4 and LiI is particularly effective for applications requiring improved dielectric properties.

我们使用浇铸溶液制备了一系列固体聚合物电解质薄膜,聚合物基质包括 49% 的聚甲基丙烯酸甲酯接枝天然橡胶 (MG49)。这些薄膜含有二元锂盐:四氟硼酸锂(LiBF4)与三氟甲磺酸锂(LiTf)或碘化锂(LiI)。研究人员使用恒电位电化学阻抗光谱(EIS)和傅立叶变换红外(FTIR)解卷法检测了这些薄膜的介电性能和离子结合行为。主要研究结果表明,介电常数(ɛr)和介电损耗(ɛi)的增加与离子电导率的增强显著相关,其值达到 1.89 × 10-6 S cm-1,这归因于离子和片段迁移率的增强。在 Mi 与频率关系图中观察到的峰值证实了离子导体行为。LiBF4 与 LiI 的比例(30:70)表现出最高的性能,其离子导电性、介电行为、正切损耗、电荷载流子数量、迁移率和扩散系数均优于单一盐或 LiBF4 与 LiTf 的性能。这表明,LiBF4 和 LiI 的组合对于需要改善介电性能的应用特别有效。
{"title":"Synergistic effects of binary lithium salts on ion transport and dielectric relaxation in poly(methyl methacrylate) grafted natural rubber solid polymer electrolytes","authors":"Rawdah Whba ,&nbsp;Mohd Sukor Su’ait ,&nbsp;Kai Ling Chai ,&nbsp;Azizan Ahmad","doi":"10.1016/j.ssi.2024.116634","DOIUrl":"https://doi.org/10.1016/j.ssi.2024.116634","url":null,"abstract":"<div><p>A series of solid polymer electrolyte films were prepared using a casting solution with a polymer matrix comprising 49% poly(methyl methacrylate)-grafted natural rubber (MG49). These films incorporated binary lithium salts: lithium tetrafluoroborate (LiBF<sub>4</sub>) combined with either lithium trifluoromethanesulfonate (LiTf) or lithium iodide (LiI). These films' dielectric properties and ion association behavior were examined using potentiostatic electrochemical impedance spectroscopy (EIS) and Fourier transform infrared (FTIR) deconvolution. The key findings demonstrated that the increase in both the dielectric constant (<em>ɛ</em><sub>r</sub>) and dielectric loss (<em>ɛ</em><sub>i</sub>) was significantly correlated with enhanced ionic conductivity, reaching a value of 1.89 × 10<sup>−6</sup> S cm<sup>−1</sup>, which was attributed to enhanced ionic and segmental mobility. A peak observed in the <em>M</em><sub>i</sub> versus frequency plot confirmed the ionic conductor behavior. The (30:70) ratio of LiBF<sub>4</sub> to LiI exhibited the highest performance, with superior ionic conductivity, dielectric behavior, tangent loss, number of charge carriers, mobility, and diffusion coefficient, surpassing the performance of the single salt or LiBF<sub>4</sub> to LiTf. This indicates that the combination of LiBF<sub>4</sub> and LiI is particularly effective for applications requiring improved dielectric properties.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141540285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel, diverse and ultra-high ferroelectric, piezoelectric and dielectric performances of Mn added La2Ti2O7-based ceramics for high-temperature applications 添加锰的 La2Ti2O7 基陶瓷在高温应用中的新型、多样化和超高铁电、压电和介电性能
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-07-02 DOI: 10.1016/j.ssi.2024.116637
Nawishta Jabeen , Ahmad Hussain , Altaf Ur Rahman , Iqra Faiza , Sumbul , Salah M. El-Bahy

In the industry of high-temperature sensors and actuators, materials capable of delivering high ferroelectric, dielectric, and specifically stable/high piezoelectric performances above 1000 °C are in demand. Hence, perovskite-like layered structured (PLS) have gained popularity due to their high Curie temperature (TC) and ferroelectric properties, but the low piezoelectric coefficient (d33) at high temperature (>1000 °C) is the problem statement to be explored and improved. Herein this research, La1.97(LiCe)0.03Ti2O7:xwt%MnO2 (LLCTO:xMn) with x = 0–0.3 ceramic series has been explored to study the ultra-high structural, ferroelectric, electric, dielectric, and piezoelectric properties. Among all compositions, LLCTO:0.2Mn ceramic has demonstrated ultra-high performances with remnant polarization (Pr) of ∼1.84 μC/cm2, piezoelectric co-efficient (d33) of 9 pC/N, resistivity of ∼1011 Ω.cm, relative dielectric constant (ɛr) of 46, and minor dielectric loss (tanδ) of 0.17 which are much improved compared to pure La2Ti2O7 (LTO) and pristine La1.97(LiCe)0.03Ti2O7 (LLCTO) ceramics. The LLCTO:0.2Mn ceramic has exhibited the high TC of 1415 °C. Moreover, thermally stable multifunctional performances are measured where LLCTO:0.2Mn ceramic has demonstrated a high d33 of ∼8.5 pC/N at 1200 °C and resistivity of ∼2.4 × 107 Ω.cm even at 1000 °C, which are much better than the earlier reports. From the analysis, LLCTO:0.2Mn ceramic has demonstrated the potential to be utilized in high-temperature (>1000 °C) piezoelectric devices.

