Michael Schaffner, Frank K. Gürkaynak, A. Smolic, H. Kaeslin, L. Benini
Many video processing algorithms are formulated as least-squares problems that result in large, sparse linear systems. Solving such systems in real time is very demanding. This paper focuses on reducing the computational complexity of a direct Cholesky-decomposition-based solver. Our approximation scheme builds on the observation that, in well-conditioned problems, many elements in the decomposition nearly vanish. Such elements may be pruned from the dependency graph with mild accuracy degradation. Using an example from image-domain warping, we show that pruning reduces the amount of operations per solve by over 75 %, resulting in significant savings in computing time, area or energy.
{"title":"An approximate computing technique for reducing the complexity of a direct-solver for sparse linear systems in real-time video processing","authors":"Michael Schaffner, Frank K. Gürkaynak, A. Smolic, H. Kaeslin, L. Benini","doi":"10.1145/2593069.2593082","DOIUrl":"https://doi.org/10.1145/2593069.2593082","url":null,"abstract":"Many video processing algorithms are formulated as least-squares problems that result in large, sparse linear systems. Solving such systems in real time is very demanding. This paper focuses on reducing the computational complexity of a direct Cholesky-decomposition-based solver. Our approximation scheme builds on the observation that, in well-conditioned problems, many elements in the decomposition nearly vanish. Such elements may be pruned from the dependency graph with mild accuracy degradation. Using an example from image-domain warping, we show that pruning reduces the amount of operations per solve by over 75 %, resulting in significant savings in computing time, area or energy.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122627864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingwei Lu, Pengwen Chen, Chin-Chih Chang, Lu Sha, D. J. Huang, C. Teng, Chung-Kuan Cheng
ePlace is a generalized analytic algorithm to handle large-scale standard-cell and mixed-size placement. We use a novel density function based on electrostatics to remove overlap and Nesterov's method to minimize the nonlinear cost. Steplength is estimated as the inverse of Lipschitz constant, which is determined by our dynamic prediction and backtracking method. An approximated preconditioner is proposed to resolve the difference between large macros and standard cells, while an annealing engine is devised to handle macro legalization followed by placement of standard cells. The above innovations are integrated into our placement prototype ePlace, which outperforms the leading-edge placers on respective standard-cell and mixed-size benchmark suites. Specifically, ePlace produces 2.83%, 4.59% and 7.13% shorter wirelength while runs 3.05×, 2.84× and 1.05× faster than BonnPlace, MAPLE and NTUplace3-unified in average of ISPD 2005, ISPD 2006 and MMS circuits, respectively.
{"title":"ePlace: Electrostatics based placement using Nesterov's method","authors":"Jingwei Lu, Pengwen Chen, Chin-Chih Chang, Lu Sha, D. J. Huang, C. Teng, Chung-Kuan Cheng","doi":"10.1145/2593069.2593133","DOIUrl":"https://doi.org/10.1145/2593069.2593133","url":null,"abstract":"ePlace is a generalized analytic algorithm to handle large-scale standard-cell and mixed-size placement. We use a novel density function based on electrostatics to remove overlap and Nesterov's method to minimize the nonlinear cost. Steplength is estimated as the inverse of Lipschitz constant, which is determined by our dynamic prediction and backtracking method. An approximated preconditioner is proposed to resolve the difference between large macros and standard cells, while an annealing engine is devised to handle macro legalization followed by placement of standard cells. The above innovations are integrated into our placement prototype ePlace, which outperforms the leading-edge placers on respective standard-cell and mixed-size benchmark suites. Specifically, ePlace produces 2.83%, 4.59% and 7.13% shorter wirelength while runs 3.05×, 2.84× and 1.05× faster than BonnPlace, MAPLE and NTUplace3-unified in average of ISPD 2005, ISPD 2006 and MMS circuits, respectively.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132713482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We consider in this paper fault-tolerant mixed-criticality scheduling, where heterogeneous safety guarantees must be provided to functionalities (tasks) of varying criticalities (importances). We model explicitly the safety requirements for tasks of different criticalities according to safety standards, assuming hardware transient faults. We further provide analysis techniques to bound the effects of task killing and service degradation on the system safety and schedulability. Based on our model and analysis, we show that our problem can be converted to a conventional mixed-criticality scheduling problem. Thus, we broaden the scope of applicability of the conventional mixed-criticality scheduling techniques. Our proposed techniques are validated with a realistic flight management system application and extensive simulations.
