首页 > 最新文献

Solid State Ionics最新文献

英文 中文
Zn-doped V2O5 film electrodes as cathode materials for high-performance thin-film zinc-ion batteries 作为高性能薄膜锌离子电池阴极材料的掺锌 V2O5 薄膜电极
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-29 DOI: 10.1016/j.ssi.2024.116658
Yigao Zhang , Haiyan Xu , Yang He , Hanxiao Bian , Renhua Jiang , Qiang Zhao , Dongcai Li , Aiguo Wang , Daosheng Sun

Zn-doped V2O5 film electrodes were prepared by in-situ growth on indium‑tin oxide (ITO) conductive glass by a low-temperature liquid-phase deposition method and calcined by calcination treatment, and assembled into thin-film zinc-ion batteries (ZIBs). After galvanostatic charge/discharge (GCD) tests with 90 and 200 charge/discharge cycles, the ZIBs system provided specific capacities of 95.7 mAh m−2 and 63.9 mAh m−2 with capacity retention rates of 97.88% and 78.72%, respectively. The electrochemical reaction process of the Zn-doped V2O5 film electrode was analyzed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) to understand the insertion/extraction mechanism of Zn2+. The doping of appropriate amount of Zn2+ in the preparation plays the role of “pillar”, which helps to stabilize the structure of V2O5 and improve the cycling stability and lifetime. Therefore, the research may provide a new idea for the assembly and preparation of thin-film ZIBs with improved performance.

采用低温液相沉积法在铟锡氧化物(ITO)导电玻璃上原位生长制备了掺锌 V2O5 薄膜电极,并通过煅烧处理将其组装成薄膜锌离子电池(ZIBs)。经过 90 和 200 次充放电循环的电静态充放电(GCD)测试,ZIBs 系统的比容量分别为 95.7 mAh m-2 和 63.9 mAh m-2,容量保持率分别为 97.88% 和 78.72%。通过 X 射线衍射 (XRD) 和 X 射线光电子能谱 (XPS) 分析了掺杂 Zn 的 V2O5 薄膜电极的电化学反应过程,以了解 Zn2+ 的插入/萃取机制。制备过程中适量 Zn2+ 的掺杂起到了 "支柱 "的作用,有助于稳定 V2O5 的结构,提高其循环稳定性和寿命。因此,该研究可为组装和制备性能更优的薄膜 ZIB 提供新思路。
{"title":"Zn-doped V2O5 film electrodes as cathode materials for high-performance thin-film zinc-ion batteries","authors":"Yigao Zhang ,&nbsp;Haiyan Xu ,&nbsp;Yang He ,&nbsp;Hanxiao Bian ,&nbsp;Renhua Jiang ,&nbsp;Qiang Zhao ,&nbsp;Dongcai Li ,&nbsp;Aiguo Wang ,&nbsp;Daosheng Sun","doi":"10.1016/j.ssi.2024.116658","DOIUrl":"10.1016/j.ssi.2024.116658","url":null,"abstract":"<div><p>Zn-doped V<sub>2</sub>O<sub>5</sub> film electrodes were prepared by in-situ growth on indium‑tin oxide (ITO) conductive glass by a low-temperature liquid-phase deposition method and calcined by calcination treatment, and assembled into thin-film zinc-ion batteries (ZIBs). After galvanostatic charge/discharge (GCD) tests with 90 and 200 charge/discharge cycles, the ZIBs system provided specific capacities of 95.7 mAh m<sup>−2</sup> and 63.9 mAh m<sup>−2</sup> with capacity retention rates of 97.88% and 78.72%, respectively. The electrochemical reaction process of the Zn-doped V<sub>2</sub>O<sub>5</sub> film electrode was analyzed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) to understand the insertion/extraction mechanism of Zn<sup>2+</sup>. The doping of appropriate amount of Zn<sup>2+</sup> in the preparation plays the role of “pillar”, which helps to stabilize the structure of V<sub>2</sub>O<sub>5</sub> and improve the cycling stability and lifetime. Therefore, the research may provide a new idea for the assembly and preparation of thin-film ZIBs with improved performance.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"416 ","pages":"Article 116658"},"PeriodicalIF":3.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142095214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pre-oxidation modification of bituminous coal-based hard carbon for high-quality sodium ion storage 预氧化改性烟煤基硬质碳以储存高质量钠离子
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-24 DOI: 10.1016/j.ssi.2024.116668
Youyu Zhu , Xiaofang Tang , Zhenghan Kong , Zonglin You , Yixi Zhang , Yingfeng Duan , Yating Zhang

Bituminous coal, with its moderate anthracene content, high reactivity, and ease of modulation, stands out as a favorable choice as a precursor for hard carbon. However, due to the highly condensed aromatic rings in bituminous coal, it tends to form highly graphitized structures after high-temperature carbonization. Therefore, pretreatment of bituminous coal is necessary to suppress the graphitization process. Here, we combine pre-oxidation techniques with high-temperature carbonization to produce a cost-effective, high carbon yield, and superior performance coal-based hard carbon. When utilized as anode for sodium-ion batteries, the prepared coal-based hard carbon exhibits a high reversible capacity of 313.5 mAh g−1, along with excellent rate capability and long cycling stability.

