Pub Date : 2024-08-02DOI: 10.1016/j.ssi.2024.116647
Tian-Hao Guo , Shao-Yi Wu , Qi-Hang Qiu , Xiao-Xu Yang , Jie Su , Hui-Ning Dong , Qin-Sheng Zhu
The escalating demand for large-scale energy storage solutions has sparked significant interest in metal-ion batteries, particularly in the realm of high-performance anode materials. This work explores the potential of penta-BP2 as an anode material for sodium and potassium-ion batteries through first-principles calculations. The two-dimensional metallic structure of penta-BP2 exhibits favorable electrical conductivity, making it an ideal candidate for anode materials. Theoretical analysis reveals that penta-BP2 can adsorb two layers of Na and three layers of K, resulting in high storage capacities of 1105 and 1473 mAh/g, along with low open-circuit voltages of 0.40 and 0.30 V, respectively. These characteristics enable the production of high energy density in sodium and potassium-ion batteries. Additionally, the material's small Young's modulus and low diffusion energy barriers further establish penta-BP2 as a flexible anode material capable of rapid charge/discharge processes.
对大规模储能解决方案不断升级的需求引发了人们对金属离子电池的极大兴趣,尤其是在高性能负极材料领域。这项研究通过第一原理计算,探讨了五溴联苯作为钠离子和钾离子电池阳极材料的潜力。五溴联苯的二维金属结构具有良好的导电性,使其成为理想的阳极材料。理论分析表明,Penta-BP 能吸附两层 Na 和三层 K,从而产生高达 1105 mAh/g 和 1473 mAh/g 的存储容量,以及 0.40 V 和 0.30 V 的低开路电压。这些特性使得钠离子和钾离子电池能够产生高能量密度。此外,该材料较小的杨氏模量和较低的扩散能垒进一步确立了 penta-BP 作为一种灵活的阳极材料的地位,能够实现快速充放电过程。
{"title":"A first-principles research on the properties of two-dimensional penta-BP2 as an anode material for both Na and K ion batteries","authors":"Tian-Hao Guo , Shao-Yi Wu , Qi-Hang Qiu , Xiao-Xu Yang , Jie Su , Hui-Ning Dong , Qin-Sheng Zhu","doi":"10.1016/j.ssi.2024.116647","DOIUrl":"10.1016/j.ssi.2024.116647","url":null,"abstract":"<div><p>The escalating demand for large-scale energy storage solutions has sparked significant interest in metal-ion batteries, particularly in the realm of high-performance anode materials. This work explores the potential of penta-BP<sub>2</sub> as an anode material for sodium and potassium-ion batteries through first-principles calculations. The two-dimensional metallic structure of penta-BP<sub>2</sub> exhibits favorable electrical conductivity, making it an ideal candidate for anode materials. Theoretical analysis reveals that penta-BP<sub>2</sub> can adsorb two layers of Na and three layers of K, resulting in high storage capacities of 1105 and 1473 mAh/g, along with low open-circuit voltages of 0.40 and 0.30 V, respectively. These characteristics enable the production of high energy density in sodium and potassium-ion batteries. Additionally, the material's small Young's modulus and low diffusion energy barriers further establish penta-BP<sub>2</sub> as a flexible anode material capable of rapid charge/discharge processes.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"414 ","pages":"Article 116647"},"PeriodicalIF":3.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141948933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1016/j.ssi.2024.116645
Marija Stojmenović , Neda Nišić , Milan Kragović , Jelena Gulicovski , Francesco Basoli , Danica Bajuk-Bogdanović , Milan Žunić
This paper explores the application of nanosized, sintered, non-stoichiometric CeO2 with six dopants Ce0.8Nd0.0025Sm0.0025Gd0.005Dy0.095Y0.095O2-δ (CNSGDY), synthesized via modified glycine-nitrate procedure (MGNP) and room temperature self-propagating reaction (SPRT) for fuel cells. The composition, microstructure, and morphology of CNSGDY samples were analyzed using XRD, Raman spectroscopy, SEM, and EDS. The concentration of O2− vacancies, enabling the improvement of ionic conduction, was measured by the deconvolution procedure of additional Raman modes (250 cm−1 (2TA), 560 cm−1 (2LA) and 610 cm−1 (2TO)) and total values for MGNP and SPRT CNSGDY were 15.89% and 16.06%, respectively. Electrochemical performance assessed through EIS ((Electrochemical Impedance Spectroscopy) in the 550–700 °C range revealed a maximum power density of 55 mWcm−2 at 700 °C with SPRT electrolyte. Additionally, the ionic conductivity of the samples was calculated, with the SPRT sample showing superior performance due to higher ionic conductivity values. Differences in power densities between Pt/SPRT/Pt and Pt/MGNP/Pt cells suggest electrode-electrolyte interface and film thickness impacts, guiding future research.