{"title":"On the scheduling of fault-tolerant mixed-criticality systems","authors":"Pengcheng Huang, Hoeseok Yang, L. Thiele","doi":"10.1145/2593069.2593169","DOIUrl":"https://doi.org/10.1145/2593069.2593169","url":null,"abstract":"We consider in this paper fault-tolerant mixed-criticality scheduling, where heterogeneous safety guarantees must be provided to functionalities (tasks) of varying criticalities (importances). We model explicitly the safety requirements for tasks of different criticalities according to safety standards, assuming hardware transient faults. We further provide analysis techniques to bound the effects of task killing and service degradation on the system safety and schedulability. Based on our model and analysis, we show that our problem can be converted to a conventional mixed-criticality scheduling problem. Thus, we broaden the scope of applicability of the conventional mixed-criticality scheduling techniques. Our proposed techniques are validated with a realistic flight management system application and extensive simulations.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134407186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoming Chen, Yu Wang, Yun Liang, Yuan Xie, Huazhong Yang
High-performance general-purpose graphics processing units (GPGPUs) may suffer from serious power and negative bias temperature instability (NBTI) problems. In this paper, we propose a framework for run-time aging and power optimization. Our technique is based on the observation that many GPGPU applications achieve optimal performance with only a portion of cores due to either bandwidth saturation or shared resource contention. During run-time, given the dynamically tracked NBTI-induced threshold voltage shift and the problem size of GPGPU applications, our algorithm returns the optimal number of cores using detailed performance modeling. The unused cores are power-gated for power saving and NBTI recovery. Experiments show that our proposed technique achieves on average 34% reduction in NBTI-induced threshold voltage shift and 19% power reduction, while the average performance degradation is less than 1%.
{"title":"Run-time technique for simultaneous aging and power optimization in GPGPUs","authors":"Xiaoming Chen, Yu Wang, Yun Liang, Yuan Xie, Huazhong Yang","doi":"10.1145/2593069.2593208","DOIUrl":"https://doi.org/10.1145/2593069.2593208","url":null,"abstract":"High-performance general-purpose graphics processing units (GPGPUs) may suffer from serious power and negative bias temperature instability (NBTI) problems. In this paper, we propose a framework for run-time aging and power optimization. Our technique is based on the observation that many GPGPU applications achieve optimal performance with only a portion of cores due to either bandwidth saturation or shared resource contention. During run-time, given the dynamically tracked NBTI-induced threshold voltage shift and the problem size of GPGPU applications, our algorithm returns the optimal number of cores using detailed performance modeling. The unused cores are power-gated for power saving and NBTI recovery. Experiments show that our proposed technique achieves on average 34% reduction in NBTI-induced threshold voltage shift and 19% power reduction, while the average performance degradation is less than 1%.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133023050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
One of the challenges that all accelerators face, is to execute loops that have if-then-else constructs. There are three ways to accelerate loops with an if-then-else construct on a Coarse-grained reconfigurable architecture (CGRA): full predication, partial predication, and dual-issue scheme. In comparison with the other schemes, dual-issue scheme may achieve the best performance, but it requires compiler support - which does not exist. In this paper, we develop compiler techniques to map loops with conditionals on CGRA for the dual-issue scheme. Our experiments show: i) 40% of loops that can be accelerated on CGRA have conditionals, ii) The proposed dual-issue scheme enables our compiler to accelerate loops 40% faster than full predication scheme proposed in [12], and iii) Our compiler assisted dual issue scheme can exploit richer interconnects, if present.
{"title":"Branch-aware loop mapping on CGRAs","authors":"M. Hamzeh, Aviral Shrivastava, S. Vrudhula","doi":"10.1145/2593069.2593100","DOIUrl":"https://doi.org/10.1145/2593069.2593100","url":null,"abstract":"One of the challenges that all accelerators face, is to execute loops that have if-then-else constructs. There are three ways to accelerate loops with an if-then-else construct on a Coarse-grained reconfigurable architecture (CGRA): full predication, partial predication, and dual-issue scheme. In comparison with the other schemes, dual-issue scheme may achieve the best performance, but it requires compiler support - which does not exist. In this paper, we develop compiler techniques to map loops with conditionals on CGRA for the dual-issue scheme. Our experiments show: i) 40% of loops that can be accelerated on CGRA have conditionals, ii) The proposed dual-issue scheme enables our compiler to accelerate loops 40% faster than full predication scheme proposed in [12], and iii) Our compiler assisted dual issue scheme can exploit richer interconnects, if present.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125628807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Massively parallel computation in GPUs significantly boosts performance of compute-intensive applications but creates power and thermal issues that limit further performance scaling. This paper demonstrates significant GPGPU power savings by relaxing application accuracy requirements and enabling the use of low power imprecise hardware (IHW). A synthesized set of novel imprecise floating point arithmetic units is presented. GPGPU-Sim and GPUWattch are used to estimate impacts of IHW units on output quality and system-level power consumption, providing a quality-power tradeoff model for application-specific optimization. Experimental results for a 45 nm process show up to 32% power savings with negligible impacts on output quality.