烟煤具有蒽含量适中、反应活性高、易于调制等特点,是硬质碳前驱体的理想选择。然而,由于烟煤中的芳香环高度缩合,在高温碳化后容易形成高度石墨化的结构。因此,有必要对烟煤进行预处理,以抑制石墨化过程。在这里,我们将预氧化技术与高温碳化技术相结合,生产出了一种成本低、产炭率高、性能优越的煤基硬质碳。将制备的煤基硬质碳用作钠离子电池的负极时,其可逆容量高达 313.5 mAh g-1,同时还具有优异的速率能力和长循环稳定性。
{"title":"Pre-oxidation modification of bituminous coal-based hard carbon for high-quality sodium ion storage","authors":"Youyu Zhu ,&nbsp;Xiaofang Tang ,&nbsp;Zhenghan Kong ,&nbsp;Zonglin You ,&nbsp;Yixi Zhang ,&nbsp;Yingfeng Duan ,&nbsp;Yating Zhang","doi":"10.1016/j.ssi.2024.116668","DOIUrl":"10.1016/j.ssi.2024.116668","url":null,"abstract":"<div><p>Bituminous coal, with its moderate anthracene content, high reactivity, and ease of modulation, stands out as a favorable choice as a precursor for hard carbon. However, due to the highly condensed aromatic rings in bituminous coal, it tends to form highly graphitized structures after high-temperature carbonization. Therefore, pretreatment of bituminous coal is necessary to suppress the graphitization process. Here, we combine pre-oxidation techniques with high-temperature carbonization to produce a cost-effective, high carbon yield, and superior performance coal-based hard carbon. When utilized as anode for sodium-ion batteries, the prepared coal-based hard carbon exhibits a high reversible capacity of 313.5 mAh g<sup>−1</sup>, along with excellent rate capability and long cycling stability.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"416 ","pages":"Article 116668"},"PeriodicalIF":3.0,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142058287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hollow nickel sources for improving nickel utilization in Zebra batteries 提高斑马电池镍利用率的中空镍源
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-22 DOI: 10.1016/j.ssi.2024.116660
Xin Ao , Haonan Chen , Kai Deng , Meifen Wu , Xiangwei Wu , Zhaoyin Wen

The Zebra (Na-NiCl2) batteries are regarded as a promising option for large-scale electrical energy storage due to their plentiful electrode material resources, high energy density, and safety features. In the cathode of Zebra battery, the nickel powders serve as both an active material and a conductive agent. In practice, its amount is significantly greater than its theoretical usage, often exceeding three times the theoretical amount. Hence, the presence of ultra-excessive nickel results in high material costs, posing obstacles to the wider implementation of Zebra batteries. To address this problem, we introduce hollow nickel source as active material to improve the nickel utilization in Zebra battery. In this work, we assemble Zebra batteries using nickel hollow spheres (NHS) with sizes of ∼200 nm, ∼500 nm, ∼1 μm and ∼ 5 μm as nickel source. The battery using NHSs with a size of 1 μm exhibits the best cycling performance and the lowest polarization voltage. By reducing the Ni(NHS, ∼1 μm)/NaCl mass ratio to 1.0, 60% theoretical capacity can be achieved after 170 cycles at 260 °C, which surpasses the traditional batteries using solid nickel source at the same Ni/NaCl ratio. This performance is comparable to that of traditional solid nickel sources with a mass ratio of 1.5 to NaCl. Therefore, using NHS as the nickel source in Zebra batteries reduces nickel usage by 33% without compromising performance.

斑马(Na-NiCl2)电池因其电极材料资源丰富、能量密度高和安全等特点,被认为是大规模电能存储的一种有前途的选择。在斑马电池的阴极中,镍粉既是活性材料,又是导电剂。在实际应用中,其用量远远大于理论用量,通常超过理论用量的三倍。因此,超量镍的存在导致材料成本居高不下,给斑马电池的广泛应用带来了障碍。为解决这一问题,我们引入了中空镍源作为活性材料,以提高斑马电池中镍的利用率。在这项工作中,我们使用尺寸为 ∼200 nm、∼500 nm、∼1 μm 和 ∼5 μm 的镍空心球(NHS)作为镍源组装斑马电池。使用尺寸为 1 μm 的 NHS 的电池显示出最佳的循环性能和最低的极化电压。将 Ni(NHS,∼1 μm)/NaCl 的质量比降至 1.0,在 260 °C 下循环 170 次后,理论容量可达 60%,超过了在相同 Ni/NaCl 比率下使用固体镍源的传统电池。这一性能与氯化钠质量比为 1.5 的传统固体镍源相当。因此,在斑马电池中使用 NHS 作为镍源可减少 33% 的镍用量,而性能却不会受到影响。
{"title":"Hollow nickel sources for improving nickel utilization in Zebra batteries","authors":"Xin Ao ,&nbsp;Haonan Chen ,&nbsp;Kai Deng ,&nbsp;Meifen Wu ,&nbsp;Xiangwei Wu ,&nbsp;Zhaoyin Wen","doi":"10.1016/j.ssi.2024.116660","DOIUrl":"10.1016/j.ssi.2024.116660","url":null,"abstract":"<div><p>The Zebra (Na-NiCl<sub>2</sub>) batteries are regarded as a promising option for large-scale electrical energy storage due to their plentiful electrode material resources, high energy density, and safety features. In the cathode of Zebra battery, the nickel powders serve as both an active material and a conductive agent. In practice, its amount is significantly greater than its theoretical usage, often exceeding three times the theoretical amount. Hence, the presence of ultra-excessive nickel results in high material costs, posing obstacles to the wider implementation of Zebra batteries. To address this problem, we introduce hollow nickel source as active material to improve the nickel utilization in Zebra battery. In this work, we assemble Zebra batteries using nickel hollow spheres (NHS) with sizes of ∼200 nm, ∼500 nm, ∼1 μm and ∼ 5 μm as nickel source. The battery using NHSs with a size of 1 μm exhibits the best cycling performance and the lowest polarization voltage. By reducing the Ni(NHS, ∼1 μm)/NaCl mass ratio to 1.0, 60% theoretical capacity can be achieved after 170 cycles at 260 °C, which surpasses the traditional batteries using solid nickel source at the same Ni/NaCl ratio. This performance is comparable to that of traditional solid nickel sources with a mass ratio of 1.5 to NaCl. Therefore, using NHS as the nickel source in Zebra batteries reduces nickel usage by 33% without compromising performance.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"415 ","pages":"Article 116660"},"PeriodicalIF":3.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142040886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weakened functional group activity enables the uniform distribution of the gel electrolyte to achieve the high-performance of Li-ion batteries 弱化的官能团活性使凝胶电解质分布均匀,从而实现了锂离子电池的高性能
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-22 DOI: 10.1016/j.ssi.2024.116659
Jiaoli Wang , Maohui Bai , Mengran Wang , Bo Hong , Yexiang Liu