本文探讨了通过改性硝酸甘油法(MGNP)和室温自激反应(SPRT)合成的具有六种掺杂剂 CeNdSmGdDyYO(CNSGDY)的纳米烧结非全度 CeO 在燃料电池中的应用。利用 XRD、拉曼光谱、SEM 和 EDS 分析了 CNSGDY 样品的成分、微观结构和形态。通过附加拉曼模式(250 cm (2TA)、560 cm (2LA) 和 610 cm (2TO))的解卷积程序测量了可改善离子传导的 O 空位浓度,MGNP 和 SPRT CNSGDY 的总值分别为 15.89% 和 16.06%。通过 EIS(电化学阻抗谱)对 550-700 °C 范围内的电化学性能进行评估,发现 SPRT 电解质在 700 °C 时的最大功率密度为 55 mWcm。此外,还计算了样品的离子电导率,SPRT 样品的离子电导率值更高,因此性能更优。Pt/SPRT/Pt 和 Pt/MGNP/Pt 电池之间功率密度的差异表明电极-电解质界面和薄膜厚度会产生影响,这为今后的研究提供了指导。
{"title":"Multidoped CeO2 single-phase as electrolyte for IT-SOFC","authors":"Marija Stojmenović , Neda Nišić , Milan Kragović , Jelena Gulicovski , Francesco Basoli , Danica Bajuk-Bogdanović , Milan Žunić","doi":"10.1016/j.ssi.2024.116645","DOIUrl":"10.1016/j.ssi.2024.116645","url":null,"abstract":"<div><p>This paper explores the application of nanosized, sintered, non-stoichiometric CeO<sub>2</sub> with six dopants Ce<sub>0.8</sub>Nd<sub>0.0025</sub>Sm<sub>0.0025</sub>Gd<sub>0.005</sub>Dy<sub>0.095</sub>Y<sub>0.095</sub>O<sub>2-δ</sub> (CNSGDY), synthesized via modified glycine-nitrate procedure (MGNP) and room temperature self-propagating reaction (SPRT) for fuel cells. The composition, microstructure, and morphology of CNSGDY samples were analyzed using XRD, Raman spectroscopy, SEM, and EDS. The concentration of O<sup>2−</sup> vacancies, enabling the improvement of ionic conduction, was measured by the deconvolution procedure of additional Raman modes (250 cm<sup>−1</sup> (2TA), 560 cm<sup>−1</sup> (2LA) and 610 cm<sup>−1</sup> (2TO)) and total values for MGNP and SPRT CNSGDY were 15.89% and 16.06%, respectively. Electrochemical performance assessed through EIS ((Electrochemical Impedance Spectroscopy) in the 550–700 °C range revealed a maximum power density of 55 mWcm<sup>−2</sup> at 700 °C with SPRT electrolyte. Additionally, the ionic conductivity of the samples was calculated, with the SPRT sample showing superior performance due to higher ionic conductivity values. Differences in power densities between Pt/SPRT/Pt and Pt/MGNP/Pt cells suggest electrode-electrolyte interface and film thickness impacts, guiding future research.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"414 ","pages":"Article 116645"},"PeriodicalIF":3.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141948934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1016/j.ssi.2024.116648
Rui He , Xue Bai , Aijia Wei , Lijing Sun , Lihui Zhang , Guanyu Zhao , Qinglong Yuan , Jinping Mu , Xi Zhang , Zhenfa Liu
In this work, polypyrrole (PPy) was used to modify Li1.04Fe0.3Mn0.7PO4 cathode materials and improve their conductivity. This study found that PPy could form a coating layer and conductive network on the material surface and effectively enhance the conductivity of the material as well as stability of the electrolyte interface. When the amount of PPy addition was 2%, the capacity retention rate at 0.2C and 20 °C was 98.6% after 500 cycles, and the capacity retention rate at −15 °C was 89.0% after 200 cycles. The capacity retention rate of the 2% PPy coated Li1.04Fe0.3Mn0.7PO4 sample was 20.4% higher than that of the pure Li1.04Fe0.3Mn0.7PO4 sample after 200 cycles at −15 °C.