{"title":"Low power GPGPU computation with imprecise hardware","authors":"Hang Zhang, M. Putic, J. Lach","doi":"10.1145/2593069.2593156","DOIUrl":"https://doi.org/10.1145/2593069.2593156","url":null,"abstract":"Massively parallel computation in GPUs significantly boosts performance of compute-intensive applications but creates power and thermal issues that limit further performance scaling. This paper demonstrates significant GPGPU power savings by relaxing application accuracy requirements and enabling the use of low power imprecise hardware (IHW). A synthesized set of novel imprecise floating point arithmetic units is presented. GPGPU-Sim and GPUWattch are used to estimate impacts of IHW units on output quality and system-level power consumption, providing a quality-power tradeoff model for application-specific optimization. Experimental results for a 45 nm process show up to 32% power savings with negligible impacts on output quality.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129927520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Due to continuously growing communication traffic of emerging mobile phone applications, resource-efficient communication is a key to affordable network services with high Quality of Experience. While some communication traffic requires immediate resource allocations (such as voice services), an increasing number of mobile phone applications produce a lot of background communication traffic (e.g. social network apps, crowd sensing services). In this paper we discuss the predictive Channel-Aware Transmission (pCAT) scheme, which leverages the fact, that favorable channel conditions require much less spectrum resource allocation than bad channel conditions. By leveraging the knowledge of user trajectories and recurring spots with favorable channel conditions, the so-called LTE connectivity hot spots, background traffic transmissions can be scheduled by the client according to expected channel quality and application data priority. Thereby, the spectrum consumption of background traffic of applications can be reduced significantly. At the same time, the efficient usage of spectrum resources has also an impact on the battery lifetime of the mobile devices. By introducing the Context-Aware Power Consumption Model (CoPoMo) for LTE communications, we highlight, how decisions about the spectrum resource allocation by the network will impact the battery lifetime. One case study will show, that by simply changing the resource allocation scheme and without the need for spending more spectrum resources, the power consumption can be reduced by more than 70% using the Energy-Efficient Scheduling (EES) introduced in this paper.
{"title":"Resource efficient mobile communications for crowd-sensing","authors":"C. Wietfeld, Christoph Ide, Bjoern Dusza","doi":"10.1145/2593069.2596686","DOIUrl":"https://doi.org/10.1145/2593069.2596686","url":null,"abstract":"Due to continuously growing communication traffic of emerging mobile phone applications, resource-efficient communication is a key to affordable network services with high Quality of Experience. While some communication traffic requires immediate resource allocations (such as voice services), an increasing number of mobile phone applications produce a lot of background communication traffic (e.g. social network apps, crowd sensing services). In this paper we discuss the predictive Channel-Aware Transmission (pCAT) scheme, which leverages the fact, that favorable channel conditions require much less spectrum resource allocation than bad channel conditions. By leveraging the knowledge of user trajectories and recurring spots with favorable channel conditions, the so-called LTE connectivity hot spots, background traffic transmissions can be scheduled by the client according to expected channel quality and application data priority. Thereby, the spectrum consumption of background traffic of applications can be reduced significantly. At the same time, the efficient usage of spectrum resources has also an impact on the battery lifetime of the mobile devices. By introducing the Context-Aware Power Consumption Model (CoPoMo) for LTE communications, we highlight, how decisions about the spectrum resource allocation by the network will impact the battery lifetime. One case study will show, that by simply changing the resource allocation scheme and without the need for spending more spectrum resources, the power consumption can be reduced by more than 70% using the Energy-Efficient Scheduling (EES) introduced in this paper.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"97 4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133721982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper discusses the basic principles of applying data mining in Electronic Design Automation. It begins by introducing several important concepts in statistical learning and summarizes different types of learning algorithms. Then, the experience of developing a practical data mining application is described, including promises that are demonstrated through positive results based on industrial settings and constraints explained in their respective application contexts.
