首页 > 最新文献

Solid State Ionics最新文献

英文 中文
Migration energies of the constituent ions in LaAlO3 LaAlO3中组成离子的迁移能
IF 3.3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-07-29 DOI: 10.1016/j.ssi.2025.116974
Robert A. Jackson , Peter Fielitz , Günter Borchardt
The calculated migration energies of the constituent elements of LaAlO3 are comparable to the corresponding calculated migration energies of LaGaO3 available in the literature. The resulting calculated ranking of the migration energies, ΔEmOxygen<ΔEmA site cation<ΔEmB site cation, is valid for various nominally undoped oxide perovskites (ABO3). From this ranking it must be concluded that for a specific temperature the ranking of the self-diffusivities of the constituent elements in nominally undoped oxide perovskites reads DOxygenDA site cationDB site cation. The low cation mobilities in undoped oxide perovskites hamper the experimental determination of the diffusivities of the cations considerably. That is predominantly true for the B site elements which probably migrate via an antisite mechanism in the A sublattice. This conjecture is rationalized by an appropriate mechanistic model which is principally valid for any ternary oxide system with very different defect concentrations and cation mobilities in the two cation sublattices.
计算得到的LaAlO3组成元素的迁移能与文献中相应的LaGaO3迁移能相当。由此计算出的迁移能排序ΔEmOxygen<;ΔEmA site阳离子<;ΔEmB site阳离子对各种名义上未掺杂的氧化物钙钛矿(ABO3)都是有效的。由此可以得出结论,在一定温度下,名义上未掺杂的氧化钙钛矿中各组成元素的自扩散系数排序为:氧离子(oxygen) > DA位阳离子(DA site阳离子)> DB位阳离子(DB site阳离子)。未掺杂的氧化钙钛矿中阳离子迁移率低,严重阻碍了阳离子扩散率的实验测定。对于B位点元素来说,这主要是正确的,它们可能通过A子晶格中的反位点机制迁移。这一猜想被一个适当的机制模型合理化,该模型主要适用于任何在两个阳离子亚晶格中具有非常不同缺陷浓度和阳离子迁移率的三元氧化物体系。
{"title":"Migration energies of the constituent ions in LaAlO3","authors":"Robert A. Jackson ,&nbsp;Peter Fielitz ,&nbsp;Günter Borchardt","doi":"10.1016/j.ssi.2025.116974","DOIUrl":"10.1016/j.ssi.2025.116974","url":null,"abstract":"<div><div>The calculated migration energies of the constituent elements of LaAlO<sub>3</sub> are comparable to the corresponding calculated migration energies of LaGaO<sub>3</sub> available in the literature. The resulting calculated ranking of the migration energies, <span><math><mi>Δ</mi><msubsup><mi>E</mi><mi>m</mi><mtext>Oxygen</mtext></msubsup><mo>&lt;</mo><mi>Δ</mi><msubsup><mi>E</mi><mi>m</mi><mtext>A site cation</mtext></msubsup><mo>&lt;</mo><mi>Δ</mi><msubsup><mi>E</mi><mi>m</mi><mtext>B site cation</mtext></msubsup></math></span>, is valid for various nominally undoped oxide perovskites (ABO<sub>3</sub>). From this ranking it must be concluded that for a specific temperature the ranking of the self-diffusivities of the constituent elements in nominally undoped oxide perovskites reads <span><math><msub><mi>D</mi><mtext>Oxygen</mtext></msub><mo>≫</mo><msub><mi>D</mi><mtext>A site cation</mtext></msub><mo>≫</mo><msub><mi>D</mi><mtext>B site cation</mtext></msub></math></span>. The low cation mobilities in undoped oxide perovskites hamper the experimental determination of the diffusivities of the cations considerably. That is predominantly true for the B site elements which probably migrate via an antisite mechanism in the A sublattice. This conjecture is rationalized by an appropriate mechanistic model which is principally valid for any ternary oxide system with very different defect concentrations and cation mobilities in the two cation sublattices.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"429 ","pages":"Article 116974"},"PeriodicalIF":3.3,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144720879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ethyl difluoroacetate additive engineering for fast-charging and durable graphite anodes in lithium-ion batteries 用于锂离子电池快速充电和耐用石墨阳极的二氟乙酸乙酯添加剂工程
IF 3.3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-07-29 DOI: 10.1016/j.ssi.2025.116986
Bin Li , Wenlin Gong , Mingyao Yang , Si Lin , Yan Liu , Jiayi Su , Jie Zhang , Guocong Liu
The practical application of fast-charging lithium-ion batteries is hindered by interfacial instability at graphite anodes, primarily due to uncontrolled electrolyte decomposition and the formation of resistive solid electrolyte interphase (SEI) layers. Herein, we report ethyl difluoroacetate (EDFA) as a fluorinated additive for conventional LiPF₆/EC-EMC electrolytes to address these challenges. Electrochemical measurements demonstrate that EDFA undergoes preferential reduction to form a stable, fluorine-rich SEI, which enhances interfacial stability and facilitates Li+ transport. As a result, graphite/Li half-cells with EDFA exhibit significantly improved performance, with capacity retention increasing from 81.8 % to 93.4 % after 100 cycles and 3C-rate capacity rising from 49.1 to 99.5 mAh·g−1. SEM, TEM, and XPS analyses confirm the formation of a uniform, compact and fluorine-rich SEI that mitigates parasitic reactions and reduces impedance. This work provides a viable strategy to enhance fast-charging performance in commercial battery systems through additive engineering.