{"title":"Impact of polypyrrole coating on the electrochemical properties of Li1.04Fe0.3Mn0.7PO4 cathode materials","authors":"Rui He , Xue Bai , Aijia Wei , Lijing Sun , Lihui Zhang , Guanyu Zhao , Qinglong Yuan , Jinping Mu , Xi Zhang , Zhenfa Liu","doi":"10.1016/j.ssi.2024.116648","DOIUrl":"10.1016/j.ssi.2024.116648","url":null,"abstract":"<div><p>In this work, polypyrrole (PPy) was used to modify Li<sub>1.04</sub>Fe<sub>0.3</sub>Mn<sub>0.7</sub>PO<sub>4</sub> cathode materials and improve their conductivity. This study found that PPy could form a coating layer and conductive network on the material surface and effectively enhance the conductivity of the material as well as stability of the electrolyte interface. When the amount of PPy addition was 2%, the capacity retention rate at 0.2C and 20 °C was 98.6% after 500 cycles, and the capacity retention rate at −15 °C was 89.0% after 200 cycles. The capacity retention rate of the 2% PPy coated Li<sub>1.04</sub>Fe<sub>0.3</sub>Mn<sub>0.7</sub>PO<sub>4</sub> sample was 20.4% higher than that of the pure Li<sub>1.04</sub>Fe<sub>0.3</sub>Mn<sub>0.7</sub>PO<sub>4</sub> sample after 200 cycles at −15 °C.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"414 ","pages":"Article 116648"},"PeriodicalIF":3.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.1016/j.ssi.2024.116642
Masami Sato , Mayu Muramatsu , Kenta Tozato , Shuji Moriguchi , Tatsuya Kawada , Kenjiro Terada
This study presents a procedure for creating a surrogate model for the transient electrochemical potential analysis of solid oxide fuel cells (SOFCs) by applying proper orthogonal decomposition (POD), which takes into account the characteristics of the spatial distribution of oxygen potential. In the proposed procedure, the time-variation of oxygen potential distributions in an SOFC are determined by numerical simulations under various analytical conditions with different explanatory variables or, equivalently, input parameters, and the results are stored in a separate data matrix for each component in accordance with certain rules. Then, POD is applied to each data matrix to create an individual surrogate model for the corresponding component using the dominant modes on the basis of contribution rates and/or mean square errors. The created models are used separately to obtain the oxygen potential distribution in the entire domain of the SOFC for an arbitrary set of input parameters at a low computational cost. A notable aspect of the proposed approach is that the positions and values of oxygen potential in two electrodes and interconnectors are data points and responses, respectively, but play opposite roles in the electrolyte region where the oxygen potential changes abruptly. Therefore, before combining the responses from the individual surrogate models, the oxygen potential values must be calculated backward from the coordinate values in the electrolyte. Representative numerical examples are presented to validate the appropriateness of the analysis procedure by applying the surrogate models with input parameters other than those used in the training process in comparison with the results obtained using the transient electrochemical potential.