Electrolyte gelation is considered to be one of the main routes to solve the safety problem of liquid electrolytes. However, the distribution of gel polymer electrolyte (GPE) on the surface of electrodes and the mechanism of their effect on the performance of battery are still unknown. Here, methyl methacrylate (MMA) containing methyl (-CH3) and methyl-2-cyanoacrylate (MCA) containing cyanide (-CN) are employed as representative monomers to explore the relationship between gel distribution and battery performance. Due to the stronger electron-withdrawing properties, PMCA gel has shorter chain length and greater shrinkage, showing many cracks on the electrode surface, while PMMA gel can evenly cover the surfaces of electrodes. As a result, the capacity retention rate of 1.4 Ah NCM811/Gr pouch cells with PMMA is 93.5% for 500 cycles at 25 °C and 91.5% for 600 cycles at 60 °C, which these of the cells with PMCA are 58.8% for 266 cycles at 25 °C and 69.1% for 327 cycles at 60 °C. XPS analysis of the electrode sheets before and after cycling reveal that the PMCA-electrode has a large number of rzero valent lithium element precipitation, whereas the PMMA-electrode has the more stable interface film. This study indicates that the uniform distribution of gel electrolyte with -CH3 functional group on the electrode surface can improve the electrochemical performance of NCM811/Gr battery, which has the guiding significance.

电解质凝胶化被认为是解决液态电解质安全问题的主要途径之一。然而,凝胶聚合物电解质(GPE)在电极表面的分布及其对电池性能的影响机制仍是未知数。本文以含甲基(-CH3)的甲基丙烯酸甲酯(MMA)和含氰化物(-CN)的 2-氰基丙烯酸甲酯(MCA)为代表性单体,探讨凝胶分布与电池性能之间的关系。由于 PMCA 凝胶具有更强的电子吸收特性,因此其链长更短,收缩率更大,电极表面会出现许多裂缝,而 PMMA 凝胶则能均匀地覆盖电极表面。因此,使用 PMMA 的 1.4 Ah NCM811/Gr 袋装电池在 25 °C 下循环 500 次的容量保持率为 93.5%,在 60 °C 下循环 600 次的容量保持率为 91.5%,而使用 PMCA 的电池在 25 °C 下循环 266 次的容量保持率为 58.8%,在 60 °C 下循环 327 次的容量保持率为 69.1%。对电极片循环前后的 XPS 分析表明,PMCA 电极有大量的零价锂元素析出,而 PMMA 电极的界面膜更为稳定。该研究表明,在电极表面均匀分布带有-CH3官能团的凝胶电解质可以改善NCM811/Gr电池的电化学性能,具有指导意义。
{"title":"Weakened functional group activity enables the uniform distribution of the gel electrolyte to achieve the high-performance of Li-ion batteries","authors":"Jiaoli Wang ,&nbsp;Maohui Bai ,&nbsp;Mengran Wang ,&nbsp;Bo Hong ,&nbsp;Yexiang Liu","doi":"10.1016/j.ssi.2024.116659","DOIUrl":"10.1016/j.ssi.2024.116659","url":null,"abstract":"<div><p>Electrolyte gelation is considered to be one of the main routes to solve the safety problem of liquid electrolytes. However, the distribution of gel polymer electrolyte (GPE) on the surface of electrodes and the mechanism of their effect on the performance of battery are still unknown. Here, methyl methacrylate (MMA) containing methyl (-CH<sub>3</sub>) and methyl-2-cyanoacrylate (MCA) containing cyanide (-CN) are employed as representative monomers to explore the relationship between gel distribution and battery performance. Due to the stronger electron-withdrawing properties, PMCA gel has shorter chain length and greater shrinkage, showing many cracks on the electrode surface, while PMMA gel can evenly cover the surfaces of electrodes. As a result, the capacity retention rate of 1.4 Ah NCM811/Gr pouch cells with PMMA is 93.5% for 500 cycles at 25 °C and 91.5% for 600 cycles at 60 °C, which these of the cells with PMCA are 58.8% for 266 cycles at 25 °C and 69.1% for 327 cycles at 60 °C. XPS analysis of the electrode sheets before and after cycling reveal that the PMCA-electrode has a large number of rzero valent lithium element precipitation, whereas the PMMA-electrode has the more stable interface film. This study indicates that the uniform distribution of gel electrolyte with -CH<sub>3</sub> functional group on the electrode surface can improve the electrochemical performance of NCM811/Gr battery, which has the guiding significance.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"415 ","pages":"Article 116659"},"PeriodicalIF":3.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142044569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-step synthesis of the CoO nanoarrays anchored on nickel foam as a three-dimensional current collector for lithium‑sulfur batteries 一步合成锚定在泡沫镍上的 CoO 纳米阵列,作为锂硫电池的三维集流器
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-20 DOI: 10.1016/j.ssi.2024.116661
Hui Li , Mingjiang Li , Jingzhi Rong , Tongye Wei , Kailing Sun , Yanhuai Ding , Gangtie Lei , Zhaohui Li

Practical application of lithium‑sulfur batteries (LSBs) is severely impeded by the poor conductivity of sulfur/Li2S, large-volume change of active materials, shuttle effect and sluggish conversion reaction kinetics of polysulfides. To address these issues, a three-dimensional (3D) substrate, which was prepared by anchoring CoO nanoarrays on the surface of nickel foam (NF@CoO) through one-step hydrothermal treatment, is used as the current collector of the sulfur cathode. The as-prepared S/NF@CoO cathode presents excellent electrochemical performances due to the high electronic conductivity of nickel network, chemical adsorption and catalysis of CoO nanoarrays to LiPSs, and highly porous structure of nickel foam. The cathode with a sulfur loading of 2.72 mg cm−2 can deliver an initial capacity of 490 mAh g−1 at 1C, and 306 mAh g−1 after 500 cycles. When the sulfur loading is increased to 5.12 mg cm−2, the resultant cathode can achieve a capacity of 2.3 mAh cm−2 at 0.5C. The results demonstrate that the 3D NF@CoO collector with synergistic effects of catalysis and chemisorption on LiPSs enable the sulfur cathode thick with meeting the requirements of practical use of LSBs.