在高温传感器和致动器行业中,需要能够在 1000 °C 以上提供高铁电、介电和特别稳定/高压电性能的材料。因此,类包晶体层状结构(PLS)因其高居里温度(TC)和铁电特性而备受青睐,但其在高温(1000 °C)下的低压电系数(d33)是有待探索和改进的问题所在。在这项研究中,探索了 x = 0-0.3 的 La1.97(LiCe)0.03Ti2O7:xwt%MnO2 (LLCTO:xMn)陶瓷系列,以研究其超高结构、铁电、电、介电和压电特性。在所有成分中,LLCTO:0.2Mn 陶瓷具有超高性能,其残余极化(Pr)为 ∼1.84 μC/cm2,压电系数(d33)为 9 pC/N,电阻率为 ∼1011 Ω.与纯 La2Ti2O7(LTO)和原始 La1.97(LiCe)0.03Ti2O7 (LLCTO)陶瓷相比,这些陶瓷的介电系数(d33)为 9 pC/N,电阻率为 ∼1011 Ω,相对介电常数(ɛr)为 46,微介电损耗(tanδ)为 0.17。LLCTO:0.2Mn 陶瓷显示出 1415 ℃ 的高 TC。此外,还测量了 LLCTO:0.2Mn 陶瓷的热稳定多功能性能,在 1200 ℃ 时,其 d33 高达 ∼8.5 pC/N,即使在 1000 ℃ 时,其电阻率也达到 ∼2.4 × 107 Ω.cm,远优于之前的报告。分析表明,LLCTO:0.2Mn 陶瓷具有用于高温(1000 °C)压电器件的潜力。
{"title":"Novel, diverse and ultra-high ferroelectric, piezoelectric and dielectric performances of Mn added La2Ti2O7-based ceramics for high-temperature applications","authors":"Nawishta Jabeen ,&nbsp;Ahmad Hussain ,&nbsp;Altaf Ur Rahman ,&nbsp;Iqra Faiza ,&nbsp;Sumbul ,&nbsp;Salah M. El-Bahy","doi":"10.1016/j.ssi.2024.116637","DOIUrl":"https://doi.org/10.1016/j.ssi.2024.116637","url":null,"abstract":"<div><p>In the industry of high-temperature sensors and actuators, materials capable of delivering high ferroelectric, dielectric, and specifically stable/high piezoelectric performances above 1000 °C are in demand. Hence, perovskite-like layered structured (PLS) have gained popularity due to their high Curie temperature (<em>T</em><sub><em>C</em></sub>) and ferroelectric properties, but the low piezoelectric coefficient (<em>d</em><sub><em>33</em></sub>) at high temperature (&gt;1000 °C) is the problem statement to be explored and improved. Herein this research, La<sub>1.97</sub>(LiCe)<sub>0.03</sub>Ti<sub>2</sub>O<sub>7</sub>:xwt%MnO<sub>2</sub> (LLCTO:xMn) with x = 0–0.3 ceramic series has been explored to study the ultra-high structural, ferroelectric, electric, dielectric, and piezoelectric properties. Among all compositions, LLCTO:0.2Mn ceramic has demonstrated ultra-high performances with remnant polarization (<em>P</em><sub><em>r</em></sub>) of ∼1.84 μC/cm<sup>2</sup>, piezoelectric co-efficient (<em>d</em><sub><em>33</em></sub>) of 9 pC/N, resistivity of ∼10<sup>11</sup> Ω.cm, relative dielectric constant (<em>ɛ</em><sub><em>r</em></sub>) of 46, and minor dielectric loss (tanδ) of 0.17 which are much improved compared to pure La<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> (LTO) and pristine La<sub>1.97</sub>(LiCe)<sub>0.03</sub>Ti<sub>2</sub>O<sub>7</sub> (LLCTO) ceramics. The LLCTO:0.2Mn ceramic has exhibited the high <em>T</em><sub><em>C</em></sub> of 1415 °C. Moreover, thermally stable multifunctional performances are measured where LLCTO:0.2Mn ceramic has demonstrated a high <em>d</em><sub><em>33</em></sub> of ∼8.5 pC/N at 1200 °C and resistivity of ∼2.4 × 10<sup>7</sup> Ω.cm even at 1000 °C, which are much better than the earlier reports. From the analysis, LLCTO:0.2Mn ceramic has demonstrated the potential to be utilized in high-temperature (&gt;1000 °C) piezoelectric devices.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141542649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile synthesis of N-doped hierarchical porous carbon sheets from biomass for supercapacitors 从生物质中简便合成用于超级电容器的 N 掺杂分层多孔碳片
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-06-27 DOI: 10.1016/j.ssi.2024.116631
Hongchen Li , Jun Zhao , Jihong Liu , Feng Zhang , Ying Yang