石墨阳极的界面不稳定性阻碍了快速充电锂离子电池的实际应用,这主要是由于不受控制的电解质分解和电阻性固体电解质界面层(SEI)的形成。在此,我们报告将二氟乙酸乙酯(EDFA)作为常规LiPF₆/EC-EMC电解质的氟化添加剂来解决这些挑战。电化学测量表明,EDFA优先还原形成稳定的富氟SEI,增强了界面稳定性,促进了Li+的传输。结果表明,添加EDFA的石墨/锂半电池性能显著提高,循环100次后容量保留率从81.8%提高到93.4%,3c倍率容量从49.1 mAh·g−1提高到99.5 mAh。SEM、TEM和XPS分析证实形成了均匀、致密、富氟的SEI,可以减轻寄生反应并降低阻抗。这项工作为通过增材工程提高商用电池系统的快速充电性能提供了一种可行的策略。
{"title":"Ethyl difluoroacetate additive engineering for fast-charging and durable graphite anodes in lithium-ion batteries","authors":"Bin Li ,&nbsp;Wenlin Gong ,&nbsp;Mingyao Yang ,&nbsp;Si Lin ,&nbsp;Yan Liu ,&nbsp;Jiayi Su ,&nbsp;Jie Zhang ,&nbsp;Guocong Liu","doi":"10.1016/j.ssi.2025.116986","DOIUrl":"10.1016/j.ssi.2025.116986","url":null,"abstract":"<div><div>The practical application of fast-charging lithium-ion batteries is hindered by interfacial instability at graphite anodes, primarily due to uncontrolled electrolyte decomposition and the formation of resistive solid electrolyte interphase (SEI) layers. Herein, we report ethyl difluoroacetate (EDFA) as a fluorinated additive for conventional LiPF₆/EC-EMC electrolytes to address these challenges. Electrochemical measurements demonstrate that EDFA undergoes preferential reduction to form a stable, fluorine-rich SEI, which enhances interfacial stability and facilitates Li<sup>+</sup> transport. As a result, graphite/Li half-cells with EDFA exhibit significantly improved performance, with capacity retention increasing from 81.8 % to 93.4 % after 100 cycles and 3C-rate capacity rising from 49.1 to 99.5 mAh·g<sup>−1</sup>. SEM, TEM, and XPS analyses confirm the formation of a uniform, compact and fluorine-rich SEI that mitigates parasitic reactions and reduces impedance. This work provides a viable strategy to enhance fast-charging performance in commercial battery systems through additive engineering.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"429 ","pages":"Article 116986"},"PeriodicalIF":3.3,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144720846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High temperature oxygen exchange reaction on dense and porous La0.6Sr0.4CoO3-δ electrodes: An overview of the experimental evidence for modeling 致密多孔La0.6Sr0.4CoO3-δ电极上的高温氧交换反应:模拟实验证据综述
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-07-26 DOI: 10.1016/j.ssi.2025.116973
Tatsuya Kawada
<div><div>Oxygen exchange kinetics was investigated to model the current-potential relationship of mixed conducting oxide electrodes used in SOFC and SOEC. Focusing on La<sub>0.6</sub>Sr<sub>0.4</sub>CoO<sub>3</sub> as a model material, experimental evidence so far obtained in our group were summarized and reanalyzed. The reaction order analysis suggested a complex reaction mechanism, for which we came to think of two series kinetics, surface process and subsurface process. The former refers to an exchange process between gas-phase oxygen molecules and some sort of surface oxygen species. The latter refers to the exchange of surface oxygen with bulk oxide ions, and the reaction barrier is not necessarily oxygen transport, but may be electron transport/transfer for oxygen in/ex-corporation This hypothesis appeared to resolve some of our remaining questions regarding the experimental results, such as scattered <em>p</em><sub>O<sub>2</sub></sub> dependence in high partial pressure range, the higher isotope exchange rates than electrochemical impedance, and the reaction rate enhancement in the presence of the LaSrCoO<sub>4</sub> phase. While a single piece of such experimental evidence is insufficient to prove the hypothesis, considering all the results together provides strong support. We then tried to separate the contributions of surface and subsurface processes by measuring the surface oxygen potential using a porous oxygen sensor. It revealed that the surface process is written as <span><math><msub><mi>J</mi><mi>s</mi></msub><mo>=</mo><msub><mi>J</mi><mrow><mi>s</mi><mo>,</mo><mn>0</mn></mrow></msub><mo>∙</mo><mi>δ</mi><mo>∙</mo><mfenced><mrow><msubsup><mi>a</mi><mrow><mi>O</mi><mo>,</mo><mi>s</mi></mrow><mn>2</mn></msubsup><mo>−</mo><msub><mi>p</mi><mrow><msub><mi>O</mi><mn>2</mn></msub><mo>,</mo><mi>g</mi></mrow></msub></mrow></mfenced></math></span> and the subsurface process as <span><math><msub><mi>J</mi><mi>ss</mi></msub><mo>=</mo><msub><mi>J</mi><mrow><mi>ss</mi><mo>,</mo><mn>0</mn></mrow></msub><mo>∙</mo><mfenced><mrow><msub><mi>a</mi><mrow><mi>O</mi><mo>,</mo><mi>e</mi></mrow></msub><msubsup><mi>a</mi><mrow><mi>O</mi><mo>,</mo><mi>s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup><mo>−</mo><msubsup><mi>a</mi><mrow><mi>O</mi><mo>,</mo><mi>e</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup><msub><mi>a</mi><mrow><mi>O</mi><mo>,</mo><mi>s</mi></mrow></msub></mrow></mfenced><mo>=</mo><msub><mi>J</mi><mrow><mi>ss</mi><mo>,</mo><mn>0</mn></mrow></msub><mfenced><mrow><mi>exp</mi><mfenced><mfrac><mrow><mi>β</mi><mo>∆</mo><msub><mi>μ</mi><msub><mi>O</mi><mn>2</mn></msub></msub></mrow><mi>RT</mi></mfrac></mfenced><mo>−</mo><mi>exp</mi><mfenced><mrow><mo>−</mo><mfrac><mrow><mfenced><mrow><mn>1</mn><mo>−</mo><mi>β</mi></mrow></mfenced><mo>∆</mo><msub><mi>μ</mi><msub><mi>O</mi><mn>2</mn></msub></msub></mrow><mi>RT</mi></mfrac></mrow></mfenced></mrow></mfenced></math></span>, which are in good agreement with the experimental data even for f
