This article proposed a detection scheme for three-phase Line start permanent magnet synchronous motor (LSPMSM) under different levels of static eccentricity fault. Finite element method is used to simulate the healthy and faulty LSPMSM with different percentages of static eccentricity. An accurate laboratory test experiment is performed to evaluate the proposed index. Effects of loading condition on LSPMSM are also investigated. The fault related signatures in the stator current are identified and an effective index for LSPMSM is proposed. The simulation and experimental results indicate that the low frequency components are an effective index for detection of the static eccentricity in LSPMSM.
{"title":"Analysis of rotor asymmetry fault in three-phase line start permanent magnet synchronous motor","authors":"M. Karami, N. Mariun, K. Ab, R. Mohd, N. Misron","doi":"10.2298/fuee2104483k","DOIUrl":"https://doi.org/10.2298/fuee2104483k","url":null,"abstract":"This article proposed a detection scheme for three-phase Line start permanent magnet synchronous motor (LSPMSM) under different levels of static eccentricity fault. Finite element method is used to simulate the healthy and faulty LSPMSM with different percentages of static eccentricity. An accurate laboratory test experiment is performed to evaluate the proposed index. Effects of loading condition on LSPMSM are also investigated. The fault related signatures in the stator current are identified and an effective index for LSPMSM is proposed. The simulation and experimental results indicate that the low frequency components are an effective index for detection of the static eccentricity in LSPMSM.","PeriodicalId":44296,"journal":{"name":"Facta Universitatis-Series Electronics and Energetics","volume":"48 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81440609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Today, limitation of fossil fuel resources and other issues such as the possibility of the depletion of fossil energy reserves, global warming, environmental pollution, price instability, and the growing need for industrial and urban centers for energy have prompted the international community to seek appropriate alternatives. Such examples are nuclear energy, solar energy, geothermal energy, wind energy, and ocean waves. Renewable energy is generated owing to the simplicity of the applied technology compared to nuclear energy technologies. On the other hand, such energies play a key role in new energy systems in the world similar to nuclear waste. The increasing use of renewable energies has given rise to significant complications. One of the main operational issues in this regard is the uncertainty of electricity generation by solar power plants, which is caused by the passage of clouds. The present study aimed to investigate the effects of cloud passage on the production of solar power plants. Initially, a control system was designed to control a high-penetration solar power plant in the network, and the maximum allowable percentage of penetration was calculated for different loads. For this purpose, three algorithms (DE, PSO, and ICA) were used to determine the MPPT of the solar arrays in shady conditions, as well as the MPPT point of the solar arrays. According to the results, the colonial competition algorithm was faster compared to the other algorithms.
{"title":"Effects of connecting a scattered solar generation unit to the grid on the cloud passage using optimization algorithms","authors":"A. Aljbori, M. Zarif","doi":"10.2298/fuee2104605a","DOIUrl":"https://doi.org/10.2298/fuee2104605a","url":null,"abstract":"Today, limitation of fossil fuel resources and other issues such as the possibility of the depletion of fossil energy reserves, global warming, environmental pollution, price instability, and the growing need for industrial and urban centers for energy have prompted the international community to seek appropriate alternatives. Such examples are nuclear energy, solar energy, geothermal energy, wind energy, and ocean waves. Renewable energy is generated owing to the simplicity of the applied technology compared to nuclear energy technologies. On the other hand, such energies play a key role in new energy systems in the world similar to nuclear waste. The increasing use of renewable energies has given rise to significant complications. One of the main operational issues in this regard is the uncertainty of electricity generation by solar power plants, which is caused by the passage of clouds. The present study aimed to investigate the effects of cloud passage on the production of solar power plants. Initially, a control system was designed to control a high-penetration solar power plant in the network, and the maximum allowable percentage of penetration was calculated for different loads. For this purpose, three algorithms (DE, PSO, and ICA) were used to determine the MPPT of the solar arrays in shady conditions, as well as the MPPT point of the solar arrays. According to the results, the colonial competition algorithm was faster compared to the other algorithms.","PeriodicalId":44296,"journal":{"name":"Facta Universitatis-Series Electronics and Energetics","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86750521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Jokić, O. Jakšić, M. Frantlović, Z. Jakšić, K. Guha
Modeling of adsorption and desorption in microelectromechanical systems (MEMS) generally is crucial for their optimization and control, whether it is necessary to decrease the adsorption-desorption influence (thus ensuring stable operation of ultra-precise micro and nanoresonators) or to increase it (and enhancing in this manner the sensitivity of chemical and biological resonant sensors). In this work we derive and use analytical mathematical expressions to model stochastic fluctuations of the mass adsorbed on the MEMS resonator (mass loading noise). We consider the case where the resonator surface incorporates two different types of binding sites and where non-negligible depletion of the adsorbate occurs in a closed resonator chamber. We arrive at a novel expression for the power spectral density of mass loading noise in resonators and prove the necessity of its application in cases when resonators are exposed to low adsorbate concentrations. We use the novel approach presented here to calculate the resonator performance. In this way we ensure optimization of these MEMS devices and consequentially abatement of adsorption-desorption noise-caused degradation of their operation, both in the case of micro/nanoresonators and resonant sensors. This work is intended for a general use in the design, development and optimization of different MEMS systems based on mechanical resonators, ranging from the RF components to chemical and biological sensors.