N-doped hierarchical porous carbon sheet was prepared through calcination of a sodium alginate film precursors containing Zn-2-methylimidazole coordination complex. The film precursors could be obtained at room temperature. The introduction of coordination complex cannot cause the change of sheet morphology, but it can promote the generation of large pore structure. Due to the hierarchical porous structure and N doping, the carbon materials present excellent electrochemical behaviors when used as supercapacitor electrode materials. It exhibited a high specific capacitance of 210.4 F g−1 at 2 A g−1 in a two-electrode system with a capacitance retention of 83.4% over 10,000 cycles.

通过煅烧含有 Zn-2-methylimidazole 配位复合物的海藻酸钠薄膜前驱体,制备了 N 掺杂分层多孔碳板。薄膜前体可在室温下获得。配位络合物的引入并不能引起碳片形态的改变,但却能促进大孔结构的生成。由于层状多孔结构和 N 掺杂,该碳材料在用作超级电容器电极材料时具有优异的电化学性能。在双电极系统中,当电流为 2 A g-1 时,它的比电容高达 210.4 F g-1,在 10,000 次循环中电容保持率为 83.4%。
{"title":"Facile synthesis of N-doped hierarchical porous carbon sheets from biomass for supercapacitors","authors":"Hongchen Li ,&nbsp;Jun Zhao ,&nbsp;Jihong Liu ,&nbsp;Feng Zhang ,&nbsp;Ying Yang","doi":"10.1016/j.ssi.2024.116631","DOIUrl":"https://doi.org/10.1016/j.ssi.2024.116631","url":null,"abstract":"<div><p>N-doped hierarchical porous carbon sheet was prepared through calcination of a sodium alginate film precursors containing Zn-2-methylimidazole coordination complex. The film precursors could be obtained at room temperature. The introduction of coordination complex cannot cause the change of sheet morphology, but it can promote the generation of large pore structure. Due to the hierarchical porous structure and N doping, the carbon materials present excellent electrochemical behaviors when used as supercapacitor electrode materials. It exhibited a high specific capacitance of 210.4 F g<sup>−1</sup> at 2 A g<sup>−1</sup> in a two-electrode system with a capacitance retention of 83.4% over 10,000 cycles.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141478533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced electrochromic performance of KxWO3 by tailoring crystal structure and valence state 通过调整晶体结构和价态提高 KxWO3 的电致变色性能
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-06-27 DOI: 10.1016/j.ssi.2024.116632
Mingyuan Fang, Yuchao Song, Sijia Pang, Deng Pu, Juan Guo, Qilong Gao, Mingju Chao, Erjun Liang

Electrochromic materials have been widely applied in smart windows due to their color conversion and adjusting indoor solar radiation abilities. The researches on electrochromic properties of tungsten bronzes with near-infrared light absorbing abilities are important to obtain multifunctional smart windows. Here, nano potassium tungsten bronze KxWO3 with space group P63/mcm has been synthesized to study the effects of crystal structures and valence states of W ions on its electrochromic properties. By altering the composition of reaction solution in solvothermal method, the K content x of samples can be controlled together with the adjustments in sizes of hexagonal and trigonal channels in the crystal structure and valence states of W ions. The maximum optical modulation and coloration efficiency are achieved for the maximum x. The enhanced electrochromic performance mainly benefits from the synergistic size effects of hexagonal and trigonal channels.