硫/Li2S导电性差、活性材料体积变化大、穿梭效应以及多硫化物转化反应动力学缓慢等问题严重阻碍了锂硫电池(LSBs)的实际应用。为了解决这些问题,通过一步水热处理在泡沫镍(NF@CoO)表面锚定 CoO 纳米阵列而制备的三维(3D)基底被用作硫阴极的集流器。由于镍网络的高电子传导性、CoO 纳米阵列对锂离子电池的化学吸附和催化作用以及泡沫镍的高多孔结构,制备的 S/NF@CoO 阴极具有优异的电化学性能。硫负荷为 2.72 mg cm-2 的阴极在 1C 时的初始容量为 490 mAh g-1,循环 500 次后的容量为 306 mAh g-1。当硫含量增加到 5.12 mg cm-2 时,产生的阴极在 0.5C 时的容量可达 2.3 mAh cm-2。这些结果表明,三维 NF@CoO 集流体在催化和化学吸附方面对锂离子电池具有协同效应,因此可以制成符合 LSB 实际使用要求的厚硫阴极。
{"title":"One-step synthesis of the CoO nanoarrays anchored on nickel foam as a three-dimensional current collector for lithium‑sulfur batteries","authors":"Hui Li ,&nbsp;Mingjiang Li ,&nbsp;Jingzhi Rong ,&nbsp;Tongye Wei ,&nbsp;Kailing Sun ,&nbsp;Yanhuai Ding ,&nbsp;Gangtie Lei ,&nbsp;Zhaohui Li","doi":"10.1016/j.ssi.2024.116661","DOIUrl":"10.1016/j.ssi.2024.116661","url":null,"abstract":"<div><p>Practical application of lithium‑sulfur batteries (LSBs) is severely impeded by the poor conductivity of sulfur/Li<sub>2</sub>S, large-volume change of active materials, shuttle effect and sluggish conversion reaction kinetics of polysulfides. To address these issues, a three-dimensional (3D) substrate, which was prepared by anchoring CoO nanoarrays on the surface of nickel foam (NF@CoO) through one-step hydrothermal treatment, is used as the current collector of the sulfur cathode. The as-prepared S/NF@CoO cathode presents excellent electrochemical performances due to the high electronic conductivity of nickel network, chemical adsorption and catalysis of CoO nanoarrays to LiPSs, and highly porous structure of nickel foam. The cathode with a sulfur loading of 2.72 mg cm<sup>−2</sup> can deliver an initial capacity of 490 mAh g<sup>−1</sup> at 1C, and 306 mAh g<sup>−1</sup> after 500 cycles. When the sulfur loading is increased to 5.12 mg cm<sup>−2</sup>, the resultant cathode can achieve a capacity of 2.3 mAh cm<sup>−2</sup> at 0.5C. The results demonstrate that the 3D NF@CoO collector with synergistic effects of catalysis and chemisorption on LiPSs enable the sulfur cathode thick with meeting the requirements of practical use of LSBs.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"415 ","pages":"Article 116661"},"PeriodicalIF":3.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142012928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A facile one-pot synthesis of ultrafine Sn/N-doped carbon/graphene oxide composite for superior lithium-ion storage 超细 Sn/N 掺杂碳/氧化石墨烯复合材料的简便一锅合成法,可实现优异的锂离子存储性能
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-14 DOI: 10.1016/j.ssi.2024.116655
Xiaotong Jia, Haoyue Li, Jianwen Yang, Yanwei Li, Shunhua Xiao, Bin Huang

Metallic Sn is considered as a promising candidate of anode materials for lithium-ion batteries (LIBs) owing to its high capacity and ease of preparation. However, it undergoes severe mechanical damage after several lithiation/delithiation cycles due to the large volume change (∼300%). In this study, ultrafine Sn nanograins are embedded in N-doped amorphous carbon and then anchored onto reduced graphene oxide (rGO) via a facile one-pot synthesis route. The resulting composite consists of highly active Sn nanograins, three-dimensional carbon frameworks and highly conductive graphene oxide matrices. This unique configuration endows the composite with promising electrochemical performance. It delivers a reversible capacity of 1392 mAh g−1 at a current density of 50 mA g−1. When cycled after 300 times at 500 mA g−1, it still maintains a reversible capacity of 805 mAh g−1.

金属锡因其高容量和易于制备而被认为是锂离子电池(LIB)负极材料的理想候选材料。然而,由于体积变化较大(∼300%),金属锡在多次锂化/退锂循环后会发生严重的机械损伤。在本研究中,通过简单的一锅合成路线,将超细锡纳米晶粒嵌入掺杂 N 的无定形碳中,然后锚定到还原氧化石墨烯(rGO)上。由此产生的复合材料由高活性锡纳米晶粒、三维碳框架和高导电性氧化石墨烯基质组成。这种独特的结构赋予了该复合材料良好的电化学性能。在电流密度为 50 mA g-1 时,它的可逆容量为 1392 mAh g-1。在 500 mA g-1 下循环 300 次后,它仍能保持 805 mAh g-1 的可逆容量。
{"title":"A facile one-pot synthesis of ultrafine Sn/N-doped carbon/graphene oxide composite for superior lithium-ion storage","authors":"Xiaotong Jia,&nbsp;Haoyue Li,&nbsp;Jianwen Yang,&nbsp;Yanwei Li,&nbsp;Shunhua Xiao,&nbsp;Bin Huang","doi":"10.1016/j.ssi.2024.116655","DOIUrl":"10.1016/j.ssi.2024.116655","url":null,"abstract":"<div><p>Metallic Sn is considered as a promising candidate of anode materials for lithium-ion batteries (LIBs) owing to its high capacity and ease of preparation. However, it undergoes severe mechanical damage after several lithiation/delithiation cycles due to the large volume change (∼300%). In this study, ultrafine Sn nanograins are embedded in N-doped amorphous carbon and then anchored onto reduced graphene oxide (rGO) via a facile one-pot synthesis route. The resulting composite consists of highly active Sn nanograins, three-dimensional carbon frameworks and highly conductive graphene oxide matrices. This unique configuration endows the composite with promising electrochemical performance. It delivers a reversible capacity of 1392 mAh g<sup>−1</sup> at a current density of 50 mA g<sup>−1</sup>. When cycled after 300 times at 500 mA g<sup>−1</sup>, it still maintains a reversible capacity of 805 mAh g<sup>−1</sup>.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"415 ","pages":"Article 116655"},"PeriodicalIF":3.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141985027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of manganese salt type on the structure and zinc storage property of Mn2O3/Mn3O4 composites synthesized by sucrose-assisted thermal decomposition method 锰盐类型对蔗糖辅助热分解法合成的 Mn2O3/Mn3O4 复合材料的结构和储锌性能的影响
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-14 DOI: 10.1016/j.ssi.2024.116653
Jinhu Li , Jinhuan Yao , Haiyan Chen , Jiqiong Jiang , Guanlong Song , Yanwei Li

