Capacitor sizing is a crucial step when designing a charge-scaling digital-to-analog converter. Larger capacitor size can achieve better circuit accuracy and performance due to less impact from random, systematic, and parasitic mismatch. However, it also results in much larger chip area and even more power consumption. In addition to minimizing random and systematic mismatch during common-centroid capacitor placement, this paper presents the first problem formulation in the literature which simultaneously considers capacitor sizing and parasitic matching during common-centroid capacitor layout generation such that the power consumption is minimized while the circuit accuracy/performance is also satisfied. Experimental results show that the proposed approach can achieve very significant chip area and power reductions compared with the state of the art.
{"title":"Parasitic-aware sizing and detailed routing for binary-weighted capacitors in charge-scaling DAC","authors":"Mark Po-Hung Lin, V. Hsiao, Chun-Yu Lin","doi":"10.1145/2593069.2593179","DOIUrl":"https://doi.org/10.1145/2593069.2593179","url":null,"abstract":"Capacitor sizing is a crucial step when designing a charge-scaling digital-to-analog converter. Larger capacitor size can achieve better circuit accuracy and performance due to less impact from random, systematic, and parasitic mismatch. However, it also results in much larger chip area and even more power consumption. In addition to minimizing random and systematic mismatch during common-centroid capacitor placement, this paper presents the first problem formulation in the literature which simultaneously considers capacitor sizing and parasitic matching during common-centroid capacitor layout generation such that the power consumption is minimized while the circuit accuracy/performance is also satisfied. Experimental results show that the proposed approach can achieve very significant chip area and power reductions compared with the state of the art.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132217672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper introduces aspect-oriented modeling (AOM) as a powerful, model-based design technique to assess the security of Cyber-Physical Systems (CPS). Particularly in safety-critical CPS such as automotive control systems, the protection against malicious design and interaction faults is paramount to guaranteeing correctness and reliable operation. Essentially, attack models are associated with the CPS in an aspect-oriented manner to evaluate the system under attack. This modeling technique requires minimal changes to the model of the CPS. Using application-specific metrics, the designer can gain insights into the behavior of the CPS under attack.
{"title":"Aspect-oriented modeling of attacks in automotive Cyber-Physical Systems","authors":"Armin Wasicek, P. Derler, Edward A. Lee","doi":"10.1145/2593069.2593095","DOIUrl":"https://doi.org/10.1145/2593069.2593095","url":null,"abstract":"This paper introduces aspect-oriented modeling (AOM) as a powerful, model-based design technique to assess the security of Cyber-Physical Systems (CPS). Particularly in safety-critical CPS such as automotive control systems, the protection against malicious design and interaction faults is paramount to guaranteeing correctness and reliable operation. Essentially, attack models are associated with the CPS in an aspect-oriented manner to evaluate the system under attack. This modeling technique requires minimal changes to the model of the CPS. Using application-specific metrics, the designer can gain insights into the behavior of the CPS under attack.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133061399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Po-Hsien Tseng, P. Hsiu, Chin-Chiang Pan, Tei-Wei Kuo
Mobile devices will provide improved computing resources to sustain progressively more complicated applications. However, the design concept of fair scheduling and governing borrowed from legacy operating systems cannot be applied seamlessly in mobile systems, thereby degrading user experience or reducing energy efficiency. In this paper, we posit that mobile applications should be treated unfairly. To this end, we exploit the concept of application sensitivity and devise a user-centric scheduler and governor that allocate computing resources to applications according to their sensitivity. Furthermore, we integrate our design into the Android operating system. The results of extensive experiments on a commercial smartphone with real-world mobile apps demonstrate that the proposed design can achieve significant energy efficiency gains while improving the quality of user experience.
{"title":"User-centric energy-efficient scheduling on multi-core mobile devices","authors":"Po-Hsien Tseng, P. Hsiu, Chin-Chiang Pan, Tei-Wei Kuo","doi":"10.1145/2593069.2593239","DOIUrl":"https://doi.org/10.1145/2593069.2593239","url":null,"abstract":"Mobile devices will provide improved computing resources to sustain progressively more complicated applications. However, the design concept of fair scheduling and governing borrowed from legacy operating systems cannot be applied seamlessly in mobile systems, thereby degrading user experience or reducing energy efficiency. In this paper, we posit that mobile applications should be treated unfairly. To this end, we exploit the concept of application sensitivity and devise a user-centric scheduler and governor that allocate computing resources to applications according to their sensitivity. Furthermore, we integrate our design into the Android operating system. The results of extensive experiments on a commercial smartphone with real-world mobile apps demonstrate that the proposed design can achieve significant energy efficiency gains while improving the quality of user experience.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115127568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We develop methods for simply yet rigorously analyzing sub-harmonic injection locking (SHIL) in LC oscillators. Our method respects nonlinearities while offering intuition and design insights into the underlying mechanisms of different modes of locking. It can predict the presence/absence, number, stability and oscillation amplitudes of locks, as well as lock ranges. We use practical LC oscillator topologies from integrated RF and UHF applications for demonstration, validating our technique against SPICE-level simulations while being 1-2 orders of magnitude faster. To our knowledge, this is the first technique/tool for SHIL general enough to treat any kind of nonlinearity in LC oscillators.