电致变色材料具有色彩转换和调节室内太阳辐射的能力,已被广泛应用于智能窗户中。研究具有近红外光吸收能力的钨青铜的电致变色性能对于获得多功能智能窗具有重要意义。本文合成了空间群为 P63/mcm 的纳米钾钨青铜 KxWO3,以研究晶体结构和 W 离子价态对其电致变色性能的影响。通过溶热法改变反应溶液的组成,可以控制样品中 K 的含量 x,同时还可以调整晶体结构中六方和三方通道的大小以及 W 离子的价态。电致变色性能的提高主要得益于六方和三方通道尺寸的协同效应。
{"title":"Enhanced electrochromic performance of KxWO3 by tailoring crystal structure and valence state","authors":"Mingyuan Fang,&nbsp;Yuchao Song,&nbsp;Sijia Pang,&nbsp;Deng Pu,&nbsp;Juan Guo,&nbsp;Qilong Gao,&nbsp;Mingju Chao,&nbsp;Erjun Liang","doi":"10.1016/j.ssi.2024.116632","DOIUrl":"https://doi.org/10.1016/j.ssi.2024.116632","url":null,"abstract":"<div><p>Electrochromic materials have been widely applied in smart windows due to their color conversion and adjusting indoor solar radiation abilities. The researches on electrochromic properties of tungsten bronzes with near-infrared light absorbing abilities are important to obtain multifunctional smart windows. Here, nano potassium tungsten bronze K<sub><em>x</em></sub>WO<sub>3</sub> with space group <em>P</em>6<sub>3</sub>/<em>mcm</em> has been synthesized to study the effects of crystal structures and valence states of W ions on its electrochromic properties. By altering the composition of reaction solution in solvothermal method, the K content <em>x</em> of samples can be controlled together with the adjustments in sizes of hexagonal and trigonal channels in the crystal structure and valence states of W ions. The maximum optical modulation and coloration efficiency are achieved for the maximum <em>x</em>. The enhanced electrochromic performance mainly benefits from the synergistic size effects of hexagonal and trigonal channels.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141478532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Bi doping on the electrochemical performance of Na3V2(PO4)3F3 cathode material for sodium ion batteries 掺杂铋对钠离子电池用 Na3V2(PO4)3F3 阴极材料电化学性能的影响
IF 3 4区 材料科学 Q1 Physics and Astronomy Pub Date : 2024-06-22 DOI: 10.1016/j.ssi.2024.116621
Qianhui Chen , Fuzhong Gong , Shuhui Pan , Wen Chen

Polyphosphate, as the cathode material of sodium ion battery(SIB) has the advantages of good structural stability and long service life, but suffer from poor conductivity and low specific capacity. The doping of heteroatom and coating of carbon are considered to be two effective measures to overcome its shortcomings. In this work, the Bismuth(Bi)-doped and carbon-coated materials Na3V2-xBix(PO4)2F3/C with various Bi3+ doping levels(x = 0.03,0.05,0.07) were prepared by a facile sol-gel method combined high temperature calcination. The effect of Bi3+ doping on the electrochemical properties was systematically investigated. The Na3V1.95Bi0.05(PO4)3F3/C showed the best electrochemical performance with the specific capacities of 107.4, 94.3, 92.4, 86.2 mAh·g−1 at 0.1 A·g−1(0.78C), 0.2 A·g−1(1.56C), 0.5 A·g−1(3.9C), 1.0 A·g−1(7.8C) respectively, and 90.4% of specific capacity was retained after 100 charge/discharge cycles, which has a greatly increase compared with the Na3V2(PO4)3F3 material. This is attribute to the improving of the conductivity, the diffusion capacity and the structural stability of the material by Bi-doping and carbon coating.