In this work, Mn2O3/Mn3O4 composites are prepared by a facile sucrose-assisted thermal decomposition method using MnCl2·4H2O, Mn(CH3COO)2·4H2O, and MnSO4·H2O as manganese sources, respectively. The results demonstrate that manganese salt type has a significant influence on the morphology and phase composition of the final Mn2O3/Mn3O4 composites. The composites prepared from MnCl2·4H2O or Mn(CH3COO)2·4H2O possess a porous sheet-like morphology, while the Mn2O3/Mn3O4 composite prepared from MnSO4·H2O has a much finer nanosheet morphology. The Mn2O3 contents in the composites prepared from MnCl2·4H2O, Mn(CH3COO)2·4H2O, and MnSO4·H2O are about 57.8%, 95.0%, and 27.0%, respectively. Due to the differences in morphology and phase composition, the Mn2O3/Mn3O4 composites prepared from MnCl2·4H2O and Mn(CH3COO)2·4H2O exhibit better zinc storage properties than the composite prepared from MnSO4·H2O. Among the three samples, the Mn2O3/Mn3O4 composite prepared from Mn(CH3COO)2·4H2O shows superior zinc storage capability in short-term cycling and the best rate capability; the Mn2O3/Mn3O4 composite prepared from MnCl2·4H2O presents the best long-term cycling performance and moderate rate capability; the Mn2O3/Mn3O4 composite prepared from MnSO4·H2O displays the worst zinc storage capability and rate performance. EIS and CV analysis demonstrate that the Mn2O3/Mn3O4 composites prepared from MnCl2·4H2O or Mn(CH3COO)2·4H2O have a low charge transfer resistance and obvious pseudocapacitive behavior during the charge/discharge process. The charge/discharge mechanism of the Mn2O3/Mn3O4 composites is also explored by ex-situ XRD characterization. This work provides a reference for the simple preparation of high-performance Mn2O3/Mn3O4 composites utilizing different manganese salts.