{"title":"A rigorous graphical technique for predicting sub-harmonic injection locking in LC oscillators","authors":"Palak Bhushan","doi":"10.1145/2593069.2593076","DOIUrl":"https://doi.org/10.1145/2593069.2593076","url":null,"abstract":"We develop methods for simply yet rigorously analyzing sub-harmonic injection locking (SHIL) in LC oscillators. Our method respects nonlinearities while offering intuition and design insights into the underlying mechanisms of different modes of locking. It can predict the presence/absence, number, stability and oscillation amplitudes of locks, as well as lock ranges. We use practical LC oscillator topologies from integrated RF and UHF applications for demonstration, validating our technique against SPICE-level simulations while being 1-2 orders of magnitude faster. To our knowledge, this is the first technique/tool for SHIL general enough to treat any kind of nonlinearity in LC oscillators.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114489975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We propose a novel cache set index scheme called SWAP (swap-based cache set index). SWAP introduces a pseudo-physical address space that is used by the operating system. The real physical address used for cache and main memory access is obtained by simply swapping some of superpage number bits with cache set index bits from the pseudo-physical address. By adding a level of indirection to the physical memory management, we simultaneously support both page coloring and superpage optimizations. These work together to improve TLB and shared LLC performance with negligible cost. Our results show that SWAP can improve performance by an average of 15.1% (by up to 25.2%) compared to 7.34% and 8.26% for superpage and page coloring, respectively.
{"title":"A swap-based cache set index scheme to leverage both superpage and page coloring optimizations","authors":"Zehan Cui, Licheng Chen, Yungang Bao, Mingyu Chen","doi":"10.1145/2593069.2593078","DOIUrl":"https://doi.org/10.1145/2593069.2593078","url":null,"abstract":"We propose a novel cache set index scheme called SWAP (swap-based cache set index). SWAP introduces a pseudo-physical address space that is used by the operating system. The real physical address used for cache and main memory access is obtained by simply swapping some of superpage number bits with cache set index bits from the pseudo-physical address. By adding a level of indirection to the physical memory management, we simultaneously support both page coloring and superpage optimizations. These work together to improve TLB and shared LLC performance with negligible cost. Our results show that SWAP can improve performance by an average of 15.1% (by up to 25.2%) compared to 7.34% and 8.26% for superpage and page coloring, respectively.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114601739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we propose a novel linear discriminant analysis algorithm, referred to as LDA-FP, to train on-chip classifiers that can be implemented with low-power fixed-point arithmetic with extremely small word length. LDA-FP incorporates the non-idealities (i.e., rounding and overflow) associated with fixed-point arithmetic into the training process so that the resulting classifiers are robust to these non-idealities. Mathematically, LDA-FP is formulated as a mixed integer programming problem that can be efficiently solved by a novel branch-and-bound method proposed in this paper. Our numerical experiments demonstrate that LDA-FP substantially outperforms the conventional approach for the emerging biomedical application of brain computer interface.
{"title":"Computer-aided design of machine learning algorithm: Training fixed-point classifier for on-chip low-power implementation","authors":"H. Albalawi, Yuanning Li, Xin Li","doi":"10.1145/2593069.2593110","DOIUrl":"https://doi.org/10.1145/2593069.2593110","url":null,"abstract":"In this paper, we propose a novel linear discriminant analysis algorithm, referred to as LDA-FP, to train on-chip classifiers that can be implemented with low-power fixed-point arithmetic with extremely small word length. LDA-FP incorporates the non-idealities (i.e., rounding and overflow) associated with fixed-point arithmetic into the training process so that the resulting classifiers are robust to these non-idealities. Mathematically, LDA-FP is formulated as a mixed integer programming problem that can be efficiently solved by a novel branch-and-bound method proposed in this paper. Our numerical experiments demonstrate that LDA-FP substantially outperforms the conventional approach for the emerging biomedical application of brain computer interface.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129314197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Split fabrication, the process of splitting an IC into an untrusted and trusted tier, facilitates access to the most advanced semiconductor manufacturing capabilities available in the world without requiring disclosure of design intent. While obfuscation techniques have been proposed to prevent malicious circuit insertion or modifications in the untrusted tier, detecting a pernicious reliability attack induced in the offshore foundry is more elusive. We describe a methodology for exhaustive testing of components in the untrusted tier using a specialized test-only metal stack for selected sacrificial dies.
