Pub Date : 2022-09-30DOI: 10.32913/mic-ict-research.v2022.n2.1060
Quang-Manh Duong, Quang-Kien Trinh, Hai D. Nguyen, Van‐Phuc Hoang, H. Vu, Dinh‐Ha Dao, D. Luong, Van-Toan Tran
This paper presents an effective approach forimplementing content address memory (CAM) based on Nonvolatile random-access memory (NV-RAM) technologies. Weused the 2T-2R bitcell structure implemented on a 65nmCMOS process with a special in-memory matching circuitfor realizing low-delay and energy-efficient lookup operations.The simulation results on Synopsys HSPICE indicate that theproposed CAM design can achieve a search error rate of0.03-4.61%, search energy per bit of 4.36-6.47 fJ, and anextremely small search latency varying from 0.11-0.12 nsdepending on the specific design configurations.
{"title":"A Reliable High-speed Compact In-memory Matching Circuit for CAM-Application Based on NV-RAM","authors":"Quang-Manh Duong, Quang-Kien Trinh, Hai D. Nguyen, Van‐Phuc Hoang, H. Vu, Dinh‐Ha Dao, D. Luong, Van-Toan Tran","doi":"10.32913/mic-ict-research.v2022.n2.1060","DOIUrl":"https://doi.org/10.32913/mic-ict-research.v2022.n2.1060","url":null,"abstract":"This paper presents an effective approach forimplementing content address memory (CAM) based on Nonvolatile random-access memory (NV-RAM) technologies. Weused the 2T-2R bitcell structure implemented on a 65nmCMOS process with a special in-memory matching circuitfor realizing low-delay and energy-efficient lookup operations.The simulation results on Synopsys HSPICE indicate that theproposed CAM design can achieve a search error rate of0.03-4.61%, search energy per bit of 4.36-6.47 fJ, and anextremely small search latency varying from 0.11-0.12 nsdepending on the specific design configurations.","PeriodicalId":432355,"journal":{"name":"Research and Development on Information and Communication Technology","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124491610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-13DOI: 10.32913/mic-ict-research.v2022.n1.1029
C. Tran
Steiner Minimal Tree (SMT) is a combinatorial optimization problem that has many important applications in science and engineering; this is an NP-hard class problem. In recent decades, there have been a series of scientific papers published for solving the SMT problem based on the approaches of exact solutions (such as dynamic programming, branch and bound) and approximate solutions (such as heuristic algorithm, metaheuristic algorithm). This paper proposes an improvement for two heuristic algorithms PD-Steiner and SPT-Steiner to solve a SMT problem in large size sparse graphs with edge weight not exceeding 10 and verify this proposal on large-size sparse graphs up to 100000 vertices. These experimental results are useful information for further research on the SMT problem.
{"title":"Proposing to improve the Heuristic Algorithms to Solve a Steiner-minimal-tree Problem in Large Size Sparse Graphs","authors":"C. Tran","doi":"10.32913/mic-ict-research.v2022.n1.1029","DOIUrl":"https://doi.org/10.32913/mic-ict-research.v2022.n1.1029","url":null,"abstract":"Steiner Minimal Tree (SMT) is a combinatorial optimization problem that has many important applications in science and engineering; this is an NP-hard class problem. In recent decades, there have been a series of scientific papers published for solving the SMT problem based on the approaches of exact solutions (such as dynamic programming, branch and bound) and approximate solutions (such as heuristic algorithm, metaheuristic algorithm). This paper proposes an improvement for two heuristic algorithms PD-Steiner and SPT-Steiner to solve a SMT problem in large size sparse graphs with edge weight not exceeding 10 and verify this proposal on large-size sparse graphs up to 100000 vertices. These experimental results are useful information for further research on the SMT problem.","PeriodicalId":432355,"journal":{"name":"Research and Development on Information and Communication Technology","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129316439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-13DOI: 10.32913/mic-ict-research.v2022.n1.1028
Tuyen-Thanh-Thi Ho
With the great success of artificial intelligence in recent years, graph learning is gaining attention from both academia and industry [1, 2]. The power of graph data is its capacity to represent numerous complicated structures in a broad spectrum of application domains including protein networks, social networks, food webs, molecular structures, knowledge graphs, sentence dependency trees, and scene graphs of images. However, designing an effective graph learning architecture on arbitrary graphs is still an on-going research topic because of two challenges of learning complex topological structures of graphs and their nature of isomorphism. In this work, we aim to summarize and discuss the latest methods in graph learning, with special attention to two aspects of structure learning and permutation invariance learning. The survey starts by reviewing basic concepts on graph theory and graph signal processing. Next, we provide systematic categorization of graph learning methods to address two aspects above respectively. Finally, we conclude our paper with discussions and open issues in research and practice.