本研究以 MnCl2-4H2O、Mn(CH3COO)2-4H2O 和 MnSO4-H2O 分别作为锰源,采用简便的蔗糖辅助热分解法制备了 Mn2O3/Mn3O4 复合材料。结果表明,锰盐类型对最终 Mn2O3/Mn3O4 复合材料的形貌和相组成有显著影响。用 MnCl2-4H2O 或 Mn(CH3COO)2-4H2O 制备的复合材料具有多孔的片状形态,而用 MnSO4-H2O 制备的 Mn2O3/Mn3O4 复合材料具有更精细的纳米片状形态。由 MnCl2-4H2O、Mn(CH3COO)2-4H2O 和 MnSO4-H2O 制备的复合材料中 Mn2O3 的含量分别约为 57.8%、95.0% 和 27.0%。由于形态和相组成的不同,用 MnCl2-4H2O 和 Mn(CH3COO)2-4H2O 制备的 Mn2O3/Mn3O4 复合材料比用 MnSO4-H2O 制备的复合材料具有更好的锌储存性能。在这三种样品中,以 Mn(CH3COO)2-4H2O 为原料制备的 Mn2O3/Mn3O4 复合材料在短期循环中显示出卓越的锌储存能力和最佳的速率能力;以 MnCl2-4H2O 为原料制备的 Mn2O3/Mn3O4 复合材料显示出最佳的长期循环性能和适中的速率能力;以 MnSO4-H2O 为原料制备的 Mn2O3/Mn3O4 复合材料显示出最差的锌储存能力和速率性能。EIS 和 CV 分析表明,由 MnCl2-4H2O 或 Mn(CH3COO)2-4H2O 制备的 Mn2O3/Mn3O4 复合材料在充放电过程中具有较低的电荷转移电阻和明显的伪电容行为。此外,还通过原位 XRD 表征探索了 Mn2O3/Mn3O4 复合材料的充放电机理。这项研究为利用不同锰盐简单制备高性能 Mn2O3/Mn3O4 复合材料提供了参考。
{"title":"Effect of manganese salt type on the structure and zinc storage property of Mn2O3/Mn3O4 composites synthesized by sucrose-assisted thermal decomposition method","authors":"Jinhu Li ,&nbsp;Jinhuan Yao ,&nbsp;Haiyan Chen ,&nbsp;Jiqiong Jiang ,&nbsp;Guanlong Song ,&nbsp;Yanwei Li","doi":"10.1016/j.ssi.2024.116653","DOIUrl":"10.1016/j.ssi.2024.116653","url":null,"abstract":"<div><p>In this work, Mn<sub>2</sub>O<sub>3</sub>/Mn<sub>3</sub>O<sub>4</sub> composites are prepared by a facile sucrose-assisted thermal decomposition method using MnCl<sub>2</sub>·4H<sub>2</sub>O, Mn(CH<sub>3</sub>COO)<sub>2</sub>·4H<sub>2</sub>O, and MnSO<sub>4</sub>·H<sub>2</sub>O as manganese sources, respectively. The results demonstrate that manganese salt type has a significant influence on the morphology and phase composition of the final Mn<sub>2</sub>O<sub>3</sub>/Mn<sub>3</sub>O<sub>4</sub> composites. The composites prepared from MnCl<sub>2</sub>·4H<sub>2</sub>O or Mn(CH<sub>3</sub>COO)<sub>2</sub>·4H<sub>2</sub>O possess a porous sheet-like morphology, while the Mn<sub>2</sub>O<sub>3</sub>/Mn<sub>3</sub>O<sub>4</sub> composite prepared from MnSO<sub>4</sub>·H<sub>2</sub>O has a much finer nanosheet morphology. The Mn<sub>2</sub>O<sub>3</sub> contents in the composites prepared from MnCl<sub>2</sub>·4H<sub>2</sub>O, Mn(CH<sub>3</sub>COO)<sub>2</sub>·4H<sub>2</sub>O, and MnSO<sub>4</sub>·H<sub>2</sub>O are about 57.8%, 95.0%, and 27.0%, respectively. Due to the differences in morphology and phase composition, the Mn<sub>2</sub>O<sub>3</sub>/Mn<sub>3</sub>O<sub>4</sub> composites prepared from MnCl<sub>2</sub>·4H<sub>2</sub>O and Mn(CH<sub>3</sub>COO)<sub>2</sub>·4H<sub>2</sub>O exhibit better zinc storage properties than the composite prepared from MnSO<sub>4</sub>·H<sub>2</sub>O. Among the three samples, the Mn<sub>2</sub>O<sub>3</sub>/Mn<sub>3</sub>O<sub>4</sub> composite prepared from Mn(CH<sub>3</sub>COO)<sub>2</sub>·4H<sub>2</sub>O shows superior zinc storage capability in short-term cycling and the best rate capability; the Mn<sub>2</sub>O<sub>3</sub>/Mn<sub>3</sub>O<sub>4</sub> composite prepared from MnCl<sub>2</sub>·4H<sub>2</sub>O presents the best long-term cycling performance and moderate rate capability; the Mn<sub>2</sub>O<sub>3</sub>/Mn<sub>3</sub>O<sub>4</sub> composite prepared from MnSO<sub>4</sub>·H<sub>2</sub>O displays the worst zinc storage capability and rate performance. EIS and CV analysis demonstrate that the Mn<sub>2</sub>O<sub>3</sub>/Mn<sub>3</sub>O<sub>4</sub> composites prepared from MnCl<sub>2</sub>·4H<sub>2</sub>O or Mn(CH<sub>3</sub>COO)<sub>2</sub>·4H<sub>2</sub>O have a low charge transfer resistance and obvious pseudocapacitive behavior during the charge/discharge process. The charge/discharge mechanism of the Mn<sub>2</sub>O<sub>3</sub>/Mn<sub>3</sub>O<sub>4</sub> composites is also explored by ex-situ XRD characterization. This work provides a reference for the simple preparation of high-performance Mn<sub>2</sub>O<sub>3</sub>/Mn<sub>3</sub>O<sub>4</sub> composites utilizing different manganese salts.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"415 ","pages":"Article 116653"},"PeriodicalIF":3.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141990781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gd and cu co-doped BaFeO3-δ as a cobalt-free air electrode for solid oxide electrolysis cell 作为固体氧化物电解池无钴空气电极的钆和铜共掺杂 BaFeO3-δ
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-13 DOI: 10.1016/j.ssi.2024.116656
Zaiguo Fu , Changling Quan , Yan Shao , Yanhua Lei , Binxia Yuan , Qunzhi Zhu

Solid oxide electrolysis cell (SOEC) is an efficient and environmentally friendly energy conversion device. The commercialization of SOEC is limited by the oxygen electrodes, whose problems include high costs and unexpected degradation of cobalt/strontium. In this study, we proposed a co-doping strategy and synthesized cobalt-free and strontium-free perovskite materials, specifically Ba0.95Gd0.05Fe1-xCuxO3-δ (BGFCux), via the sol-gel method. These materials were evaluated as potential air electrodes for SOEC. The BGFCux samples were systematically characterized by crystal structure, oxygen content, thermal properties, electrical conductivity, and electrochemical performance. X-ray diffraction results show that the solid-solution concentration of Cu in BGFCux cannot exceed 0.1. X-ray photoelectron spectroscopy results suggest that Cu doping increases oxygen vacancy concentration. Among all BGFCux perovskites, BGFCu0.1 exhibited a low polarization resistance of 0.069 Ω·cm2 at 800 °C (0.2 V) and a high current density of 216 mA·cm−2 at an anodic bias of 40 mV. Hence, the Gd and Cu co-doped BGFCu0.1 perovskite material is a promising air electrode for SOEC.