{"title":"Detecting reliability attacks during split fabrication using test-only BEOL stack","authors":"Kaushik Vaidyanathan, B. P. Das, L. Pileggi","doi":"10.1145/2593069.2593123","DOIUrl":"https://doi.org/10.1145/2593069.2593123","url":null,"abstract":"Split fabrication, the process of splitting an IC into an untrusted and trusted tier, facilitates access to the most advanced semiconductor manufacturing capabilities available in the world without requiring disclosure of design intent. While obfuscation techniques have been proposed to prevent malicious circuit insertion or modifications in the untrusted tier, detecting a pernicious reliability attack induced in the offshore foundry is more elusive. We describe a methodology for exhaustive testing of components in the untrusted tier using a specialized test-only metal stack for selected sacrificial dies.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122050982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Accurate yield estimation is one of the important yet challenging tasks for both pre-silicon verification and post-silicon validation. In this paper, we propose a novel method of Bayesian model fusion on Bernoulli distribution (BMF-BD) for efficient yield estimation at the late stage by borrowing the prior knowledge from an early stage. BMF-BD is particularly developed to handle the cases where the pre-silicon simulation and/or post-silicon measurement results are binary: either “pass” or “fail”. The key idea is to model the binary simulation/measurement outcome as a Bernoulli distribution and then encode the prior knowledge as a Beta distribution based on the theory of conjugate prior. As such, the late-stage yield can be accurately estimated through Bayesian inference with very few late-stage samples. Several circuit examples demonstrate that BMF-BD achieves up to 10× cost reduction over the conventional estimator without surrendering any accuracy.
{"title":"BMF-BD: Bayesian model fusion on Bernoulli distribution for efficient yield estimation of integrated circuits","authors":"Chenlei Fang, Fan Yang, Xuan Zeng, Xin Li","doi":"10.1145/2593069.2593099","DOIUrl":"https://doi.org/10.1145/2593069.2593099","url":null,"abstract":"Accurate yield estimation is one of the important yet challenging tasks for both pre-silicon verification and post-silicon validation. In this paper, we propose a novel method of Bayesian model fusion on Bernoulli distribution (BMF-BD) for efficient yield estimation at the late stage by borrowing the prior knowledge from an early stage. BMF-BD is particularly developed to handle the cases where the pre-silicon simulation and/or post-silicon measurement results are binary: either “pass” or “fail”. The key idea is to model the binary simulation/measurement outcome as a Bernoulli distribution and then encode the prior knowledge as a Beta distribution based on the theory of conjugate prior. As such, the late-stage yield can be accurately estimated through Bayesian inference with very few late-stage samples. Several circuit examples demonstrate that BMF-BD achieves up to 10× cost reduction over the conventional estimator without surrendering any accuracy.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"452 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125781024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Systems-on-chip are increasingly designed at the system level by combining synthesizable IP components that operate concurrently while interacting through communication channels. CAD-tool vendors support this System-Level Design approach with high-level synthesis tools and libraries of interface primitives implementing the communication protocols. These interfaces absorb timing differences in the hardware-component implementations, thus enabling compositional design. However, they introduce also new challenges in terms of functional correctness and performance optimization. We propose a methodology that combines performance analysis and optimization algorithms to automatically address the issues that SoC designers may accidentally introduce when assembling components that are specified at the system level.
{"title":"A design methodology for compositional high-level synthesis of communication-centric SoCs","authors":"G. D. Guglielmo, C. Pilato, L. Carloni","doi":"10.1145/2593069.2593071","DOIUrl":"https://doi.org/10.1145/2593069.2593071","url":null,"abstract":"Systems-on-chip are increasingly designed at the system level by combining synthesizable IP components that operate concurrently while interacting through communication channels. CAD-tool vendors support this System-Level Design approach with high-level synthesis tools and libraries of interface primitives implementing the communication protocols. These interfaces absorb timing differences in the hardware-component implementations, thus enabling compositional design. However, they introduce also new challenges in terms of functional correctness and performance optimization. We propose a methodology that combines performance analysis and optimization algorithms to automatically address the issues that SoC designers may accidentally introduce when assembling components that are specified at the system level.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124689796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amir Nahir, Manoj Dusanapudi, Shakti Kapoor, K. Reick, W. Roesner, Klaus-Dieter Schubert, Keith Sharp, Greg Wetli
The post-silicon validation phase in a processor's design life cycle is geared towards finding all remaining bugs in the system. It is, in fact, our last opportunity to find functional and electrical bugs in the design before shipping it to customers. In this paper, we provide a high-level overview of the methodology and technologies put into use as part of the POWER8 post-silicon functional validation phase. We describe the results and list the primary factors that contributed to this highly successful bring-up.
{"title":"Post-silicon validation of the IBM POWER8 processor","authors":"Amir Nahir, Manoj Dusanapudi, Shakti Kapoor, K. Reick, W. Roesner, Klaus-Dieter Schubert, Keith Sharp, Greg Wetli","doi":"10.1145/2593069.2593183","DOIUrl":"https://doi.org/10.1145/2593069.2593183","url":null,"abstract":"The post-silicon validation phase in a processor's design life cycle is geared towards finding all remaining bugs in the system. It is, in fact, our last opportunity to find functional and electrical bugs in the design before shipping it to customers. In this paper, we provide a high-level overview of the methodology and technologies put into use as part of the POWER8 post-silicon functional validation phase. We describe the results and list the primary factors that contributed to this highly successful bring-up.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125561279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}