{"title":"MEMS resonator mass loading noise model: The case of bimodal adsorbing surface and finite adsorbate amount","authors":"I. Jokić, O. Jakšić, M. Frantlović, Z. Jakšić, K. Guha","doi":"10.2298/fuee2103367j","DOIUrl":"https://doi.org/10.2298/fuee2103367j","url":null,"abstract":"Modeling of adsorption and desorption in microelectromechanical systems (MEMS) generally is crucial for their optimization and control, whether it is necessary to decrease the adsorption-desorption influence (thus ensuring stable operation of ultra-precise micro and nanoresonators) or to increase it (and enhancing in this manner the sensitivity of chemical and biological resonant sensors). In this work we derive and use analytical mathematical expressions to model stochastic fluctuations of the mass adsorbed on the MEMS resonator (mass loading noise). We consider the case where the resonator surface incorporates two different types of binding sites and where non-negligible depletion of the adsorbate occurs in a closed resonator chamber. We arrive at a novel expression for the power spectral density of mass loading noise in resonators and prove the necessity of its application in cases when resonators are exposed to low adsorbate concentrations. We use the novel approach presented here to calculate the resonator performance. In this way we ensure optimization of these MEMS devices and consequentially abatement of adsorption-desorption noise-caused degradation of their operation, both in the case of micro/nanoresonators and resonant sensors. This work is intended for a general use in the design, development and optimization of different MEMS systems based on mechanical resonators, ranging from the RF components to chemical and biological sensors.","PeriodicalId":44296,"journal":{"name":"Facta Universitatis-Series Electronics and Energetics","volume":"40 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77714224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Thalluri, K. Kumar, K. Sekhar, B. Babu, S. Kiran, K. Guha
This paper describes the significance of the iterative approach and the structure damping analysis which help to get better the performance and validation of shunt capacitive RF MEMS switch. The micro-cantilever based electrostatic ally actuated shunt capacitive RF MEMS switch is designed and after multiple iterations on cantilever structure a modification of the structure is obtained that requires low actuation voltage of 7.3 V for 3 ?m deformation. To validate the structure we have performed the damping analysis for each iteration. The low actuation voltage is a consequence of identifying the critical membrane thickness of 0.7 ?m, and incorporating two slots and holes into the membrane. The holes to the membrane help in stress distribution. We performed the Eigen frequency analysis of the membrane. The RF MEMS switch is micro machined on a CPW transmission line with Gap- Strip-Gap (G-S-G) of 85 ?m - 70 ?m - 85 ?m. The switch RF isolation properties are analyzed with high dielectric constant thin films i.e., AlN, GaAs, and HfO2. For all the dielectric thin films the RF MEMS switch shows a high isolation of -63.2 dB, but there is shift in the radio frequency. Because of presence of the holes in the membrane the switch exhibits a very low insertion loss of -0.12 dB.