聚磷酸盐作为钠离子电池(SIB)的正极材料,具有结构稳定性好、使用寿命长等优点,但导电性差、比容量低。掺杂杂原子和包覆碳被认为是克服其缺点的两种有效措施。本研究采用简便的溶胶-凝胶法结合高温煅烧制备了不同 Bi3+ 掺杂水平(x = 0.03、0.05、0.07)的铋(Bi)掺杂和碳包覆材料 Na3V2-xBix(PO4)2F3/C 。系统研究了掺杂 Bi3+ 对电化学性能的影响。Na3V1.95Bi0.05(PO4)3F3/C 的电化学性能最好,在 0.1 A-g-1(0.78C), 0.2 A-g-1(1.56C), 0.与 Na3V2(PO4)3F3材料相比,在 100 次充放电循环后,比容量保持率为 90.4%,大幅提高。这归功于通过双掺杂和碳涂层提高了材料的导电性、扩散能力和结构稳定性。
{"title":"Effects of Bi doping on the electrochemical performance of Na3V2(PO4)3F3 cathode material for sodium ion batteries","authors":"Qianhui Chen ,&nbsp;Fuzhong Gong ,&nbsp;Shuhui Pan ,&nbsp;Wen Chen","doi":"10.1016/j.ssi.2024.116621","DOIUrl":"https://doi.org/10.1016/j.ssi.2024.116621","url":null,"abstract":"<div><p>Polyphosphate, as the cathode material of sodium ion battery(SIB) has the advantages of good structural stability and long service life, but suffer from poor conductivity and low specific capacity. The doping of heteroatom and coating of carbon are considered to be two effective measures to overcome its shortcomings. In this work, the Bismuth(Bi)-doped and carbon-coated materials Na<sub>3</sub>V<sub>2-x</sub>Bi<sub>x</sub>(PO<sub>4</sub>)<sub>2</sub>F<sub>3</sub>/C with various Bi<sup>3+</sup> doping levels(x = 0.03,0.05,0.07) were prepared by a facile sol-gel method combined high temperature calcination. The effect of Bi<sup>3+</sup> doping on the electrochemical properties was systematically investigated. The Na<sub>3</sub>V<sub>1.95</sub>Bi<sub>0.05</sub>(PO<sub>4</sub>)<sub>3</sub>F<sub>3</sub>/C showed the best electrochemical performance with the specific capacities of 107.4, 94.3, 92.4, 86.2 mAh·g<sup>−1</sup> at 0.1 A·g<sup>−1</sup>(0.78C), 0.2 A·g<sup>−1</sup>(1.56C), 0.5 A·g<sup>−1</sup>(3.9C), 1.0 A·g<sup>−1</sup>(7.8C) respectively, and 90.4% of specific capacity was retained after 100 charge/discharge cycles, which has a greatly increase compared with the Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>F<sub>3</sub> material. This is attribute to the improving of the conductivity, the diffusion capacity and the structural stability of the material by Bi-doping and carbon coating.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrafast synthesis of hard carbon for high-rate and low-temperature sodium-ion storage through flash Joule heating 通过闪焦耳加热超快合成用于高速率和低温钠离子存储的硬碳
IF 3.2 4区 材料科学 Q1 Physics and Astronomy Pub Date : 2024-06-19 DOI: 10.1016/j.ssi.2024.116622
Mengyue Yuan, Shunzhi Yu, Kefeng Wang, Changhuan Mi, Laifa Shen

Developing effective strategies to promote the sodium-ion storage performance of hard carbon anodes is essential for its practical application in sodium-ion batteries. The carbonization process plays a crucial role in regulating the microstructure of hard carbon. Conventional carbonization methods of slow-heating have hit a bottleneck in structural controls of hard carbon materials. Herein, hard carbon with high-rate and low-temperature sodium storage capability is ultrafast synthesized by flash Joule heating. Compared to the hard carbon synthesized by conventional slow-heating, the hard carbon synthesized by flash Joule heating has smaller particle size, larger interlayer spacing, and larger closed-pores leading to superior performance. This work provides a simple and effective method of boosting sodium-ion storage performance for hard carbon materials.

开发有效的策略来提高硬碳阳极的钠离子存储性能,对于其在钠离子电池中的实际应用至关重要。碳化过程对调节硬碳的微观结构起着至关重要的作用。传统的慢热碳化方法在硬碳材料的结构控制方面遇到了瓶颈。在此,利用闪速焦耳加热超快合成了具有高倍率和低温储钠能力的硬质碳。与传统慢速加热合成的硬质碳相比,闪速焦耳加热合成的硬质碳具有更小的粒径、更大的层间距和更大的闭孔,因而性能更优越。这项研究为提高硬碳材料的钠离子存储性能提供了一种简单有效的方法。
{"title":"Ultrafast synthesis of hard carbon for high-rate and low-temperature sodium-ion storage through flash Joule heating","authors":"Mengyue Yuan,&nbsp;Shunzhi Yu,&nbsp;Kefeng Wang,&nbsp;Changhuan Mi,&nbsp;Laifa Shen","doi":"10.1016/j.ssi.2024.116622","DOIUrl":"https://doi.org/10.1016/j.ssi.2024.116622","url":null,"abstract":"<div><p>Developing effective strategies to promote the sodium-ion storage performance of hard carbon anodes is essential for its practical application in sodium-ion batteries. The carbonization process plays a crucial role in regulating the microstructure of hard carbon. Conventional carbonization methods of slow-heating have hit a bottleneck in structural controls of hard carbon materials. Herein, hard carbon with high-rate and low-temperature sodium storage capability is ultrafast synthesized by flash Joule heating. Compared to the hard carbon synthesized by conventional slow-heating, the hard carbon synthesized by flash Joule heating has smaller particle size, larger interlayer spacing, and larger closed-pores leading to superior performance. This work provides a simple and effective method of boosting sodium-ion storage performance for hard carbon materials.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141429867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical characterization of poly(thiophene-3‑boronic acid) for aqueous environments 用于水环境的聚(噻吩-3-硼酸)的电化学特性分析
IF 3.2 4区 材料科学 Q1 Physics and Astronomy Pub Date : 2024-06-18 DOI: 10.1016/j.ssi.2024.116619
Taha Yasin Eken , Omer Yunus Gumus , Deniz Uzunsoy