为了模拟SOFC和SOEC中混合导电氧化物电极的电流-电位关系,研究了氧交换动力学。以La0.6Sr0.4CoO3为模型材料,对本课题组目前获得的实验证据进行总结和重新分析。反应顺序分析表明反应机理复杂,可分为表面过程和次表面过程两个系列动力学。前者是指气相氧分子与某种表面氧之间的交换过程。后者是指表面氧与大块氧化离子的交换,反应屏障不一定是氧输运,而可能是电子输运/氧在/氧在/氧在/氧在/氧在/氧在/氧在/氧在/氧在/氧在/氧在/氧在/氧在/氧在/氧在/氧在/氧在/氧在/氧在/氧在/氧在/氧在/氧在/氧在/氧在/氧在/氧在/氧在/氧在/氧在/氧之间的转移。这一假设似乎解决了我们对实验结果的一些遗留问题,如在高分压范围内分散的pO2依赖性,同位素交换速率高于电化学阻抗,在LaSrCoO4相存在下,反应速率提高。虽然单个这样的实验证据不足以证明这一假设,但综合考虑所有的结果,就提供了强有力的支持。然后,我们尝试通过使用多孔氧传感器测量表面氧势来分离表面和地下过程的贡献。结果表明,表面过程为Js=Js,0∙δ∙aO,s2−pO2,g,地下过程为Jss=Jss,0∙aO,eaO,s−1−aO,e−1aO,s=Jss,0expβ∆μO2RT - exp−1−β∆μO2RT,即使在不同氧空位形成能的薄膜上也与实验数据吻合较好。对于多孔电极的建模,基于实验证据,我们认为没有必要考虑亚表面过程,例如多孔电极中颗粒表面的面积比反应速率高于膜电极,以及LaSrCoO4相缺乏增强作用。将j应用于传输线模型所估计的电流-电压关系与实验结果吻合较好。
{"title":"High temperature oxygen exchange reaction on dense and porous La0.6Sr0.4CoO3-δ electrodes: An overview of the experimental evidence for modeling","authors":"Tatsuya Kawada","doi":"10.1016/j.ssi.2025.116973","DOIUrl":"10.1016/j.ssi.2025.116973","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Oxygen exchange kinetics was investigated to model the current-potential relationship of mixed conducting oxide electrodes used in SOFC and SOEC. Focusing on La&lt;sub&gt;0.6&lt;/sub&gt;Sr&lt;sub&gt;0.4&lt;/sub&gt;CoO&lt;sub&gt;3&lt;/sub&gt; as a model material, experimental evidence so far obtained in our group were summarized and reanalyzed. The reaction order analysis suggested a complex reaction mechanism, for which we came to think of two series kinetics, surface process and subsurface process. The former refers to an exchange process between gas-phase oxygen molecules and some sort of surface oxygen species. The latter refers to the exchange of surface oxygen with bulk oxide ions, and the reaction barrier is not necessarily oxygen transport, but may be electron transport/transfer for oxygen in/ex-corporation This hypothesis appeared to resolve some of our remaining questions regarding the experimental results, such as scattered &lt;em&gt;p&lt;/em&gt;&lt;sub&gt;O&lt;sub&gt;2&lt;/sub&gt;&lt;/sub&gt; dependence in high partial pressure range, the higher isotope exchange rates than electrochemical impedance, and the reaction rate enhancement in the presence of the LaSrCoO&lt;sub&gt;4&lt;/sub&gt; phase. While a single piece of such experimental evidence is insufficient to prove the hypothesis, considering all the results together provides strong support. We then tried to separate the contributions of surface and subsurface processes by measuring the surface oxygen potential using a porous oxygen sensor. It revealed that the surface process is written as &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∙&lt;/mo&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;mo&gt;∙&lt;/mo&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msubsup&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/math&gt;&lt;/span&gt; and the subsurface process as &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;mi&gt;ss&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;ss&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∙&lt;/mo&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msubsup&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msubsup&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;msub&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;ss&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mi&gt;exp&lt;/mi&gt;&lt;mfenced&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo&gt;∆&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mi&gt;RT&lt;/mi&gt;&lt;/mfrac&gt;&lt;/mfenced&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;exp&lt;/mi&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mo&gt;∆&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;msub&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mi&gt;RT&lt;/mi&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/math&gt;&lt;/span&gt;, which are in good agreement with the experimental data even for f","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"429 ","pages":"Article 116973"},"PeriodicalIF":3.0,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144704384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
When ions are in charge: Generalized ionic impedance spectroscopy for characterizing energy materials and devices 当离子控制时:用于表征能源材料和器件的广义离子阻抗谱
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-07-25 DOI: 10.1016/j.ssi.2025.116972
Paul Nizet , Francesco Chiabrera , Alex Morata , Albert Tarancón
Electrochemical Impedance Spectroscopy (EIS) is the conventional technique for studying the electrical response of individual materials or complete energy devices such as batteries, fuel cells, and supercapacitors. However, EIS has several limitations, including its spatial resolution, the description of ion insertion phenomena (especially when multiple ion species are involved), and the presence of porous electrodes. In this paper, Generalized Ionic Impedance Spectroscopy (GIIS) is proposed to address these issues by complementing traditional EIS to analyze ionic concentration changes under an AC voltage stimulus. A broad range of characterization techniques can be employed to analyze such ionic concentration variations, as these significantly modify the functional properties of the material, such as optical, magnetic, and electrical behavior. Some of these techniques also offer high spatial resolution, enabling lateral and depth profiling analysis. This study provides a theoretical framework for the development of GIIS in the field of energy, analyzing battery-like and fuel cell-like devices while resolving the major limitations of EIS mentioned above. The proven versatility of GIIS opens new pathways for the detailed characterization of energy materials and devices, advancing the understanding of low-frequency fundamental electrochemical processes and broadening the scope of their applications. While many of the discussed cases are experimentally validated, others are presented as perspectives of GIIS applications.