{"title":"Graph Structure and Isomorphism Learning: A Survey","authors":"Tuyen-Thanh-Thi Ho","doi":"10.32913/mic-ict-research.v2022.n1.1028","DOIUrl":"https://doi.org/10.32913/mic-ict-research.v2022.n1.1028","url":null,"abstract":"With the great success of artificial intelligence in recent years, graph learning is gaining attention from both academia and industry [1, 2]. The power of graph data is its capacity to represent numerous complicated structures in a broad spectrum of application domains including protein networks, social networks, food webs, molecular structures, knowledge graphs, sentence dependency trees, and scene graphs of images. However, designing an effective graph learning architecture on arbitrary graphs is still an on-going research topic because of two challenges of learning complex topological structures of graphs and their nature of isomorphism. In this work, we aim to summarize and discuss the latest methods in graph learning, with special attention to two aspects of structure learning and permutation invariance learning. The survey starts by reviewing basic concepts on graph theory and graph signal processing. Next, we provide systematic categorization of graph learning methods to address two aspects above respectively. Finally, we conclude our paper with discussions and open issues in research and practice.","PeriodicalId":432355,"journal":{"name":"Research and Development on Information and Communication Technology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134465232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-08DOI: 10.32913/mic-ict-research.v2022.n1.1026
Ngoc Duc Nguyen, Bac Le
Utility mining (UM) is an efficient technique for data mining which aim to discover critical patternsfrom various types of database. However, mining data can reveal sensitive information of individuals. Privacy preserving utility mining (PPUM) emerges as an important research topic in recent years. In the past, integer programming approach was developed to hide sensitive knowledge in a database. This approach required a significant amount of time for preprocessing and formulating a constraint satisfaction problem (CSP). To address this problem, we proposed a new algorithm based on a hash data structure which performs more quickly in itemsets filtering and problem modeling. Experiment evaluations are conducted on real world and synthetic datasets.
{"title":"A Fast Algorithm for Privacy-Preserving Utility Mining","authors":"Ngoc Duc Nguyen, Bac Le","doi":"10.32913/mic-ict-research.v2022.n1.1026","DOIUrl":"https://doi.org/10.32913/mic-ict-research.v2022.n1.1026","url":null,"abstract":"Utility mining (UM) is an efficient technique for data mining which aim to discover critical patternsfrom various types of database. However, mining data can reveal sensitive information of individuals. Privacy preserving utility mining (PPUM) emerges as an important research topic in recent years. In the past, integer programming approach was developed to hide sensitive knowledge in a database. This approach required a significant amount of time for preprocessing and formulating a constraint satisfaction problem (CSP). To address this problem, we proposed a new algorithm based on a hash data structure which performs more quickly in itemsets filtering and problem modeling. Experiment evaluations are conducted on real world and synthetic datasets.","PeriodicalId":432355,"journal":{"name":"Research and Development on Information and Communication Technology","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126739786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-08DOI: 10.32913/mic-ict-research.v2022.n1.1001
Huy Nguyen, Hai Vu
In this work, we propose a technique to automatically detect and segment hands on first-person images of patientsin upper limb rehabilitation exercises. The aim is to automate the assessment of the patient's recovery processthrough rehabilitation exercises. The proposed technique includes the following steps: 1) setting up a wearablecamera system and collecting upper extremity rehabilitation exercise data. The data is filtered, selected andannotated with the left and right hand as well as segmented the image area of the patient's hand. The datasetconsists of 3700 images with the name RehabHand. This dataset is used to train hand detection and segmentationmodels on first-person images. 2) conducted a survey of automatic hand detection and segmentation models usingMask-RCNN network architecture with different backbones. From the experimental architectures, the Mask -RCNN architecture with the Res2Net backbone was selected for all three tasks: hand detection; left - right handidentification; and hand segmentation. The proposed model has achieved the highest performance in the tests. Toovercome the limitation on the amount of training data, we propose to use the transfer learning method alongwith data enhancement techniques to improve the accuracy of the model. The results of the detection of objects onthe test dataset for the left hand is AP = 92.3%, the right hand AP = 91.1%. The segmentation result on the test dataset forleft hand is AP = 88.8%, right hand being AP = 87%. These results suggest that it is possible to automatically quantifythe patient's ability to use their hands during upper extremity rehabilitation.