本研究提出了一种程序,通过应用适当的正交分解(POD),为固体氧化物燃料电池(SOFC)的瞬态电化学电位分析创建代用模型,其中考虑到了氧电位空间分布的特点。在建议的程序中,SOFC 中氧电势分布的时间变化是在不同的分析条件下,通过不同的解释变量或输入参数进行数值模拟确定的,并按照一定的规则将结果存储在每个组件的单独数据矩阵中。然后,将 POD 应用于每个数据矩阵,根据贡献率和/或均方误差,使用主导模式为相应的组件创建一个单独的代理模型。创建的模型可单独使用,以较低的计算成本获得 SOFC 整个域中任意一组输入参数的氧势分布。所提方法的一个显著特点是,氧电势在两个电极和互联器中的位置和数值分别是数据点和响应,但在氧电势突然变化的电解质区域却起着相反的作用。因此,在合并各个代用模型的响应之前,必须根据电解质中的坐标值反向计算氧电位值。通过应用输入参数不同于训练过程中使用的参数的代用模型,并与使用瞬态电化学势获得的结果进行比较,展示了具有代表性的数值示例,以验证分析程序的适当性。
{"title":"Surrogate modeling for transient electrochemical potential analysis for SOFC using proper orthogonal decomposition","authors":"Masami Sato , Mayu Muramatsu , Kenta Tozato , Shuji Moriguchi , Tatsuya Kawada , Kenjiro Terada","doi":"10.1016/j.ssi.2024.116642","DOIUrl":"10.1016/j.ssi.2024.116642","url":null,"abstract":"<div><p>This study presents a procedure for creating a surrogate model for the transient electrochemical potential analysis of solid oxide fuel cells (SOFCs) by applying proper orthogonal decomposition (POD), which takes into account the characteristics of the spatial distribution of oxygen potential. In the proposed procedure, the time-variation of oxygen potential distributions in an SOFC are determined by numerical simulations under various analytical conditions with different explanatory variables or, equivalently, input parameters, and the results are stored in a separate data matrix for each component in accordance with certain rules. Then, POD is applied to each data matrix to create an individual surrogate model for the corresponding component using the dominant modes on the basis of contribution rates and/or mean square errors. The created models are used separately to obtain the oxygen potential distribution in the entire domain of the SOFC for an arbitrary set of input parameters at a low computational cost. A notable aspect of the proposed approach is that the positions and values of oxygen potential in two electrodes and interconnectors are data points and responses, respectively, but play opposite roles in the electrolyte region where the oxygen potential changes abruptly. Therefore, before combining the responses from the individual surrogate models, the oxygen potential values must be calculated backward from the coordinate values in the electrolyte. Representative numerical examples are presented to validate the appropriateness of the analysis procedure by applying the surrogate models with input parameters other than those used in the training process in comparison with the results obtained using the transient electrochemical potential.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"414 ","pages":"Article 116642"},"PeriodicalIF":3.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19DOI: 10.1016/j.ssi.2024.116646
Vadim Efremov, Mikhail Palatnikov, Olga Shcherbina, Diana Manukovskaya
We have obtained for the first time ferroelectric solid solutions (i.e. ceramic) Li0.12Na0.88TayNb1-yO3 (y = 0.15, 0.2, 0.25) with the perovskite structure under conditions of high pressures and temperatures. Their electrophysical characteristics have been studied. It has been established that the solid solutions ceramic samples have an orderly distorted crystal structure. The values of static specific conductivities have been determined as functions of temperature, the activation energy of charge carriers, and the real part of the permittivity. It has been established that the samples experience a number of successive phase transitions. For example, P → R → S(T2). It has been found that the electrical conductivity increases when the content of tantalum increases. The Li0.12Na0.88Ta0.25Nb0.75O3 ceramic sample has atypically high electrical conductivity values (close to high ionic conductivity) for this class of solid solutions over the entire studied temperature range. At the same time, the phase is metastable, and heating above the Curie temperature leads to its gradual destruction.