固体氧化物电解池(SOEC)是一种高效、环保的能源转换装置。由于氧电极存在成本高和钴/锶意外降解等问题,SOEC 的商业化受到限制。在本研究中,我们提出了一种共掺杂策略,并通过溶胶-凝胶法合成了无钴和无锶的包晶材料,特别是 Ba0.95Gd0.05Fe1-xCuxO3-δ (BGFCux)。这些材料被评估为 SOEC 的潜在空气电极。对 BGFCux 样品的晶体结构、氧含量、热性能、电导率和电化学性能进行了系统表征。X 射线衍射结果表明,BGFCux 中铜的固溶浓度不能超过 0.1。X 射线光电子能谱结果表明,掺入铜会增加氧空位浓度。在所有 BGFCux 包晶石中,BGFCu0.1 在 800 ℃(0.2 V)条件下表现出 0.069 Ω-cm2 的低极化电阻和 216 mA-cm-2 的高电流密度(阳极偏压为 40 mV)。因此,钆和铜共掺杂的 BGFCu0.1 包晶材料是一种很有前途的 SOEC 空气电极。
{"title":"Gd and cu co-doped BaFeO3-δ as a cobalt-free air electrode for solid oxide electrolysis cell","authors":"Zaiguo Fu ,&nbsp;Changling Quan ,&nbsp;Yan Shao ,&nbsp;Yanhua Lei ,&nbsp;Binxia Yuan ,&nbsp;Qunzhi Zhu","doi":"10.1016/j.ssi.2024.116656","DOIUrl":"10.1016/j.ssi.2024.116656","url":null,"abstract":"<div><p>Solid oxide electrolysis cell (SOEC) is an efficient and environmentally friendly energy conversion device. The commercialization of SOEC is limited by the oxygen electrodes, whose problems include high costs and unexpected degradation of cobalt/strontium. In this study, we proposed a co-doping strategy and synthesized cobalt-free and strontium-free perovskite materials, specifically Ba<sub>0.95</sub>Gd<sub>0.05</sub>Fe<sub>1-x</sub>Cu<sub>x</sub>O<sub>3-δ</sub> (BGFCu<sub>x</sub>), via the sol-gel method. These materials were evaluated as potential air electrodes for SOEC. The BGFCu<sub>x</sub> samples were systematically characterized by crystal structure, oxygen content, thermal properties, electrical conductivity, and electrochemical performance. X-ray diffraction results show that the solid-solution concentration of Cu in BGFCu<sub>x</sub> cannot exceed 0.1. X-ray photoelectron spectroscopy results suggest that Cu doping increases oxygen vacancy concentration. Among all BGFCu<sub>x</sub> perovskites, BGFCu0.1 exhibited a low polarization resistance of 0.069 Ω·cm<sup>2</sup> at 800 °C (0.2 V) and a high current density of 216 mA·cm<sup>−2</sup> at an anodic bias of 40 mV. Hence, the Gd and Cu co-doped BGFCu0.1 perovskite material is a promising air electrode for SOEC.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"415 ","pages":"Article 116656"},"PeriodicalIF":3.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141979554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developing a dynamic oxygen migration-release model for enhanced understanding of Ce-materials reactivity 开发动态氧气迁移-释放模型,加深对 Ce 材料反应性的理解
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-13 DOI: 10.1016/j.ssi.2024.116654
Feipeng Bao , Xinyu Han , Kaijie Liu , Zeshu Zhang , Liwei Sun , Cheng Rao , Yibo Zhang , Xiangguang Yang

Oxygen atom migration within solid oxides exerts a profound affects material properties, yet a rigorous conceptual framework for quantifying dynamic migration has been absent. To bridge this gap, we have developed a dynamic oxygen migration-release model, employing the differential element method with comprehensive mathematical proof. This novel model elucidates the exponential decay in the oxygen release rate of metal oxides as a function of the liberated oxygen quantity. We refined the model to discern between the migration of interior (bulk) oxygen and the reactions of oxygen at the surface, providing experimental validation for the energy barriers associated with each migration process. Taking CeO2 as a case study, our model predicted and corroborated the energy barrier for oxygen release under various temperatures and morphologies, aligning with Density Functional Theory (DFT) analysis. Furthermore, the model's versatility is evidenced by its applicability to a wide range of metal oxides, including ceria-zirconia solid solutions, manganese oxide, and iron oxide, suggesting a broad potential for universal application. The unveiled dynamics of oxygen migration and release provide a theoretical foundation for refining the design of functional metal oxides and lay the groundwork for a more precise assessment of their oxygen reactivity.

氧原子在固体氧化物中的迁移会对材料特性产生深远的影响,但目前还没有一个严格的概念框架来量化动态迁移。为了弥补这一缺陷,我们利用微分元法和全面的数学证明,建立了一个动态氧迁移-释放模型。这个新颖的模型阐明了金属氧化物的氧释放率与氧释放量之间的指数衰减关系。我们对模型进行了改进,以区分内部(大块)氧的迁移和表面氧的反应,并对与每个迁移过程相关的能量障碍进行了实验验证。以 CeO2 为例,我们的模型预测并证实了不同温度和形态下氧气释放的能量障碍,与密度泛函理论(DFT)的分析结果一致。此外,该模型还适用于多种金属氧化物,包括铈-氧化锆固溶体、氧化锰和氧化铁,这证明了该模型的多功能性,具有广泛的普遍应用潜力。揭示的氧迁移和释放动力学为完善功能金属氧化物的设计提供了理论基础,并为更精确地评估其氧反应性奠定了基础。
{"title":"Developing a dynamic oxygen migration-release model for enhanced understanding of Ce-materials reactivity","authors":"Feipeng Bao ,&nbsp;Xinyu Han ,&nbsp;Kaijie Liu ,&nbsp;Zeshu Zhang ,&nbsp;Liwei Sun ,&nbsp;Cheng Rao ,&nbsp;Yibo Zhang ,&nbsp;Xiangguang Yang","doi":"10.1016/j.ssi.2024.116654","DOIUrl":"10.1016/j.ssi.2024.116654","url":null,"abstract":"<div><p>Oxygen atom migration within solid oxides exerts a profound affects material properties, yet a rigorous conceptual framework for quantifying dynamic migration has been absent. To bridge this gap, we have developed a dynamic oxygen migration-release model, employing the differential element method with comprehensive mathematical proof. This novel model elucidates the exponential decay in the oxygen release rate of metal oxides as a function of the liberated oxygen quantity. We refined the model to discern between the migration of interior (bulk) oxygen and the reactions of oxygen at the surface, providing experimental validation for the energy barriers associated with each migration process. Taking CeO<sub>2</sub> as a case study, our model predicted and corroborated the energy barrier for oxygen release under various temperatures and morphologies, aligning with Density Functional Theory (DFT) analysis. Furthermore, the model's versatility is evidenced by its applicability to a wide range of metal oxides, including ceria-zirconia solid solutions, manganese oxide, and iron oxide, suggesting a broad potential for universal application. The unveiled dynamics of oxygen migration and release provide a theoretical foundation for refining the design of functional metal oxides and lay the groundwork for a more precise assessment of their oxygen reactivity.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"415 ","pages":"Article 116654"},"PeriodicalIF":3.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141979552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The electrochemical performance of electrodeposited nickel foam electrodes coated by nano-confined lithium borohydride-metal oxides composites 纳米封闭硼氢化锂-金属氧化物复合材料涂层的电沉积泡沫镍电极的电化学性能
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-08-12 DOI: 10.1016/j.ssi.2024.116657
Dilara Kutluer , Bilge Coşkuner Filiz , Önder Yargı , Ali Gelir , Aysel Kantürk Figen