{"title":"Hand Detection and Segmentation in First Person Image Using Mask R-CNN","authors":"Huy Nguyen, Hai Vu","doi":"10.32913/mic-ict-research.v2022.n1.1001","DOIUrl":"https://doi.org/10.32913/mic-ict-research.v2022.n1.1001","url":null,"abstract":"In this work, we propose a technique to automatically detect and segment hands on first-person images of patientsin upper limb rehabilitation exercises. The aim is to automate the assessment of the patient's recovery processthrough rehabilitation exercises. The proposed technique includes the following steps: 1) setting up a wearablecamera system and collecting upper extremity rehabilitation exercise data. The data is filtered, selected andannotated with the left and right hand as well as segmented the image area of the patient's hand. The datasetconsists of 3700 images with the name RehabHand. This dataset is used to train hand detection and segmentationmodels on first-person images. 2) conducted a survey of automatic hand detection and segmentation models usingMask-RCNN network architecture with different backbones. From the experimental architectures, the Mask -RCNN architecture with the Res2Net backbone was selected for all three tasks: hand detection; left - right handidentification; and hand segmentation. The proposed model has achieved the highest performance in the tests. Toovercome the limitation on the amount of training data, we propose to use the transfer learning method alongwith data enhancement techniques to improve the accuracy of the model. The results of the detection of objects onthe test dataset for the left hand is AP = 92.3%, the right hand AP = 91.1%. The segmentation result on the test dataset forleft hand is AP = 88.8%, right hand being AP = 87%. These results suggest that it is possible to automatically quantifythe patient's ability to use their hands during upper extremity rehabilitation.","PeriodicalId":432355,"journal":{"name":"Research and Development on Information and Communication Technology","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115172001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-31DOI: 10.32913/mic-ict-research-vn.v2019.n2.866
N. Phượng, Đào Khánh Hoài, Tống Minh Đức
Máy dò dị thường do Reed và Yu đề xuất được công nhận là máy chuẩn để phát hiện dị thường trên ảnh đa phổ và siêu phổ. Tuy nhiên, máy này có một số hạn chế: dữ liệu ảnh phải tuân theo mô hình Gauss đa biến, tính toán nghịch đảo của ma trận hiệp phương sai rất phức tạp khi ảnh nền có kích thước lớn, hoạt động thiếu ổn định, đôi khi có tỉ lệ báo động giả cao, thiếu mối liên hệ không gian giữa các điểm ảnh. Quy tắc quyết định Neyman-Pearson thường được sử dụng dựa trên việc tính toán hàm mật độ xác suất phi tham số của dữ liệu nền để nâng cao hiệu suất và độ tin cậy, nhưng lại có độ phức tạp tính toán cao. Để giảm độ phức tạp tính toán và thời gian tính toán, nhiều phương pháp đã được sử dụng, như: biến đổi Fourier nhanh, biến đổi Gauss nhanh, lập trình đa luồng trên bộ xử lý trung tâm (CPU), song song trên bộ xử lý đồ họa (GPU). Bài báo này trình bày một phương pháp ước lượng nhanh hàm mật độ xác suất bằng cách phân nhóm các điểm ảnh trên miền giá trị và tổ chức dữ liệu trên cây Kd-tree. Kết quả kiểm nghiệm cho thấy phương pháp đề xuất vượt trội các phương pháp khác và có thể ứng dụng trong thực tế.