我们首次在高压和高温条件下获得了具有包晶体结构的铁电固溶体(即陶瓷)Li0.12Na0.88TayNb1-yO3(y = 0.15、0.2、0.25)。对它们的电物理特性进行了研究。结果表明,固溶陶瓷样品具有有序的扭曲晶体结构。作为温度、电荷载流子活化能和介电常数实部的函数,确定了静态比电导率值。已确定样品经历了多次连续相变。例如,P → R → S(T2)。研究发现,当钽的含量增加时,导电率也会增加。在整个研究温度范围内,Li0.12Na0.88Ta0.25Nb0.75O3 陶瓷样品的电导率值(接近于高离子电导率)在该类固溶体中都非常高。同时,该相是易变的,加热到居里温度以上会导致其逐渐破坏。
{"title":"Dependence of electrical properties on the concentration of tantalum in ceramics Li0.12Na0.88TayNb1-yO3 (y = 0.15, 0.2, 0.25) obtained at high pressure","authors":"Vadim Efremov, Mikhail Palatnikov, Olga Shcherbina, Diana Manukovskaya","doi":"10.1016/j.ssi.2024.116646","DOIUrl":"10.1016/j.ssi.2024.116646","url":null,"abstract":"<div><p>We have obtained for the first time ferroelectric solid solutions (i.e. ceramic) Li<sub>0.12</sub>Na<sub>0.88</sub>Ta<sub>y</sub>Nb<sub>1-y</sub>O<sub>3</sub> (y = 0.15, 0.2, 0.25) with the perovskite structure under conditions of high pressures and temperatures. Their electrophysical characteristics have been studied. It has been established that the solid solutions ceramic samples have an orderly distorted crystal structure. The values of static specific conductivities have been determined as functions of temperature, the activation energy of charge carriers, and the real part of the permittivity. It has been established that the samples experience a number of successive phase transitions. For example, P → R → S(T<sub>2</sub>). It has been found that the electrical conductivity increases when the content of tantalum increases. The Li<sub>0.12</sub>Na<sub>0.88</sub>Ta<sub>0.25</sub>Nb<sub>0.75</sub>O<sub>3</sub> ceramic sample has atypically high electrical conductivity values (close to high ionic conductivity) for this class of solid solutions over the entire studied temperature range. At the same time, the phase is metastable, and heating above the Curie temperature leads to its gradual destruction.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"414 ","pages":"Article 116646"},"PeriodicalIF":3.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141729344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19DOI: 10.1016/j.ssi.2024.116644
A.A. Lysova , I.I. Ponomarev , A.B. Yaroslavtsev
Polybenzimidazoles (PBI) doped with phosphoric acid are a promising electrolyte for medium-temperature fuel cells. However, to be effective at high temperatures in the presence of acid, the mechanical and conductive properties of the material must be stable and no critical increase in gas permeability is required. This work proposes an approach to improve the properties of PBI-O-PhT-based materials by combining two previously known methods: covalent crosslinking with silane (3-bromopropyl)trimethoxysilane (SiBr) and doping with silicon oxide (SiO2), including grafted imidazolinpropyl groups (SiO2Im). The silanol cross-linked samples exhibited higher stability when tested with Fenton's reagent and retained their morphological integrity even after 360 h of testing. The study shows that covalent crosslinking improves the stability of dopant particles in the membrane matrix and prevents their leaching during acid treatment. Additionally, the incorporation of silicon oxides enhances the proton conductivity of samples with covalent cross-linking and reduces gas permeability compared to the original PBI membrane. Proton conductivity of the covalent cross-linked samples reaches 50 and 55 mS·cm−1 at oxide contents of 5 wt% SiO2Im and 10 wt% SiO2, respectively.