Poly(thiophene-3‑boronic acid) (PTBA) was studied as a promising active material for aqueous environments in this paper. Using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), the solubility and electrochemical behavior of it was studied in a range of aqueous solutions. Fourier Transform Infrared Spectrometry (FTIR) results verify the successful synthesis. PTBA shows promising solubility qualities in certain pH ranges, especially in alkaline solutions. However, among alkaline, neutral, and acidic environments the best environment for redox properties of aqueous 1 mM PTBA is the neutral one. The peak current (ip) of 1 mM PTBA for 100 mV/s in the neutral environment is 0.01 mA and half peak potential (Ep/2) is −0.1 V (vs Ag/AgCl). Diffusion coefficient of PTBA is found as 4.97 × 10−8 cm2/s. The impedance tests also confirm that the neutral solvent decreases the charge transfer resistance.

本文将聚(噻吩-3-硼酸)(PTBA)作为一种有前途的水环境活性材料进行了研究。利用循环伏安法(CV)和电化学阻抗谱法(EIS),研究了它在一系列水溶液中的溶解性和电化学行为。傅立叶变换红外光谱法(FTIR)的结果验证了合成的成功。PTBA 在某些 pH 值范围内,尤其是在碱性溶液中表现出良好的溶解性。然而,在碱性、中性和酸性环境中,对 1 mM PTBA 水溶液的氧化还原特性而言,最好的环境是中性环境。1 mM PTBA 在中性环境中 100 mV/s 的峰值电流(ip)为 0.01 mA,半峰值电位(Ep/2)为 -0.1 V(与 Ag/AgCl 相比)。PTBA 的扩散系数为 4.97 × 10-8 cm2/s。阻抗测试也证实,中性溶剂降低了电荷转移电阻。
{"title":"Electrochemical characterization of poly(thiophene-3‑boronic acid) for aqueous environments","authors":"Taha Yasin Eken ,&nbsp;Omer Yunus Gumus ,&nbsp;Deniz Uzunsoy","doi":"10.1016/j.ssi.2024.116619","DOIUrl":"https://doi.org/10.1016/j.ssi.2024.116619","url":null,"abstract":"<div><p>Poly(thiophene-3‑boronic acid) (PTBA) was studied as a promising active material for aqueous environments in this paper. Using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), the solubility and electrochemical behavior of it was studied in a range of aqueous solutions. Fourier Transform Infrared Spectrometry (FTIR) results verify the successful synthesis. PTBA shows promising solubility qualities in certain pH ranges, especially in alkaline solutions. However, among alkaline, neutral, and acidic environments the best environment for redox properties of aqueous 1 mM PTBA is the neutral one. The peak current (i<sub>p</sub>) of 1 mM PTBA for 100 m<em>V</em>/s in the neutral environment is 0.01 mA and half peak potential (E<sub>p/2</sub>) is −0.1 <em>V</em> (vs Ag/AgCl). Diffusion coefficient of PTBA is found as 4.97 × 10<sup>−8</sup> cm<sup>2</sup>/s. The impedance tests also confirm that the neutral solvent decreases the charge transfer resistance.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141422872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploiting the potential of mesoporous NiMoO4/TiS2 composite for enhanced electrochemical supercapacitor performance 挖掘介孔 NiMoO4/TiS2 复合材料的潜力,提高电化学超级电容器的性能
IF 3.2 4区 材料科学 Q1 Physics and Astronomy Pub Date : 2024-06-18 DOI: 10.1016/j.ssi.2024.116618
Ghulam Nabi , Abid Hussain , Wajid Ali , Manawwer Alam , Muhammad Tanveer , Faiza Naseem , Ali Haider Bhalli , Hammad Ahmed , Naeem Shahzad Arshad , Soha Muzaffar