{"title":"Tăng tốc độ phát hiện dị thường trên ảnh đa phổ và siêu phổ ứng dụng trong tìm kiếm cứu nạn","authors":"N. Phượng, Đào Khánh Hoài, Tống Minh Đức","doi":"10.32913/mic-ict-research-vn.v2019.n2.866","DOIUrl":"https://doi.org/10.32913/mic-ict-research-vn.v2019.n2.866","url":null,"abstract":"Máy dò dị thường do Reed và Yu đề xuất được công nhận là máy chuẩn để phát hiện dị thường trên ảnh đa phổ và siêu phổ. Tuy nhiên, máy này có một số hạn chế: dữ liệu ảnh phải tuân theo mô hình Gauss đa biến, tính toán nghịch đảo của ma trận hiệp phương sai rất phức tạp khi ảnh nền có kích thước lớn, hoạt động thiếu ổn định, đôi khi có tỉ lệ báo động giả cao, thiếu mối liên hệ không gian giữa các điểm ảnh. Quy tắc quyết định Neyman-Pearson thường được sử dụng dựa trên việc tính toán hàm mật độ xác suất phi tham số của dữ liệu nền để nâng cao hiệu suất và độ tin cậy, nhưng lại có độ phức tạp tính toán cao. Để giảm độ phức tạp tính toán và thời gian tính toán, nhiều phương pháp đã được sử dụng, như: biến đổi Fourier nhanh, biến đổi Gauss nhanh, lập trình đa luồng trên bộ xử lý trung tâm (CPU), song song trên bộ xử lý đồ họa (GPU). Bài báo này trình bày một phương pháp ước lượng nhanh hàm mật độ xác suất bằng cách phân nhóm các điểm ảnh trên miền giá trị và tổ chức dữ liệu trên cây Kd-tree. Kết quả kiểm nghiệm cho thấy phương pháp đề xuất vượt trội các phương pháp khác và có thể ứng dụng trong thực tế.","PeriodicalId":432355,"journal":{"name":"Research and Development on Information and Communication Technology","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130565687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-31DOI: 10.32913/mic-ict-research-vn.v2019.n2.872
Trương Tín Chí, Trần Ngọc Ánh, Dương Văn Hải, Lê Hoài Bắc
Khai thác các chuỗi phổ biến và các chuỗi lợi ích cao có mức độ quan trọng khác nhau trong các ứng dụng thực tế. Gần đây, các nghiên cứu tập trung giải quyết bài toán tổng quát hơn, là khai thác tập FHUS chuỗi phổ biến lợi ích cao. Tuy nhiên, thời gian và bộ nhớ dùng để khai thác FHUS vẫn còn quá lớn. Bài báo đề xuất khái niệm tập FGHUS các chuỗi sinh phổ biến lợi ích cao, là một biểu diễn súc tích của FHUS, và một thuật toán mới hiệu quả để khai thác nó. Dựa vào hai chặn trên của độ đo lợi ích, hai chiến lược tỉa theo chiều rộng và sâu được thiết kế để loại bỏ nhanh các chuỗi ít phổ biến hoặc lợi ích thấp. Sử dụng một chặn dưới mới của lợi ích, một chiến lược tỉa địa phương mới được đề xuất để loại bỏ sớm các chuỗi không là chuỗi sinh phổ biến lợi ích cao. Dựa vào các chiến lược này, một thuật toán mới FGenHUSM được thiết kế để khai thác FGHUS mà tính hiệu quả của nó được thể hiện qua các thử nghiệm trên các cơ sở dữ liệu lớn.
{"title":"FGenHUSM: Một thuật toán hiệu quả khai thác các chuỗi sinh phổ biến lợi ích cao","authors":"Trương Tín Chí, Trần Ngọc Ánh, Dương Văn Hải, Lê Hoài Bắc","doi":"10.32913/mic-ict-research-vn.v2019.n2.872","DOIUrl":"https://doi.org/10.32913/mic-ict-research-vn.v2019.n2.872","url":null,"abstract":"Khai thác các chuỗi phổ biến và các chuỗi lợi ích cao có mức độ quan trọng khác nhau trong các ứng dụng thực tế. Gần đây, các nghiên cứu tập trung giải quyết bài toán tổng quát hơn, là khai thác tập FHUS chuỗi phổ biến lợi ích cao. Tuy nhiên, thời gian và bộ nhớ dùng để khai thác FHUS vẫn còn quá lớn. Bài báo đề xuất khái niệm tập FGHUS các chuỗi sinh phổ biến lợi ích cao, là một biểu diễn súc tích của FHUS, và một thuật toán mới hiệu quả để khai thác nó. Dựa vào hai chặn trên của độ đo lợi ích, hai chiến lược tỉa theo chiều rộng và sâu được thiết kế để loại bỏ nhanh các chuỗi ít phổ biến hoặc lợi ích thấp. Sử dụng một chặn dưới mới của lợi ích, một chiến lược tỉa địa phương mới được đề xuất để loại bỏ sớm các chuỗi không là chuỗi sinh phổ biến lợi ích cao. Dựa vào các chiến lược này, một thuật toán mới FGenHUSM được thiết kế để khai thác FGHUS mà tính hiệu quả của nó được thể hiện qua các thử nghiệm trên các cơ sở dữ liệu lớn.","PeriodicalId":432355,"journal":{"name":"Research and Development on Information and Communication Technology","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127965687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-31DOI: 10.32913/mic-ict-research-vn.v2019.n2.865