{"title":"New hybrid materials based on cardo polybenzimidazole PBI-O-PhT and modified silica with covalent silanol cross-linking","authors":"A.A. Lysova , I.I. Ponomarev , A.B. Yaroslavtsev","doi":"10.1016/j.ssi.2024.116644","DOIUrl":"10.1016/j.ssi.2024.116644","url":null,"abstract":"<div><p>Polybenzimidazoles (PBI) doped with phosphoric acid are a promising electrolyte for medium-temperature fuel cells. However, to be effective at high temperatures in the presence of acid, the mechanical and conductive properties of the material must be stable and no critical increase in gas permeability is required. This work proposes an approach to improve the properties of PBI-O-PhT-based materials by combining two previously known methods: covalent crosslinking with silane (3-bromopropyl)trimethoxysilane (Si<img>Br) and doping with silicon oxide (SiO<sub>2</sub>), including grafted imidazolinpropyl groups (SiO<sub>2</sub>Im). The silanol cross-linked samples exhibited higher stability when tested with Fenton's reagent and retained their morphological integrity even after 360 h of testing. The study shows that covalent crosslinking improves the stability of dopant particles in the membrane matrix and prevents their leaching during acid treatment. Additionally, the incorporation of silicon oxides enhances the proton conductivity of samples with covalent cross-linking and reduces gas permeability compared to the original PBI membrane. Proton conductivity of the covalent cross-linked samples reaches 50 and 55 mS·cm<sup>−1</sup> at oxide contents of 5 wt% SiO<sub>2</sub>Im and 10 wt% SiO<sub>2</sub>, respectively.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"414 ","pages":"Article 116644"},"PeriodicalIF":3.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141729345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19DOI: 10.1016/j.ssi.2024.116643
Yanmei Zuo, Deqi Huang, Zhifang Zuo
As a new negative material for sodium-ion batteries, NaTi2(PO4)3 has received great attention because of its excellent safety, abundant natural resources, low toxicity and two-electron reactions. However, the pure NaTi2(PO4)3 anode material displays a bad conductivity, resulting in an inferior electrochemical performance for sodium energy storage. In this work, we introduce a good route to fabricate the conductive PTh-promoted NaTi2(PO4)3 (NaTi2(PO4)3@PTh) composite with superior rate property and superior cycle stability for the first time. In this fabricated material, the conductive PTh layer has been successfully coated on the NaTi2(PO4)3 nanoparticles. Compared to NaTi2(PO4)3, the prepared NaTi2(PO4)3@PTh anode possesses better cycle stability and higher capacity. It shows the capacity of 129.5 mAh g−1 at 0.1C and presents the high capacity retention of around 98.3% at 10C over 300 cycles. Therefore, this fabricated NaTi2(PO4)3@PTh nanocomposite can be employed as the novel negative electrode in sodium-ion storage.
{"title":"Construction of conductive PTh-promoted NaTi2(PO4)3 nanocomposite with two-electron reactions for sodium energy storage","authors":"Yanmei Zuo, Deqi Huang, Zhifang Zuo","doi":"10.1016/j.ssi.2024.116643","DOIUrl":"10.1016/j.ssi.2024.116643","url":null,"abstract":"<div><p>As a new negative material for sodium-ion batteries, NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> has received great attention because of its excellent safety, abundant natural resources, low toxicity and two-electron reactions. However, the pure NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> anode material displays a bad conductivity, resulting in an inferior electrochemical performance for sodium energy storage. In this work, we introduce a good route to fabricate the conductive PTh-promoted NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>@PTh) composite with superior rate property and superior cycle stability for the first time. In this fabricated material, the conductive PTh layer has been successfully coated on the NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> nanoparticles. Compared to NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>, the prepared NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>@PTh anode possesses better cycle stability and higher capacity. It shows the capacity of 129.5 mAh g<sup>−1</sup> at 0.1C and presents the high capacity retention of around 98.3% at 10C over 300 cycles. Therefore, this fabricated NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>@PTh nanocomposite can be employed as the novel negative electrode in sodium-ion storage.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"414 ","pages":"Article 116643"},"PeriodicalIF":3.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141728677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We have reported that Zr substitution for Y in Ba3Y4O9 enhances the chemical stability in humidified atmospheres at intermediate temperatures and the Zr-substituted Ba3Y4O9 exhibits oxide-ion conduction probably mediated by oxide-ion vacancies. However, in addition to the problem of Si contamination in the samples, the long-time chemical stability and the transport number of ionic conductions were uncleared. In this work, we revisited the chemical stability and conductivity behavior of Ba3Y4O9 with Zr substitution prepared by a modified procedure to suppress the contamination. Besides, we prepared Ba3Y4O9 substituted by the other tetravalent cations (Ce, Sn, and Ti) and investigated the difference in the material properties from the Zr substitution samples. We carried out powder X-ray diffraction analyses for the evaluation of chemical stability in humidified atmospheres and electrochemical impedance spectroscopy to measure total conductivities of the substituted Ba3Y4O9. As a result, we confirmed that Ce and Sn as well as Zr can substitute 20 mol% Y in Ba3Y4O9 whereas the solubility of Ti in Ba3Y4O9 is about 3 mol% at 1600 °C. Besides, the chemical stability of the substituted Ba3Y4O9 strongly depended on not only the substitution level but also the substitution elements. Moreover, the substituted Ba3Y4O9 was considered to be an almost pure oxide-ion conductor because of the little sensitivity of electrical conductivity to both humidity and partial oxygen pressure.