本文阐述了迭代法和结构阻尼分析对并联电容式射频MEMS开关的性能和有效性的重要意义。设计了一种基于微悬臂梁的静电驱动并联电容式RF MEMS开关,并对悬臂梁结构进行了多次迭代,得到了一种结构的改进方案,该结构需要7.3 V的低驱动电压才能产生3 μ m的变形。为了验证结构,我们对每次迭代进行了阻尼分析。低驱动电压是由于确定了0.7 μ m的临界膜厚度,并在膜上加入了两个槽和孔。膜上的孔有助于应力分布。我们对膜进行了本征频率分析。射频MEMS开关是在CPW传输线上微加工的,隙带隙(G-S-G)为85 μ m - 70 μ m - 85 μ m。分析了高介电常数薄膜(AlN、GaAs和HfO2)对开关射频隔离性能的影响。对于所有介质薄膜,RF MEMS开关显示出-63.2 dB的高隔离,但存在射频移位。由于膜上存在孔,开关的插入损耗非常低,为-0.12 dB。
{"title":"Damping analysis to improve the performance of shunt capacitive RF MEMS switch","authors":"L. Thalluri, K. Kumar, K. Sekhar, B. Babu, S. Kiran, K. Guha","doi":"10.2298/fuee2103381t","DOIUrl":"https://doi.org/10.2298/fuee2103381t","url":null,"abstract":"This paper describes the significance of the iterative approach and the structure damping analysis which help to get better the performance and validation of shunt capacitive RF MEMS switch. The micro-cantilever based electrostatic ally actuated shunt capacitive RF MEMS switch is designed and after multiple iterations on cantilever structure a modification of the structure is obtained that requires low actuation voltage of 7.3 V for 3 ?m deformation. To validate the structure we have performed the damping analysis for each iteration. The low actuation voltage is a consequence of identifying the critical membrane thickness of 0.7 ?m, and incorporating two slots and holes into the membrane. The holes to the membrane help in stress distribution. We performed the Eigen frequency analysis of the membrane. The RF MEMS switch is micro machined on a CPW transmission line with Gap- Strip-Gap (G-S-G) of 85 ?m - 70 ?m - 85 ?m. The switch RF isolation properties are analyzed with high dielectric constant thin films i.e., AlN, GaAs, and HfO2. For all the dielectric thin films the RF MEMS switch shows a high isolation of -63.2 dB, but there is shift in the radio frequency. Because of presence of the holes in the membrane the switch exhibits a very low insertion loss of -0.12 dB.","PeriodicalId":44296,"journal":{"name":"Facta Universitatis-Series Electronics and Energetics","volume":"38 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76521793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Grimalsky, S. Koshevaya, J. Escobedo-Alatorre, A. Kotsarenko
This paper presents theoretical investigation of the excitation of the sequences of strong nonlinear monopulses of space charge waves from input small envelope pulses with microwave carrier frequencies due to the negative differential conductivity in n-GaN and n-InN films. The stable numerical algorithms have been used for nonlinear 3D simulations. The sequences of the monopulses of the strong electric field of 3 - 10 ps durations each can be excited. The bias electric field should be chosen slightly higher than the threshold values for observing the negative differential conductivity. The doping levels should be moderate 1016 -1017 cm-3in the films of ? 2 mm thicknesses. The input microwave carrier frequencies of the exciting pulses of small amplitudes are up to 30 GHz in n-GaN films, whereas in n-InN films they are lower, up to 20 GHz. The sequences of the electric monopulses of high peak values are excited both in the uniform nitride films and in films with non-uniform conductivity. These nonlinear monopulses in the films differ from the domains of strong electric fields in the bulk semiconductors. In the films with non-uniform doping the nonlinear pulses are excited due to the inhomogeneity of the electric field near the input end of the film and the output nonlinear pulses are rather domains.
{"title":"Generation of sequences of strong electric monopulses in nitride films","authors":"V. Grimalsky, S. Koshevaya, J. Escobedo-Alatorre, A. Kotsarenko","doi":"10.2298/fuee2102187g","DOIUrl":"https://doi.org/10.2298/fuee2102187g","url":null,"abstract":"This paper presents theoretical investigation of the excitation of the sequences of strong nonlinear monopulses of space charge waves from input small envelope pulses with microwave carrier frequencies due to the negative differential conductivity in n-GaN and n-InN films. The stable numerical algorithms have been used for nonlinear 3D simulations. The sequences of the monopulses of the strong electric field of 3 - 10 ps durations each can be excited. The bias electric field should be chosen slightly higher than the threshold values for observing the negative differential conductivity. The doping levels should be moderate 1016 -1017 cm-3in the films of ? 2 mm thicknesses. The input microwave carrier frequencies of the exciting pulses of small amplitudes are up to 30 GHz in n-GaN films, whereas in n-InN films they are lower, up to 20 GHz. The sequences of the electric monopulses of high peak values are excited both in the uniform nitride films and in films with non-uniform conductivity. These nonlinear monopulses in the films differ from the domains of strong electric fields in the bulk semiconductors. In the films with non-uniform doping the nonlinear pulses are excited due to the inhomogeneity of the electric field near the input end of the film and the output nonlinear pulses are rather domains.","PeriodicalId":44296,"journal":{"name":"Facta Universitatis-Series Electronics and Energetics","volume":"28 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87307086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Electronic readiness is the ability to accept, use and apply information and communication technology in an organization. To effectively implement information and communication technologies, the first step is to measure the electronic readiness of companies and organizations to adopt these new technologies. In this research, the level of electronic readiness of Mellat Bank has been studied in Khorasan Razavi province in Iran, from the perspective of the employees in cities of Feyz Abad, Kashmar, Bajestan, Gonabad and Bazar and Central branches in Khorasan Razavi province. Electronic readiness levels of Bank Mellat have been evaluated in the following dimensions: Strategy readiness and IT policies, IT infrastructure readiness, management readiness, legal-juridical readiness, culture and human resource (personnel) readiness and Process readiness. This research is based on descriptive research design and applied purpose. The statistical population of the personnel includes people with sufficient and necessary information in the field of financial and banking activities regarding e-commerce issues and e-readiness, which was a total population of 74 people. 50 questionnaires consisting of 30 questions were distributed using non-probability convenience sampling method of which 42 questionnaires were accurate. The SPSS15 software was used for analysis. The results of the analysis showed that the level of electronic readiness of Mellat Bank in Khorasan Razavi province in the studied branches is significantly higher than the average theoretical score (3) (p <0.001) in total and its components. This demonstrates the level of electronic readiness of Mellat Bank in Khorasan Razavi is high (above average) from the perspective of the studied personnel. Also, there is no significant difference in the average score of the perspective of personnel based on gender, age, years of service, level of education, field of study and organizational position concerning the level of electronic readiness in Mellat Bank in Khorasan Razavi.