Phan Thanh Toàn, Đ. Hữu, N. Lộc
Điện toán đám mây là xu thế mới của công nghệ thông tin và truyền thông. Trong mô hình điện toán đám mây mọi khả năng liên quan đến công nghệ thông tin đều được cung cấp dưới dạng dịch vụ, cho phép người sử dụng truy cập đến các dịch vụ công nghệ (phần cứng và phần mềm) từ các nhà cung cấp dịch vụ. Điện toán đám mây là sự tập hợp của nhiều máy chủ vật lý và máy chủ ảo, được cấu hình để làm việc với nhau trên môi trường mạng Internet. Một trong số các vấn đề lớn nhất trong môi trường điện toán đám mây là bài toán lập lịch luồng công việc. Hiệu năng của các hệ thống điện toán đám mây phụ thuộc rất nhiều vào việc sắp xếp các tác vụ trong luồng thực thi trên các máy tính trong môi trường đám mây để hoàn thành luồng công việc một cách tối ưu. Trong bài báo này chúng tôi đề xuất một thuật toán lập lịch luồng công việc mới dựa trên chiến lược tối ưu bày đàn và tìm kiếm Tabu.
{"title":"Toán tử lân cận mới cho thuật toán Tabu Search và PSO giải bài toán lập lịch luồng công việc trong môi trường điện toán đám mây","authors":"Phan Thanh Toàn, Đ. Hữu, N. Lộc","doi":"10.32913/mic-ict-research-vn.v2019.n2.865","DOIUrl":"https://doi.org/10.32913/mic-ict-research-vn.v2019.n2.865","url":null,"abstract":"Điện toán đám mây là xu thế mới của công nghệ thông tin và truyền thông. Trong mô hình điện toán đám mây mọi khả năng liên quan đến công nghệ thông tin đều được cung cấp dưới dạng dịch vụ, cho phép người sử dụng truy cập đến các dịch vụ công nghệ (phần cứng và phần mềm) từ các nhà cung cấp dịch vụ. Điện toán đám mây là sự tập hợp của nhiều máy chủ vật lý và máy chủ ảo, được cấu hình để làm việc với nhau trên môi trường mạng Internet. Một trong số các vấn đề lớn nhất trong môi trường điện toán đám mây là bài toán lập lịch luồng công việc. Hiệu năng của các hệ thống điện toán đám mây phụ thuộc rất nhiều vào việc sắp xếp các tác vụ trong luồng thực thi trên các máy tính trong môi trường đám mây để hoàn thành luồng công việc một cách tối ưu. Trong bài báo này chúng tôi đề xuất một thuật toán lập lịch luồng công việc mới dựa trên chiến lược tối ưu bày đàn và tìm kiếm Tabu.","PeriodicalId":432355,"journal":{"name":"Research and Development on Information and Communication Technology","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116931435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-02DOI: 10.32913/mic-ict-research-vn.v2019.n1.861
Nguyễn Thị Thu Hằng
Trong thực tế quan sát quỹ đạo đa mục tiêu di động, có lúc hệ thống quan sát không thể nhận biết được mục tiêu, do các mục tiêu chuyển động quá gần nhau trong khi độ phân giải của hệ thống quan sát bị hạn chế, hoặc do một số mục tiêu bị che khuất bởi các mục tiêu khác vì một lý do quan trắc nào đó. Trường hợp này cũng thường xảy ra trong những môi trường có số lượng mục tiêu lớn (dày đặc) và mật độ nhiễu lớn. Các thuật toán bám mục tiêu, bám quỹ đạo hiện hành gặp khó khăn và thường mất bám, mất quỹ đạo bám. Trong bài báo này, chúng tôi trình bày một phương pháp liên kết dữ liệu và thuật toán bám quỹ đạo đệ quy từng bước theo thời gian quan sát với sự sử dụng tối đa dữ liệu lịch sử của quỹ đạo. Thuật toán khắc phục được tình trạng mất bám, mất quỹ đạo bám trong môi trường có mục tiêu bị che khuất. Thuật toán là sự kết hợp tư tưởng của phương pháp liên kết dữ liệu đa giả thiết và lọc Kalman mở rộng. Bài báo cũng chứng minh sự tồn tại của lời giải tối ưu từng bước và đưa ra thuật toán tìm lời giải epsilon-tối ưu.