{"title":"Effect of tetravalent cation substitution on oxide-ion conduction and chemical stability of perovskite-related material Ba3Y4O9","authors":"Atsunori Hashimoto, Katsuhiro Ueno, Koudai Nakatani, Kazuaki Toyoura, Naoyuki Hatada, Tetsuya Uda","doi":"10.1016/j.ssi.2024.116641","DOIUrl":"10.1016/j.ssi.2024.116641","url":null,"abstract":"<div><p>We have reported that Zr substitution for Y in Ba<sub>3</sub>Y<sub>4</sub>O<sub>9</sub> enhances the chemical stability in humidified atmospheres at intermediate temperatures and the Zr-substituted Ba<sub>3</sub>Y<sub>4</sub>O<sub>9</sub> exhibits oxide-ion conduction probably mediated by oxide-ion vacancies. However, in addition to the problem of Si contamination in the samples, the long-time chemical stability and the transport number of ionic conductions were uncleared. In this work, we revisited the chemical stability and conductivity behavior of Ba<sub>3</sub>Y<sub>4</sub>O<sub>9</sub> with Zr substitution prepared by a modified procedure to suppress the contamination. Besides, we prepared Ba<sub>3</sub>Y<sub>4</sub>O<sub>9</sub> substituted by the other tetravalent cations (Ce, Sn, and Ti) and investigated the difference in the material properties from the Zr substitution samples. We carried out powder X-ray diffraction analyses for the evaluation of chemical stability in humidified atmospheres and electrochemical impedance spectroscopy to measure total conductivities of the substituted Ba<sub>3</sub>Y<sub>4</sub>O<sub>9</sub>. As a result, we confirmed that Ce and Sn as well as Zr can substitute 20 mol% Y in Ba<sub>3</sub>Y<sub>4</sub>O<sub>9</sub> whereas the solubility of Ti in Ba<sub>3</sub>Y<sub>4</sub>O<sub>9</sub> is about 3 mol% at 1600 °C. Besides, the chemical stability of the substituted Ba<sub>3</sub>Y<sub>4</sub>O<sub>9</sub> strongly depended on not only the substitution level but also the substitution elements. Moreover, the substituted Ba<sub>3</sub>Y<sub>4</sub>O<sub>9</sub> was considered to be an almost pure oxide-ion conductor because of the little sensitivity of electrical conductivity to both humidity and partial oxygen pressure.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"414 ","pages":"Article 116641"},"PeriodicalIF":3.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141639115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Given the rising need for energy storage systems with high energy density and extended durability, lithium‑sulfur batteries have garnered interest due to their elevated theoretical specific capacity and energy density. However, the practical application of lithium‑sulfur (LiS) batteries faces several obstacles, including the low conductivity of sulfur and the dissolution of lithium polysulphides during cycling, leading to low cycling stability and capacity degradation. In this study, which is dedicated to solving the problems of poor conductivity and dissolution of polysulfides faced by lithium‑sulfur (LiS) batteries in practical applications, NiCoMnSe electrode materials were successfully synthesised by employing ZIF-67 as a template and optimised by the addition of carbon nanotubes (CNT). The unique structure and excellent performance of the NiCoMnSe-CNT-2 composites were verified by various characterisation means. The experimental results show that the initial charge-discharge capacity of NiCoMnSe-CNT-2 composite is as high as 1387.3 mAh/g at a current density of 0.2C. After 200 charge-discharge cycles, the specific capacity of NiCoMnSe-CNT-2 composite can still remain at 1084.86 mAh/g. The study therefore makes an important contribution to progress in the field of clean energy storage.