电化学阻抗谱(EIS)是研究单个材料或完整能源装置(如电池、燃料电池和超级电容器)的电响应的传统技术。然而,EIS有一些限制,包括空间分辨率,离子插入现象的描述(特别是当涉及多种离子时),以及多孔电极的存在。为了解决这些问题,本文提出了广义离子阻抗谱(GIIS),补充了传统的EIS来分析交流电压刺激下离子浓度的变化。广泛的表征技术可用于分析这种离子浓度变化,因为这些变化显著地改变了材料的功能特性,如光学、磁性和电学行为。其中一些技术还提供高空间分辨率,支持横向和深度剖面分析。本研究为能源领域GIIS的发展提供了理论框架,分析了类电池和类燃料电池设备,同时解决了上述EIS的主要局限性。经过验证的多功能性GIIS为能源材料和设备的详细表征开辟了新的途径,促进了对低频基本电化学过程的理解,拓宽了它们的应用范围。虽然许多讨论的案例都经过实验验证,但其他案例则作为地理信息系统应用的视角提出。
{"title":"When ions are in charge: Generalized ionic impedance spectroscopy for characterizing energy materials and devices","authors":"Paul Nizet ,&nbsp;Francesco Chiabrera ,&nbsp;Alex Morata ,&nbsp;Albert Tarancón","doi":"10.1016/j.ssi.2025.116972","DOIUrl":"10.1016/j.ssi.2025.116972","url":null,"abstract":"<div><div>Electrochemical Impedance Spectroscopy (EIS) is the conventional technique for studying the electrical response of individual materials or complete energy devices such as batteries, fuel cells, and supercapacitors. However, EIS has several limitations, including its spatial resolution, the description of ion insertion phenomena (especially when multiple ion species are involved), and the presence of porous electrodes. In this paper, Generalized Ionic Impedance Spectroscopy (GIIS) is proposed to address these issues by complementing traditional EIS to analyze ionic concentration changes under an AC voltage stimulus. A broad range of characterization techniques can be employed to analyze such ionic concentration variations, as these significantly modify the functional properties of the material, such as optical, magnetic, and electrical behavior. Some of these techniques also offer high spatial resolution, enabling lateral and depth profiling analysis. This study provides a theoretical framework for the development of GIIS in the field of energy, analyzing battery-like and fuel cell-like devices while resolving the major limitations of EIS mentioned above. The proven versatility of GIIS opens new pathways for the detailed characterization of energy materials and devices, advancing the understanding of low-frequency fundamental electrochemical processes and broadening the scope of their applications. While many of the discussed cases are experimentally validated, others are presented as perspectives of GIIS applications.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"429 ","pages":"Article 116972"},"PeriodicalIF":3.0,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144702473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High Oxide-ion Conductivity in Cubic Perovskite Na- and Ga-doped BaZrO3 立方钙钛矿Na和ga掺杂BaZrO3的高氧化离子电导率
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-07-25 DOI: 10.1016/j.ssi.2025.116976
Akanksha Yadav , Yeting Wen , Xi Yang , Dunji Yu , Yan Chen , Kevin Huang
Solid oxide ion electrolytes (SOEs) play a crucial role in determining the operating temperature, cost, and lifetime of solid oxide electrochemical devices. The most competitive SOEs are typically found in cubic-structured fluorides (e.g., ZrO2-based and CeO2-based) and perovskites (e.g., LaGaO3-based and Ba(Zr,Ce)O3-based). However, the discovery of new high-conductivity SOE systems has been very limited in the history of solid state ionics. Here, we explore a new cubic-structured perovskite, Ba1-xNaxZr1-xGaxO3-x (BNZG), as a potential oxide-ion conductor. Compared to La0.8Sr0.2Ga0.8Mg0.2O2.8 (LSGM), a state-of-the-art perovskite electrolyte, BNZG exhibits a comparable bulk ionic conductivity (∼0.01 S/cm at 600°C) while reducing Ga content by 40 %. Additionally, compared to BaZr0.8Y0.2O2.9 (BZY), another widely studied perovskite electrolyte, BNZG shows excellent sinterability at lower temperatures. Ab Initio molecular dynamics (AIMD) simulations suggest that BNZG is an oxide-ion conductor, particularly at higher temperatures, which is also confirmed by high oxide-ion transport number (>0.99) and conductivity independent of oxygen and water vapor partial pressures. Furthermore, BNZG is stable in CO2/air and compatible with active perovskite cathodes such as La1-xSrxCoO3-δ without the use of barrier layer. We also show that the high grain-boundary resistance originated from Ga segregation could be one critical issue for BNZG application in intermediate temperature solid oxide cells.
固体氧化物离子电解质(soe)在决定固体氧化物电化学器件的工作温度、成本和寿命方面起着至关重要的作用。最具竞争力的国有企业通常存在于立方结构氟化物(例如,基于zro2和基于ceo2)和钙钛矿(例如,基于lagao3和基于Ba(Zr,Ce) o3)中。然而,在固态离子学的历史上,新的高导电性SOE系统的发现非常有限。在这里,我们探索了一种新的立方结构钙钛矿,Ba1-xNaxZr1-xGaxO3-x (BNZG),作为潜在的氧化离子导体。与最先进的钙钛矿电解质La0.8Sr0.2Ga0.8Mg0.2O2.8 (LSGM)相比,BNZG具有相当的体积离子电导率(600°C时为0.01 S/cm),同时降低了40%的Ga含量。此外,与另一种广泛研究的钙钛矿电解质BaZr0.8Y0.2O2.9 (BZY)相比,BNZG在低温下表现出优异的烧结性能。从头算分子动力学(AIMD)模拟表明,BNZG是一种氧化离子导体,特别是在高温下,高氧化离子输运数(>0.99)和不受氧和水蒸气分压影响的电导率也证实了这一点。此外,BNZG在CO2/空气中稳定,并且与La1-xSrxCoO3-δ等活性钙钛矿阴极兼容,无需使用阻挡层。我们还表明,由Ga偏析引起的高晶界电阻可能是BNZG在中温固体氧化物电池中应用的一个关键问题。
{"title":"High Oxide-ion Conductivity in Cubic Perovskite Na- and Ga-doped BaZrO3","authors":"Akanksha Yadav ,&nbsp;Yeting Wen ,&nbsp;Xi Yang ,&nbsp;Dunji Yu ,&nbsp;Yan Chen ,&nbsp;Kevin Huang","doi":"10.1016/j.ssi.2025.116976","DOIUrl":"10.1016/j.ssi.2025.116976","url":null,"abstract":"<div><div>Solid oxide ion electrolytes (SOEs) play a crucial role in determining the operating temperature, cost, and lifetime of solid oxide electrochemical devices. The most competitive SOEs are typically found in cubic-structured fluorides (e.g., ZrO<sub>2</sub>-based and CeO<sub>2</sub>-based) and perovskites (e.g., LaGaO<sub>3</sub>-based and Ba(<em>Zr</em>,<em>Ce</em>)O<sub>3</sub>-based). However, the discovery of new high-conductivity SOE systems has been very limited in the history of solid state ionics. Here, we explore a new cubic-structured perovskite, Ba<sub>1-x</sub>Na<sub>x</sub>Zr<sub>1-x</sub>Ga<sub>x</sub>O<sub>3-x</sub> (BNZG), as a potential oxide-ion conductor. Compared to La<sub>0.8</sub>Sr<sub>0.2</sub>Ga<sub>0.8</sub>Mg<sub>0.2</sub>O<sub>2.8</sub> (LSGM), a