{"title":"Một thuật toán tối ưu bám quỹ đạo mục tiêu của bài toán quan sát đa mục tiêu trong trường hợp có mục tiêu bị che khuất","authors":"Nguyễn Thị Thu Hằng","doi":"10.32913/mic-ict-research-vn.v2019.n1.861","DOIUrl":"https://doi.org/10.32913/mic-ict-research-vn.v2019.n1.861","url":null,"abstract":"Trong thực tế quan sát quỹ đạo đa mục tiêu di động, có lúc hệ thống quan sát không thể nhận biết được mục tiêu, do các mục tiêu chuyển động quá gần nhau trong khi độ phân giải của hệ thống quan sát bị hạn chế, hoặc do một số mục tiêu bị che khuất bởi các mục tiêu khác vì một lý do quan trắc nào đó. Trường hợp này cũng thường xảy ra trong những môi trường có số lượng mục tiêu lớn (dày đặc) và mật độ nhiễu lớn. Các thuật toán bám mục tiêu, bám quỹ đạo hiện hành gặp khó khăn và thường mất bám, mất quỹ đạo bám. Trong bài báo này, chúng tôi trình bày một phương pháp liên kết dữ liệu và thuật toán bám quỹ đạo đệ quy từng bước theo thời gian quan sát với sự sử dụng tối đa dữ liệu lịch sử của quỹ đạo. Thuật toán khắc phục được tình trạng mất bám, mất quỹ đạo bám trong môi trường có mục tiêu bị che khuất. Thuật toán là sự kết hợp tư tưởng của phương pháp liên kết dữ liệu đa giả thiết và lọc Kalman mở rộng. Bài báo cũng chứng minh sự tồn tại của lời giải tối ưu từng bước và đưa ra thuật toán tìm lời giải epsilon-tối ưu.","PeriodicalId":432355,"journal":{"name":"Research and Development on Information and Communication Technology","volume":"35 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132707703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-02DOI: 10.32913/MIC-ICT-RESEARCH.V2019.N1.853
L. Châu, Đặng Hoài Bắc
We have investigated optical regeneration issues and application in elastic optical networks that are capable of providing dynamically optical paths with flexible bandwidths. We have analyzed the impact of optical regeneration in elastic optical networks and clarified various usage scenarios. We have then evaluated and compared the performance, in terms of the overall blocking probability and the total accommodated traffic volume, of three possible network scenarios with regeneration capability including (i) no regeneration, (ii) 3R regeneration, and (iii) 4R regeneration for practical network topologies. Numerical simulation proved that deployment of optical regeneration devices can exploit elastic optical networking to enhance the network performance for provisioning dynamically bandwidth-flexible lightpath services. It is also demonstrated that using re-modulation function while regenerating optical signals (4R regeneration) can further improve the network performance. However, due to the high cost of optical regeneration devices, especially all-optical ones, and more functional regenerators, the trade-off between the performance enhancement and the necessary number of regenerating devices needs to be carefully considered.
{"title":"Performance Comparison of Dynamic Elastic Optical Networks with Optical Regeneration","authors":"L. Châu, Đặng Hoài Bắc","doi":"10.32913/MIC-ICT-RESEARCH.V2019.N1.853","DOIUrl":"https://doi.org/10.32913/MIC-ICT-RESEARCH.V2019.N1.853","url":null,"abstract":"We have investigated optical regeneration issues and application in elastic optical networks that are capable of providing dynamically optical paths with flexible bandwidths. We have analyzed the impact of optical regeneration in elastic optical networks and clarified various usage scenarios. We have then evaluated and compared the performance, in terms of the overall blocking probability and the total accommodated traffic volume, of three possible network scenarios with regeneration capability including (i) no regeneration, (ii) 3R regeneration, and (iii) 4R regeneration for practical network topologies. Numerical simulation proved that deployment of optical regeneration devices can exploit elastic optical networking to enhance the network performance for provisioning dynamically bandwidth-flexible lightpath services. It is also demonstrated that using re-modulation function while regenerating optical signals (4R regeneration) can further improve the network performance. However, due to the high cost of optical regeneration devices, especially all-optical ones, and more functional regenerators, the trade-off between the performance enhancement and the necessary number of regenerating devices needs to be carefully considered.","PeriodicalId":432355,"journal":{"name":"Research and Development on Information and Communication Technology","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126379527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}