The mesoporous electrode material offers a high surface area, excellent porous texture, and optimal pore-size distribution, facilitating increased active sites for ion accretion and enhanced ionic diffusion rates. NiMoO4, TiS2, and their composites such as NT-1, NT-2, NT-3, and NT-4 composites have been prepared by hydrothermal approach to enhance the capacitance of supercapacitor electrodes. Different methodologies have been employed to analyze the optical, morphological and structural characteristics of the synthesized materials. X-ray diffraction was utilized to assess the crystalline nature of both the pristine materials and composites. Scanning electron microscopy examination confirmed the formation of mesoporous and irregular nanoparticles with sizes ranging from 50 to 100 nm. Fourier-transform infrared spectroscopy was employed to examine the stretching vibrations of the prepared samples. Through photoluminescence (PL) analysis, the energy band gap of the NT-1 composite was decisive to be 2.78 eV. The NT-1 composite exhibits an impressive specific capacitance of 1257.14 Fg−1 at 1 Ag−1, attributed to its huge surface area, efficient charge transfer, and synergistic effect while demonstrating remarkable stability after 5000 cycles with 92% capacitance retention. Therefore, NT-1 binary metal sulfide composite unleashes high-performance supercapacitors with remarkable specific capacitance and cyclic stability.

介孔电极材料具有高比表面积、优异的多孔质地和最佳的孔径分布,有利于增加离子吸附的活性位点和提高离子扩散速率。通过水热法制备了 NiMoO4、TiS2 及其复合材料,如 NT-1、NT-2、NT-3 和 NT-4 复合材料,以提高超级电容器电极的电容。我们采用了不同的方法来分析合成材料的光学、形态和结构特征。利用 X 射线衍射评估了原始材料和复合材料的结晶性质。扫描电子显微镜检查证实了介孔和不规则纳米粒子的形成,其大小在 50 至 100 纳米之间。傅立叶变换红外光谱法用于研究制备样品的伸缩振动。通过光致发光(PL)分析,NT-1 复合材料的能带隙确定为 2.78 eV。在 1 Ag-1 的条件下,NT-1 复合材料的比电容高达 1257.14 Fg-1,这归功于其巨大的比表面积、高效的电荷转移和协同效应。因此,NT-1 二元金属硫化物复合材料具有显著的比电容和循环稳定性,是一种高性能超级电容器。
{"title":"Exploiting the potential of mesoporous NiMoO4/TiS2 composite for enhanced electrochemical supercapacitor performance","authors":"Ghulam Nabi ,&nbsp;Abid Hussain ,&nbsp;Wajid Ali ,&nbsp;Manawwer Alam ,&nbsp;Muhammad Tanveer ,&nbsp;Faiza Naseem ,&nbsp;Ali Haider Bhalli ,&nbsp;Hammad Ahmed ,&nbsp;Naeem Shahzad Arshad ,&nbsp;Soha Muzaffar","doi":"10.1016/j.ssi.2024.116618","DOIUrl":"https://doi.org/10.1016/j.ssi.2024.116618","url":null,"abstract":"<div><p>The mesoporous electrode material offers a high surface area, excellent porous texture, and optimal pore-size distribution, facilitating increased active sites for ion accretion and enhanced ionic diffusion rates. NiMoO<sub>4</sub>, TiS<sub>2</sub>, and their composites such as NT-1, NT-2, NT-3, and NT-4 composites have been prepared by hydrothermal approach to enhance the capacitance of supercapacitor electrodes. Different methodologies have been employed to analyze the optical, morphological and structural characteristics of the synthesized materials. X-ray diffraction was utilized to assess the crystalline nature of both the pristine materials and composites. Scanning electron microscopy examination confirmed the formation of mesoporous and irregular nanoparticles with sizes ranging from 50 to 100 nm. Fourier-transform infrared spectroscopy was employed to examine the stretching vibrations of the prepared samples. Through photoluminescence (PL) analysis, the energy band gap of the NT-1 composite was decisive to be 2.78 eV. The NT-1 composite exhibits an impressive specific capacitance of 1257.14 Fg<sup>−1</sup> at 1 Ag<sup>−1</sup>, attributed to its huge surface area, efficient charge transfer, and synergistic effect while demonstrating remarkable stability after 5000 cycles with 92% capacitance retention. Therefore, NT-1 binary metal sulfide composite unleashes high-performance supercapacitors with remarkable specific capacitance and cyclic stability.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141422874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of the electrospinning synthesis route on the structural and electrocatalytic features of the LSCF (La0.6Sr0.4Co0.2Fe0.8O3–δ) perovskite for application in solid oxide fuel cells 电纺丝合成路线对用于固体氧化物燃料电池的 LSCF(La0.6Sr0.4Co0.2Fe0.8O3-δ)包晶石的结构和电催化特性的影响
IF 3.2 4区 材料科学 Q1 Physics and Astronomy Pub Date : 2024-06-17 DOI: 10.1016/j.ssi.2024.116620
Marta Daga , Caterina Sanna , Giorgio Bais , Maurizio Polentarutti , Sara Massardo , Marilena Carnasciali , Peter Holtappels , Paola Costamagna , Marcella Pani , Cristina Artini