state-of-the-art perovskite electrolyte, BNZG exhibits a comparable bulk ionic conductivity (∼0.01 S/cm at 600°C) while reducing Ga content by 40 %. Additionally, compared to BaZr<sub>0.8</sub>Y<sub>0.2</sub>O<sub>2.9</sub> (BZY), another widely studied perovskite electrolyte, BNZG shows excellent sinterability at lower temperatures. Ab Initio molecular dynamics (AIMD) simulations suggest that BNZG is an oxide-ion conductor, particularly at higher temperatures, which is also confirmed by high oxide-ion transport number (&gt;0.99) and conductivity independent of oxygen and water vapor partial pressures. Furthermore, BNZG is stable in CO<sub>2</sub>/air and compatible with active perovskite cathodes such as La<sub>1-x</sub>Sr<sub>x</sub>CoO<sub>3-δ</sub> without the use of barrier layer. We also show that the high grain-boundary resistance originated from Ga segregation could be one critical issue for BNZG application in intermediate temperature solid oxide cells.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"429 ","pages":"Article 116976"},"PeriodicalIF":3.0,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144702474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase field simulation of effect of ceramic composite separator on the growth of lithium dendrites 陶瓷复合隔膜对锂枝晶生长影响的相场模拟
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-07-24 DOI: 10.1016/j.ssi.2025.116966
Chuanxiang Zhang , Hao Zhang , Qingyang Hu , Yuhan Zhang , Zhixin Liu , Xingxu Gao , Tao Wang
The uncontrollable growth of lithium dendrites has a huge impact on the practical application of lithium metal batteries. The separator is an integral element of the battery and fulfils two functions: firstly, it ensures the normal operation of the battery, and secondly, it is effective in inhibiting the growth of lithium dendrites. The present paper proposes the establishment of a two-dimensional phase field model, with the objective of investigating the effects of the ceramic composite diaphragm phase and the PE separator diaphragm phase on lithium dendrite growth. This investigation is conducted under conditions of stress and temperature fields. It has been shown that the elastic modulus of ceramic particles is greater than that of lithium metal. Therefore, the ceramic separator can effectively prevent the growth of lithium dendrites under stress-coupled conditions. In addition, at higher temperatures, it is beneficial to the transport of lithium ions and increases the deposition of lithium dendrites in the tip and non-tip regions, thereby reducing the length of lithium dendrites at high temperatures. This study reveals the important influence of the ceramic separator on inhibiting the growth of lithium dendrites under the conditions of stress field and temperature field.
锂枝晶的不可控生长对锂金属电池的实际应用产生了巨大的影响。隔膜是电池的一个组成部分,它有两个作用:一是保证电池的正常工作,二是有效抑制锂枝晶的生长。本文提出建立二维相场模型,研究陶瓷复合膜相和PE隔膜相对锂枝晶生长的影响。本研究是在应力和温度场条件下进行的。结果表明,陶瓷颗粒的弹性模量大于金属锂颗粒的弹性模量。因此,陶瓷分离器可以有效地防止应力耦合条件下锂枝晶的生长。此外,在较高的温度下,有利于锂离子的运输,增加了锂枝晶在尖端和非尖端区域的沉积,从而减少了高温下锂枝晶的长度。本研究揭示了在应力场和温度场条件下,陶瓷隔膜对抑制锂枝晶生长的重要影响。
{"title":"Phase field simulation of effect of ceramic composite separator on the growth of lithium dendrites","authors":"Chuanxiang Zhang ,&nbsp;Hao Zhang ,&nbsp;Qingyang Hu ,&nbsp;Yuhan Zhang ,&nbsp;Zhixin Liu ,&nbsp;Xingxu Gao ,&nbsp;Tao Wang","doi":"10.1016/j.ssi.2025.116966","DOIUrl":"10.1016/j.ssi.2025.116966","url":null,"abstract":"<div><div>The uncontrollable growth of lithium dendrites has a huge impact on the practical application of lithium metal batteries. The separator is an integral element of the battery and fulfils two functions: firstly, it ensures the normal operation of the battery, and secondly, it is effective in inhibiting the growth of lithium dendrites. The present paper proposes the establishment of a two-dimensional phase field model, with the objective of investigating the effects of the ceramic composite diaphragm phase and the PE separator diaphragm phase on lithium dendrite growth. This investigation is conducted under conditions of stress and temperature fields. It has been shown that the elastic modulus of ceramic particles is greater than that of lithium metal. Therefore, the ceramic separator can effectively prevent the growth of lithium dendrites under stress-coupled conditions. In addition, at higher temperatures, it is beneficial to the transport of lithium ions and increases the deposition of lithium dendrites in the tip and non-tip regions, thereby reducing the length of lithium dendrites at high temperatures. This study reveals the important influence of the ceramic separator on inhibiting the growth of lithium dendrites under the conditions of stress field and temperature field.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"429 ","pages":"Article 116966"},"PeriodicalIF":3.0,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144695115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrophoretically deposited polymer-in-ceramic electrolyte comprising polymerized ionic liquid 电泳沉积的聚合物陶瓷电解质,包括聚合离子液体
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-07-23 DOI: 10.1016/j.ssi.2025.116971
Moran Lifshitz , Anna Greenbaum , Inbar Anconina , Thomas Leirikh , Mounesha Garaga Nagendrachar , Ivan Popov , Harmandeep Singh , Gaukhar Toleutay , Yuri Feldman , Alexei P. Sokolov , Steve Greenbaum , Diana Golodnitsky
Composite solid electrolytes, in which superionic ceramics materials are combined with ion-conducting polymers, could revolutionize electrochemical-energy-storage devices enabling higher energy density, providing greater stability during operation and enhanced safety. However, the interfacial resistance between the ceramic and polymer phases strongly suppresses the ionic conductivity and presents the main obstacle for the practical uses.