{"title":"Application of carbon nanotubes doped with zif-67 derived nickel‑cobalt‑manganese selenide in cathode materials of lithium‑sulfur batteries","authors":"Wenting Hu, Wangjun Feng, Yueping Niu, Zhifeng Zhao, Li Zhang, XiaoPing Zheng","doi":"10.1016/j.ssi.2024.116623","DOIUrl":"https://doi.org/10.1016/j.ssi.2024.116623","url":null,"abstract":"<div><p>Given the rising need for energy storage systems with high energy density and extended durability, lithium‑sulfur batteries have garnered interest due to their elevated theoretical specific capacity and energy density. However, the practical application of lithium‑sulfur (Li<img>S) batteries faces several obstacles, including the low conductivity of sulfur and the dissolution of lithium polysulphides during cycling, leading to low cycling stability and capacity degradation. In this study, which is dedicated to solving the problems of poor conductivity and dissolution of polysulfides faced by lithium‑sulfur (Li<img>S) batteries in practical applications, NiCoMnSe electrode materials were successfully synthesised by employing ZIF-67 as a template and optimised by the addition of carbon nanotubes (CNT). The unique structure and excellent performance of the NiCoMnSe-CNT-2 composites were verified by various characterisation means. The experimental results show that the initial charge-discharge capacity of NiCoMnSe-CNT-2 composite is as high as 1387.3 mAh/g at a current density of 0.2C. After 200 charge-discharge cycles, the specific capacity of NiCoMnSe-CNT-2 composite can still remain at 1084.86 mAh/g. The study therefore makes an important contribution to progress in the field of clean energy storage.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"414 ","pages":"Article 116623"},"PeriodicalIF":3.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141596681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-09DOI: 10.1016/j.ssi.2024.116635
Mingjie Kong , Jian-Fang Wu
Lithium-ion conducting oxides, prepared by conventional ball-milling and subsequently calcination at high temperatures, are always in microscales, which inevitably limits their application in composite metallic anodes. Herein, 20 nm-scaled Li6.1Ga0.3La3Zr2O12 (LLZO) and 10 nm-scaled Li0.3La0.57TiO3 (LLTO) oxides are fabricated by a modified sol-gel-calcination method. The gelation by the esterification reaction between citric acid and ethylene glycol potential create nanoscale zones in the molecular-level homogeneous mixed solution, resulting in LLTO and LLZO nanoparticles separated by carbonized productions. These carbonized products could suppress the growth of nanoparticles into micrometers in the oxidation process of these residual products, and finally, nanoscale LLTO and LLZO lithium-ion conducting oxides were evented. Solid electrolytes prepared using nanoscale LLTO and LLZO deliver comparable high ionic conductivities, indicating promising applications in all-solid-state lithium batteries.
{"title":"Nanometer scale lithium-ion conducting oxides: Li6.1Ga0.3La3Zr2O12 and Li0.3La0.57TiO3","authors":"Mingjie Kong , Jian-Fang Wu","doi":"10.1016/j.ssi.2024.116635","DOIUrl":"https://doi.org/10.1016/j.ssi.2024.116635","url":null,"abstract":"<div><p>Lithium-ion conducting oxides, prepared by conventional ball-milling and subsequently calcination at high temperatures, are always in microscales, which inevitably limits their application in composite metallic anodes. Herein, 20 nm-scaled Li<sub>6.1</sub>Ga<sub>0.3</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO) and 10 nm-scaled Li<sub>0.3</sub>La<sub>0.57</sub>TiO<sub>3</sub> (LLTO) oxides are fabricated by a modified sol-gel-calcination method. The gelation by the esterification reaction between citric acid and ethylene glycol potential create nanoscale zones in the molecular-level homogeneous mixed solution, resulting in LLTO and LLZO nanoparticles separated by carbonized productions. These carbonized products could suppress the growth of nanoparticles into micrometers in the oxidation process of these residual products, and finally, nanoscale LLTO and LLZO lithium-ion conducting oxides were evented. Solid electrolytes prepared using nanoscale LLTO and LLZO deliver comparable high ionic conductivities, indicating promising applications in all-solid-state lithium batteries.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"414 ","pages":"Article 116635"},"PeriodicalIF":3.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141596682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}