{"title":"Data mining in EDA - Basic principles, promises, and constraints","authors":"Li-C. Wang, M. Abadir","doi":"10.1145/2593069.2596675","DOIUrl":"https://doi.org/10.1145/2593069.2596675","url":null,"abstract":"This paper discusses the basic principles of applying data mining in Electronic Design Automation. It begins by introducing several important concepts in statistical learning and summarizes different types of learning algorithms. Then, the experience of developing a practical data mining application is described, including promises that are demonstrated through positive results based on industrial settings and constraints explained in their respective application contexts.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133243623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Parthasarathy M. B. Rao, Mojtaba Ebrahimi, Razi Seyyedi, M. Tahoori
Multiple bit upsets due to radiation-induced soft errors are a major concern in nanoscale technology nodes. Once such errors occur in the configuration frames of an FPGA device, they permanently affect the functionality of the mapped design. The combination of error correction schemes and configuration scrubbing is an efficient approach to avoid such permanent errors. Existing solutions exploit coding techniques with considerably high overhead to protect configuration frames against multiple bit upsets. In this paper, we propose a generic scrubbing scheme which reconstructs the erroneous configuration frame based on the concept of erasure codes. Our proposed scheme does not require any changes to the FPGA architecture. Experimental results on a Xilinx Virtex-6 FPGA device show that the proposed scheme achieves error recovery coverage of 99.30% with only 3% resource occupation while the mean time to repair is comparable with previous schemes.
{"title":"Protecting SRAM-based FPGAs against multiple bit upsets using erasure codes","authors":"Parthasarathy M. B. Rao, Mojtaba Ebrahimi, Razi Seyyedi, M. Tahoori","doi":"10.1145/2593069.2593191","DOIUrl":"https://doi.org/10.1145/2593069.2593191","url":null,"abstract":"Multiple bit upsets due to radiation-induced soft errors are a major concern in nanoscale technology nodes. Once such errors occur in the configuration frames of an FPGA device, they permanently affect the functionality of the mapped design. The combination of error correction schemes and configuration scrubbing is an efficient approach to avoid such permanent errors. Existing solutions exploit coding techniques with considerably high overhead to protect configuration frames against multiple bit upsets. In this paper, we propose a generic scrubbing scheme which reconstructs the erroneous configuration frame based on the concept of erasure codes. Our proposed scheme does not require any changes to the FPGA architecture. Experimental results on a Xilinx Virtex-6 FPGA device show that the proposed scheme achieves error recovery coverage of 99.30% with only 3% resource occupation while the mean time to repair is comparable with previous schemes.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132624087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuan-Hung Kuan, Yuan-Hao Chang, Po-Chun Huang, K. Lam
Embedded database systems are widely adopted in various control and motoring systems, e.g., cyber-physical systems (CPSes). To support the functionality to access the historical data, a multiversion index is adopted to maintain multiple versions of data items and their index information. However, CPSes are usually battery-powered embedded systems that have limited energy, computing power, and storage space. In this work, we consider the systems with phase-change memory (PCM) as their storage due to its non-volatility and low energy consumption. In order to resolve the problem of the limited storage space and the fact that existing multiversion index designs are lack of space efficiency, we propose a space-efficient multiversion index scheme to enhance the space utilization and access performance of embedded multiversion database systems on PCM by utilizing the byte-addressability and write asymmetry of PCM. A series of experiments was conducted to evaluate the efficacy of the proposed scheme. The results show that the proposed scheme achieves very high space utilization and has good performance on serving update transactions and range queries.
{"title":"Space-efficient multiversion index scheme for PCM-based embedded database systems","authors":"Yuan-Hung Kuan, Yuan-Hao Chang, Po-Chun Huang, K. Lam","doi":"10.1145/2593069.2593219","DOIUrl":"https://doi.org/10.1145/2593069.2593219","url":null,"abstract":"Embedded database systems are widely adopted in various control and motoring systems, e.g., cyber-physical systems (CPSes). To support the functionality to access the historical data, a multiversion index is adopted to maintain multiple versions of data items and their index information. However, CPSes are usually battery-powered embedded systems that have limited energy, computing power, and storage space. In this work, we consider the systems with phase-change memory (PCM) as their storage due to its non-volatility and low energy consumption. In order to resolve the problem of the limited storage space and the fact that existing multiversion index designs are lack of space efficiency, we propose a space-efficient multiversion index scheme to enhance the space utilization and access performance of embedded multiversion database systems on PCM by utilizing the byte-addressability and write asymmetry of PCM. A series of experiments was conducted to evaluate the efficacy of the proposed scheme. The results show that the proposed scheme achieves very high space utilization and has good performance on serving update transactions and range queries.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132884429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}