In the current article, an attempt has been made to improve composite conductivity by significantly increasing ceramic concentration in combination with the polymerized ionic liquid (PolyIL). The film was prepared by the electrophoretic deposition method. We believe this is the first demonstration of a PolyIL as a multifunctional additive in EPD, enabling both field-driven deposition and an integrated electrolyte architecture that ensures mechanical cohesion and continuous ion transport pathways. We deposited thirty-micron-thick composite film, which contains more than 90 wt% of LAGP. It has porous structure, in which single ceramic particles and their aggregates are coated by PolyIL. Broad Band Dielectric Spectroscopy method is used for the understanding of ion transport in composite polymer-in-ceramic electrolyte. We observed no improvement in conductivity and assign this to the dominating effect of interfacial energy barriers limiting Li transport in composites.
复合固体电解质,其中超离子陶瓷材料与离子导电聚合物相结合,可以彻底改变电化学能量存储设备,实现更高的能量密度,在操作过程中提供更大的稳定性和增强的安全性。然而,陶瓷相和聚合物相之间的界面电阻强烈地抑制了离子电导率,是实际应用的主要障碍。在这篇文章中,我们尝试通过显著提高陶瓷浓度与聚合离子液体(PolyIL)的结合来提高复合材料的导电性。采用电泳沉积法制备薄膜。我们相信这是PolyIL在EPD中作为多功能添加剂的第一次演示,既可以实现场驱动沉积,也可以实现集成电解质结构,确保机械凝聚力和连续的离子传输途径。我们沉积了30微米厚的复合薄膜,其中含有超过90%的LAGP。它具有多孔结构,其中单个陶瓷颗粒及其聚集体被聚乙二醇包裹。采用宽频带介电光谱方法研究了复合聚合物陶瓷电解质中的离子输运。我们没有观察到电导率的改善,并将其归因于限制复合材料中Li输运的界面能垒的主导作用。
{"title":"Electrophoretically deposited polymer-in-ceramic electrolyte comprising polymerized ionic liquid","authors":"Moran Lifshitz ,&nbsp;Anna Greenbaum ,&nbsp;Inbar Anconina ,&nbsp;Thomas Leirikh ,&nbsp;Mounesha Garaga Nagendrachar ,&nbsp;Ivan Popov ,&nbsp;Harmandeep Singh ,&nbsp;Gaukhar Toleutay ,&nbsp;Yuri Feldman ,&nbsp;Alexei P. Sokolov ,&nbsp;Steve Greenbaum ,&nbsp;Diana Golodnitsky","doi":"10.1016/j.ssi.2025.116971","DOIUrl":"10.1016/j.ssi.2025.116971","url":null,"abstract":"<div><div>Composite solid electrolytes, in which superionic ceramics materials are combined with ion-conducting polymers, could revolutionize electrochemical-energy-storage devices enabling higher energy density, providing greater stability during operation and enhanced safety. However, the interfacial resistance between the ceramic and polymer phases strongly suppresses the ionic conductivity and presents the main obstacle for the practical uses.</div><div>In the current article, an attempt has been made to improve composite conductivity by significantly increasing ceramic concentration in combination with the polymerized ionic liquid (PolyIL). The film was prepared by the electrophoretic deposition method. We believe this is the first demonstration of a PolyIL as a multifunctional additive in EPD, enabling both field-driven deposition and an integrated electrolyte architecture that ensures mechanical cohesion and continuous ion transport pathways. We deposited thirty-micron-thick composite film, which contains more than 90 wt% of LAGP. It has porous structure, in which single ceramic particles and their aggregates are coated by PolyIL. Broad Band Dielectric Spectroscopy method is used for the understanding of ion transport in composite polymer-in-ceramic electrolyte. We observed no improvement in conductivity and assign this to the dominating effect of interfacial energy barriers limiting Li transport in composites.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"429 ","pages":"Article 116971"},"PeriodicalIF":3.0,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144685903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the reaction process and properties of γ-Ce2S3 derived from pure and Na-doped CeO2 sulfurization with CS2 探讨了纯CeO2和na掺杂CeO2与CS2硫化所得γ-Ce2S3的反应过程和性质
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-07-22 DOI: 10.1016/j.ssi.2025.116965
Fusheng Song , Hongbing Wei , Zongyang Shen , Zhumei Wang , Yueming Li
The sulfurization pathways of pure and Na-doped CeO2 with CS₂ were investigated to elucidate the mechanism by which Na+ doping lowers γ-Ce2S3 synthesis temperature. For undoped CeO2, the synthesis of γ-Ce2S3 typically encompasses three primary steps: (1) deoxidation, where oxygen in CeO2 is substituted by sulfur to form CeS2; (2) reduction of CeS2 to α-Ce2S3; (3) a phase transition sequence from α-Ce2S3 to β-Ce2S3, and subsequently to γ-Ce2S3. This process requires a high synthesis temperature of up to 1300 °C. Remarkably, Na+ introduction fundamentally altered this pathway, bypassing α and β intermediates to directly yield pure γ-Ce2S3 at 900 °C. This is attributed to Na+-promoted formation of NaCeS2 and Ce2O2S intermediates that facilitate direct γ-phase crystallization. The resultant γ-[Na]-Ce2S3 solid solution exhibits modified band structure and enhanced thermal stability compared to undoped γ-Ce2S3.