In the present study, the electrochemical performance of the nickel (Ni)-foam electrodes (nano-confined-metal oxide composites: nc-SiO2, nc-Al2O3, nc-MgO, nc-CaO) coated by electrodeposition via nano-confined lithium borohydride (nc-LiBH4)-metal oxide (SiO2, Al2O3, MgO, CaO) composites were investigated. Nano-confinement of LiBH4 on metal-oxide structure approach was applied by a ball-milling process to prepare composites. The nc-metal oxide composites were electrodeposited on Ni foam using the chronoamperometry (CA) technique. The comparative study by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) methods at different scan rates and current densities were used for electrochemical characterization of nc-metal oxide composites towards neat LiBH4 and metal oxide. Cross-sectional analyses of scanning electron microscope elucidated that nc-CaO composite uniformly blankets the inner and outer surfaces of foam. These composites showed superior stability and reduced porosity in their surface structures, predominantly characterized by granular morphology and weak interparticle bonding, in contrast to other composite materials. Among CV curves, nc-CaO electrodeposited Ni foam electrode displayed a reduction of charge storage and lower capacitance values due to reduced porosity of nc-CaO composite towards LiBH4 advanced in nano-confinement approach. Comparing specific capacitance of the electrodes first increased up to around 130 F/g and then decreased when metal oxides were added, while Ni electrodes prepared without nc-metal oxide composites showed an inverse relation with increasing current. The highest capacitance retention still after 2000 cycles achieved 85% stability.

在本研究中,研究了通过纳米封闭硼氢化锂(nc-LiBH4)-金属氧化物(SiO2、Al2O3、MgO、CaO)复合材料电沉积涂覆的镍(Ni)泡沫电极(纳米封闭金属氧化物复合材料:nc-SiO2、nc-Al2O3、nc-MgO、nc-CaO)的电化学性能。通过球磨工艺将硼氢化锂纳米限定在金属氧化物结构上,从而制备出复合材料。使用计时器法(CA)在镍泡沫上电沉积了纳米氧化物-金属氧化物复合材料。在不同的扫描速率和电流密度下,采用循环伏安法(CV)和电静态充放电法(GCD)进行比较研究,以确定 nc-金属氧化物复合材料与纯 LiBH4 和金属氧化物的电化学特性。扫描电子显微镜的横截面分析表明,nc-CaO 复合材料均匀地覆盖了泡沫的内外表面。与其他复合材料相比,这些复合材料显示出卓越的稳定性,其表面结构的孔隙率降低,主要特征是颗粒形态和微弱的颗粒间结合。在 CV 曲线中,nc-CaO 电沉积镍泡沫电极显示出电荷存储减少和电容值降低,这是由于 nc-CaO 复合材料的孔隙率降低,而 LiBH4 在纳米融合方法中处于领先地位。电极的比电容比较显示,加入金属氧化物后,电极的比电容先是增加到 130 F/g 左右,然后降低,而未加入 nc-金属氧化物复合材料的镍电极则显示出与电流增加成反比的关系。经过 2000 次循环后,最高电容保持率仍达到 85% 的稳定性。
{"title":"The electrochemical performance of electrodeposited nickel foam electrodes coated by nano-confined lithium borohydride-metal oxides composites","authors":"Dilara Kutluer ,&nbsp;Bilge Coşkuner Filiz ,&nbsp;Önder Yargı ,&nbsp;Ali Gelir ,&nbsp;Aysel Kantürk Figen","doi":"10.1016/j.ssi.2024.116657","DOIUrl":"10.1016/j.ssi.2024.116657","url":null,"abstract":"<div><p>In the present study, the electrochemical performance of the nickel (Ni)-foam electrodes (nano-confined-metal oxide composites: nc-SiO<sub>2</sub>, nc-Al<sub>2</sub>O<sub>3</sub>, nc-MgO, nc-CaO) coated by electrodeposition via nano-confined lithium borohydride (nc-LiBH<sub>4</sub>)-metal oxide (SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, MgO, CaO) composites were investigated. Nano-confinement of LiBH<sub>4</sub> on metal-oxide structure approach was applied by a ball-milling process to prepare composites. The nc-metal oxide composites were electrodeposited on Ni foam using the chronoamperometry (CA) technique. The comparative study by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) methods at different scan rates and current densities were used for electrochemical characterization of nc-metal oxide composites towards neat LiBH<sub>4</sub> and metal oxide. Cross-sectional analyses of scanning electron microscope elucidated that nc-CaO composite uniformly blankets the inner and outer surfaces of foam. These composites showed superior stability and reduced porosity in their surface structures, predominantly characterized by granular morphology and weak interparticle bonding, in contrast to other composite materials. Among CV curves, nc-CaO electrodeposited Ni foam electrode displayed a reduction of charge storage and lower capacitance values due to reduced porosity of nc-CaO composite towards LiBH<sub>4</sub> advanced in nano-confinement approach. Comparing specific capacitance of the electrodes first increased up to around 130 F/g and then decreased when metal oxides were added, while Ni electrodes prepared without nc-metal oxide composites showed an inverse relation with increasing current. The highest capacitance retention still after 2000 cycles achieved 85% stability.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"415 ","pages":"Article 116657"},"PeriodicalIF":3.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141979553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Solid State Ionics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1