In-house electrospun La0.6Sr0.4Co0.2Fe0.8O3–δ (LSCF) nanofibers have been tested through synchrotron x-ray diffraction and electrochemical impedance spectroscopy (EIS) in the 823–1173 K range, namely in the operating window of intermediate-temperature solid oxide fuel cells. Identical tests have been carried out on commercial LSCF powders, as a control sample. The results demonstrate that the electrospinning manufacturing procedure influences the crystalline properties of the perovskite. The rhombohedral structure (R), stable at room temperature, is retained by nanofibers throughout the whole temperature range, while a rhombohedral to cubic transition (R→C) is detected in powders at ⁓1023 K as a discontinuity in the rhombohedral angle α, accompanied by an abrupt change in oxygen occupation and microstrain. EIS data have a single trend in the nanofibers Arrhenius plot, and two different ones in powders, separated by a discontinuity at the structural transition temperature. Thus, a striking parallel is demonstrated between the variation with temperature of crystallographic features and electrochemical performance. Interestingly, this parallel is found for both nanofiber and granular electrodes. This opens up questions and new perspectives in attributing activation energies derived from EIS tests of LSCF materials to electrochemical processes and/or crystal structure variations.

通过同步辐射 X 射线衍射和电化学阻抗光谱(EIS)测试了内部电纺 La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF)纳米纤维在 823-1173 K 范围内(即中温固体氧化物燃料电池的工作窗口)的性能。作为对照样品,还对商用 LSCF 粉末进行了相同的测试。结果表明,电纺丝制造过程会影响包晶体的结晶特性。纳米纤维在整个温度范围内都保留了室温下稳定的斜方体结构 (R),而在⁓1023 K 时,粉末中检测到斜方体向立方体的转变 (R→C),表现为斜方体角度 α 的不连续,同时伴随着氧占据和微应变的突然变化。EIS 数据在纳米纤维的阿伦尼乌斯图中有一个单一的趋势,而在粉末中则有两个不同的趋势,中间以结构转变温度处的不连续性分开。因此,晶体学特征随温度的变化与电化学性能之间存在着显著的平行关系。有趣的是,纳米纤维和颗粒电极都存在这种平行关系。这就为将 LSCF 材料的 EIS 测试得出的活化能归因于电化学过程和/或晶体结构变化提出了问题和新的视角。
{"title":"Impact of the electrospinning synthesis route on the structural and electrocatalytic features of the LSCF (La0.6Sr0.4Co0.2Fe0.8O3–δ) perovskite for application in solid oxide fuel cells","authors":"Marta Daga ,&nbsp;Caterina Sanna ,&nbsp;Giorgio Bais ,&nbsp;Maurizio Polentarutti ,&nbsp;Sara Massardo ,&nbsp;Marilena Carnasciali ,&nbsp;Peter Holtappels ,&nbsp;Paola Costamagna ,&nbsp;Marcella Pani ,&nbsp;Cristina Artini","doi":"10.1016/j.ssi.2024.116620","DOIUrl":"https://doi.org/10.1016/j.ssi.2024.116620","url":null,"abstract":"<div><p>In-house electrospun La<sub>0.6</sub>Sr<sub>0.4</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3–δ</sub> (LSCF) nanofibers have been tested through synchrotron x-ray diffraction and electrochemical impedance spectroscopy (EIS) in the 823–1173 K range, namely in the operating window of intermediate-temperature solid oxide fuel cells. Identical tests have been carried out on commercial LSCF powders, as a control sample. The results demonstrate that the electrospinning manufacturing procedure influences the crystalline properties of the perovskite. The rhombohedral structure (R), stable at room temperature, is retained by nanofibers throughout the whole temperature range, while a rhombohedral to cubic transition (R→C) is detected in powders at ⁓1023 K as a discontinuity in the rhombohedral angle α, accompanied by an abrupt change in oxygen occupation and microstrain. EIS data have a single trend in the nanofibers Arrhenius plot, and two different ones in powders, separated by a discontinuity at the structural transition temperature. Thus, a striking parallel is demonstrated between the variation with temperature of crystallographic features and electrochemical performance. Interestingly, this parallel is found for both nanofiber and granular electrodes. This opens up questions and new perspectives in attributing activation energies derived from EIS tests of LSCF materials to electrochemical processes and/or crystal structure variations.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167273824001681/pdfft?md5=db09566e2482fa6b78caad2a59f59a28&pid=1-s2.0-S0167273824001681-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141422873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Solid State Ionics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1