研究了纯CeO2和Na掺杂CeO2与CS₂的硫化途径,阐明了Na+掺杂降低γ-Ce2S3合成温度的机理。对于未掺杂的CeO2, γ-Ce2S3的合成通常包括三个主要步骤:(1)脱氧,其中CeO2中的氧被硫取代形成CeS2;(2) CeS2还原为α-Ce2S3;(3) α-Ce2S3→β-Ce2S3→γ-Ce2S3的相变序列。该工艺需要高达1300°C的高合成温度。值得注意的是,Na+的引入从根本上改变了这一途径,绕过α和β中间体,在900°C下直接生成纯γ-Ce2S3。这是由于Na+促进了NaCeS2和Ce2O2S中间体的形成,促进了γ相的直接结晶。与未掺杂的γ-[Na]- ce2s3相比,得到的γ-[Na]- ce2s3固溶体具有改变的能带结构和增强的热稳定性。
{"title":"Exploring the reaction process and properties of γ-Ce2S3 derived from pure and Na-doped CeO2 sulfurization with CS2","authors":"Fusheng Song ,&nbsp;Hongbing Wei ,&nbsp;Zongyang Shen ,&nbsp;Zhumei Wang ,&nbsp;Yueming Li","doi":"10.1016/j.ssi.2025.116965","DOIUrl":"10.1016/j.ssi.2025.116965","url":null,"abstract":"<div><div>The sulfurization pathways of pure and Na-doped CeO<sub>2</sub> with CS₂ were investigated to elucidate the mechanism by which Na<sup>+</sup> doping lowers <em>γ</em>-Ce<sub>2</sub>S<sub>3</sub> synthesis temperature. For undoped CeO<sub>2</sub>, the synthesis of <em>γ</em>-Ce<sub>2</sub>S<sub>3</sub> typically encompasses three primary steps: (1) deoxidation, where oxygen in CeO<sub>2</sub> is substituted by sulfur to form CeS<sub>2</sub>; (2) reduction of CeS<sub>2</sub> to <em>α</em>-Ce<sub>2</sub>S<sub>3</sub>; (3) a phase transition sequence from <em>α</em>-Ce<sub>2</sub>S<sub>3</sub> to <em>β</em>-Ce<sub>2</sub>S<sub>3</sub>, and subsequently to <em>γ</em>-Ce<sub>2</sub>S<sub>3</sub>. This process requires a high synthesis temperature of up to 1300 °C. Remarkably, Na<sup>+</sup> introduction fundamentally altered this pathway, bypassing <em>α</em> and <em>β</em> intermediates to directly yield pure <em>γ</em>-Ce<sub>2</sub>S<sub>3</sub> at 900 °C. This is attributed to Na<sup>+</sup>-promoted formation of NaCeS<sub>2</sub> and Ce<sub>2</sub>O<sub>2</sub>S intermediates that facilitate direct <em>γ</em>-phase crystallization. The resultant <em>γ</em>-[Na]-Ce<sub>2</sub>S<sub>3</sub> solid solution exhibits modified band structure and enhanced thermal stability compared to undoped <em>γ</em>-Ce<sub>2</sub>S<sub>3</sub>.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"429 ","pages":"Article 116965"},"PeriodicalIF":3.0,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144679942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Li3BO3 decoration endows fast reaction kinetics of LiFePO4 cathode for lithium ion batteries Li3BO3修饰赋予了LiFePO4锂离子电池正极快速反应动力学
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-07-21 DOI: 10.1016/j.ssi.2025.116944
Kaihua Li, Jiajin Li, Haoyu Qi, Jinze Song, Diaohan Wang, Lijun Fu, Yuping Wu
Olivine-type lithium iron phosphate is widely used as a cathode material for lithium-ion batteries because of its moderate operating voltage, excellent stability, and high safety. However, the high rate capability of LiFePO4 is limited by its low electrical conductivity. Additionally, its interface and internal structure would degrade under high-rate conditions. To address these issues, Li3BO3 was prepared via sol-gel method as the surface decoration to enhance the rate performance of LiFePO4. The Li3BO3 decorated LiFePO4 (B-LiFePO4) maintains the structural integrity during cycling under large current densities, furthermore, it induces the formation of favorable cathode-electrolyte interface (CEI) with less Li2CO3 and more Li2O contents, and reduces the activation energy of Li+ diffusion in the CEI layer and charge transfer, thus the high capacity and long cycle performances of LiFePO4 are achieved when cycled at high current densities. At ambient environment and 30C, B-LiFePO4 delivers a high reversible capacity of 63.1 mAh g−1, and a capacity retention of 90 % can be realized over 600 cycles at 1C. In contrast, the original LiFePO4 delivers only 27.8 mAh g−1 at 30C and a capacity retention of 67.2 % after 600 cycles at 1C. Besides, B-LiFePO4 demonstrates good low temperature performance, it exhibits high capacities of 122.1 and 80.7 mAh g−1 at 1C, 0 °C and − 20 °C, respectively. This study provides a simple method to enhance the reaction kinetics of LiFePO4 cathode, which would benefit the development of LiFePO4 based lithium ion batteries with high rate performance.
橄榄石型磷酸铁锂因其工作电压适中、稳定性好、安全性高而被广泛用作锂离子电池的正极材料。然而,LiFePO4的高倍率性能受到其低导电性的限制。此外,它的界面和内部结构在高速率条件下会退化。为了解决这些问题,采用溶胶-凝胶法制备Li3BO3作为LiFePO4的表面装饰,以提高LiFePO4的速率性能。经过Li3BO3修饰的LiFePO4 (B-LiFePO4)在大电流密度循环过程中保持了结构的完整性,形成了Li2CO3含量少、Li2O含量高的阴极-电解质界面(CEI),降低了CEI层中Li+扩散和电荷转移的活化能,从而实现了LiFePO4在大电流密度循环时的高容量和长周期性能。在室温和30C下,B-LiFePO4可提供63.1 mAh g−1的高可逆容量,并且在1C下可实现超过600次循环的90%的容量保持。相比之下,原始的LiFePO4在30C下仅提供27.8 mAh g - 1,在1C下循环600次后容量保持率为67.2%。此外,B-LiFePO4具有良好的低温性能,在1C、0°C和- 20°C时,其容量分别为122.1和80.7 mAh g - 1。本研究为提高LiFePO4正极的反应动力学提供了一种简单的方法,这将有利于LiFePO4基锂离子电池的高倍率性能的发展。
{"title":"Li3BO3 decoration endows fast reaction kinetics of LiFePO4 cathode for lithium ion batteries","authors":"Kaihua Li,&nbsp;Jiajin Li,&nbsp;Haoyu Qi,&nbsp;Jinze Song,&nbsp;Diaohan Wang,&nbsp;Lijun Fu,&nbsp;Yuping Wu","doi":"10.1016/j.ssi.2025.116944","DOIUrl":"10.1016/j.ssi.2025.116944","url":null,"abstract":"<div><div>Olivine-type lithium iron phosphate is widely used as a cathode material for lithium-ion batteries because of its moderate operating voltage, excellent stability, and high safety. However, the high rate capability of LiFePO<sub>4</sub> is limited by its low electrical conductivity. Additionally, its interface and internal structure would degrade under high-rate conditions. To address these issues, Li<sub>3</sub>BO<sub>3</sub> was prepared via sol-gel method as the surface decoration to enhance the rate performance of LiFePO<sub>4</sub>. The Li<sub>3</sub>BO<sub>3</sub> decorated LiFePO<sub>4</sub> (B-LiFePO<sub>4</sub>) maintains the structural integrity during cycling under large current densities, furthermore, it induces the formation of favorable cathode-electrolyte interface (CEI) with less Li<sub>2</sub>CO<sub>3</sub> and more Li<sub>2</sub>O contents, and reduces the activation energy of Li<sup>+</sup> diffusion in the CEI layer and charge transfer, thus the high capacity and long cycle performances of LiFePO<sub>4</sub> are achieved when cycled at high current densities. At ambient environment and 30C, B-LiFePO<sub>4</sub> delivers a high reversible capacity of 63.1 mAh g<sup>−1</sup>, and a capacity retention of 90 % can be realized over 600 cycles at 1C. In contrast, the original LiFePO<sub>4</sub> delivers only 27.8 mAh g<sup>−1</sup> at 30C and a capacity retention of 67.2 % after 600 cycles at 1C. Besides, B-LiFePO<sub>4</sub> demonstrates good low temperature performance, it exhibits high capacities of 122.1 and 80.7 mAh g<sup>−1</sup> at 1C, 0 °C and − 20 °C, respectively. This study provides a simple method to enhance the reaction kinetics of LiFePO<sub>4</sub> cathode, which would benefit the development of LiFePO<sub>4</sub> based lithium ion batteries with high rate performance.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"429 ","pages":"Article 116944"},"PeriodicalIF":3.0,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144671017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graphene oxide-enhanced alginate-PVA biopolymer electrolytes with improved proton conductivity and electrochemical stability for supercapacitor applications 氧化石墨烯增强海藻酸盐-聚乙烯醇生物聚合物电解质,具有改善的质子电导率和超级电容器应用的电化学稳定性
IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2025-07-18 DOI: 10.1016/j.ssi.2025.116956
N.N.A. Hafidz , N.M. Ghazali , N.F. Mazuki , M. Diantoro , Y. Nagao , A.S. Samsudin
This study explores the effect of graphene oxide (GO) incorporation on the structural and electrochemical properties of alginate–poly(vinyl alcohol) (PVA) polymer electrolytes doped with ammonium nitrate (NH₄NO₃) for supercapacitor applications. FTIR analysis revealed specific molecular interactions between graphene oxide (GO) and the polymer host, while XRD results confirmed the enhanced amorphous nature of the composite. At 2 wt.% GO loading, the system exhibited peak ionic conductivity of 1.07 × 10−3 S cm−1 at room temperature, with a high ionic transference number (tₙ ≈ 0.98) and an extended electrochemical stability window of 2.85 V. Symmetric supercapacitors fabricated with these electrolytes achieved a specific capacitance of 240.78 F g−1, an energy density of 131 Wh kg−1, and long-term cycling stability up to 10,000 cycles. These results demonstrate that GO-induced structural modulation significantly enhances proton transport and electrochemical performance, offering a promising biopolymer-based platform for next-generation energy storage devices.
本研究探讨了氧化石墨烯(GO)掺入对掺杂硝酸铵(NH₄NO₃)的海藻酸盐-聚乙烯醇(PVA)聚合物电解质的结构和电化学性能的影响。FTIR分析揭示了氧化石墨烯(GO)与聚合物主体之间的特定分子相互作用,而XRD结果证实了复合材料的非晶态性质增强。当氧化石墨烯(GO)负载为2 wt.%时,该体系在室温下的离子电导率峰值为1.07 × 10−3 S cm−1,具有较高的离子转移数(t≈0.98)和2.85 V的扩展电化学稳定窗口。用这些电解质制成的对称超级电容器的比电容为240.78 F g−1,能量密度为131 Wh kg−1,长期循环稳定性高达10,000次循环。这些结果表明,氧化石墨烯诱导的结构调制显著提高了质子传输和电化学性能,为下一代储能设备提供了一个有前途的基于生物聚合物的平台。
{"title":"Graphene oxide-enhanced alginate-PVA biopolymer electrolytes with improved proton conductivity and electrochemical stability for supercapacitor applications","authors":"N.N.A. Hafidz ,&nbsp;N.M. Ghazali ,&nbsp;N.F. Mazuki ,&nbsp;M. Diantoro ,&nbsp;Y. Nagao ,&nbsp;A.S. Samsudin","doi":"10.1016/j.ssi.2025.116956","DOIUrl":"10.1016/j.ssi.2025.116956","url":null,"abstract":"<div><div>This study explores the effect of graphene oxide (GO) incorporation on the structural and electrochemical properties of alginate–poly(vinyl alcohol) (PVA) polymer electrolytes doped with ammonium nitrate (NH₄NO₃) for supercapacitor applications. FTIR analysis revealed specific molecular interactions between graphene oxide (GO) and the polymer host, while XRD results confirmed the enhanced amorphous nature of the composite. At 2 wt.% GO loading, the system exhibited peak ionic conductivity of 1.07 × 10<sup>−3</sup> S cm<sup>−1</sup> at room temperature, with a high ionic transference number (tₙ ≈ 0.98) and an extended electrochemical stability window of 2.85 V. Symmetric supercapacitors fabricated with these electrolytes achieved a specific capacitance of 240.78 F g<sup>−1</sup>, an energy density of 131 Wh kg<sup>−1</sup>, and long-term cycling stability up to 10,000 cycles. These results demonstrate that GO-induced structural modulation significantly enhances proton transport and electrochemical performance, offering a promising biopolymer-based platform for next-generation energy storage devices.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"429 ","pages":"Article 116956"},"PeriodicalIF":3.0,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144656006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Solid State Ionics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1