{"title":"Evaluation of electronic readiness level: A case of financial institution","authors":"H. Kardanmoghaddam, Nafiseh Sarboland","doi":"10.2298/fuee2103401k","DOIUrl":"https://doi.org/10.2298/fuee2103401k","url":null,"abstract":"Electronic readiness is the ability to accept, use and apply information and communication technology in an organization. To effectively implement information and communication technologies, the first step is to measure the electronic readiness of companies and organizations to adopt these new technologies. In this research, the level of electronic readiness of Mellat Bank has been studied in Khorasan Razavi province in Iran, from the perspective of the employees in cities of Feyz Abad, Kashmar, Bajestan, Gonabad and Bazar and Central branches in Khorasan Razavi province. Electronic readiness levels of Bank Mellat have been evaluated in the following dimensions: Strategy readiness and IT policies, IT infrastructure readiness, management readiness, legal-juridical readiness, culture and human resource (personnel) readiness and Process readiness. This research is based on descriptive research design and applied purpose. The statistical population of the personnel includes people with sufficient and necessary information in the field of financial and banking activities regarding e-commerce issues and e-readiness, which was a total population of 74 people. 50 questionnaires consisting of 30 questions were distributed using non-probability convenience sampling method of which 42 questionnaires were accurate. The SPSS15 software was used for analysis. The results of the analysis showed that the level of electronic readiness of Mellat Bank in Khorasan Razavi province in the studied branches is significantly higher than the average theoretical score (3) (p <0.001) in total and its components. This demonstrates the level of electronic readiness of Mellat Bank in Khorasan Razavi is high (above average) from the perspective of the studied personnel. Also, there is no significant difference in the average score of the perspective of personnel based on gender, age, years of service, level of education, field of study and organizational position concerning the level of electronic readiness in Mellat Bank in Khorasan Razavi.","PeriodicalId":44296,"journal":{"name":"Facta Universitatis-Series Electronics and Energetics","volume":"467 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80137735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Crossbar switch is the basic component in multi-stage interconnection networks. Therefore, this study was conducted to investigate performance of a crossbar switch with two multiplexers. The presented crossbar switch was simulated using quantum-dot cellular automata (QCA) technology and QCA Designer software, and was studied and optimized in terms of cell number, occupied area, number of clocks, and energy consumption. Using the provided crossbar switch, the baseline network was designed to be optimal in terms of cell number and occupied area. Also, the number of input states was investigated and simulated to verify accuracy of the baseline network. The proposed crossbar switch uses 62 QCA cells and the occupied area by the switch is equal to 0.06?m2 and its latency equals 4 clock zones, which is more efficient than the other designs. In this paper, using the presented crossbar switch, the baseline network was designed with 1713 cells, and occupied area of 2.89?m2.
{"title":"Introducing an optimal QCA crossbar switch for baseline network","authors":"R. Sabbaghi‐Nadooshan","doi":"10.2298/fuee2103445s","DOIUrl":"https://doi.org/10.2298/fuee2103445s","url":null,"abstract":"Crossbar switch is the basic component in multi-stage interconnection networks. Therefore, this study was conducted to investigate performance of a crossbar switch with two multiplexers. The presented crossbar switch was simulated using quantum-dot cellular automata (QCA) technology and QCA Designer software, and was studied and optimized in terms of cell number, occupied area, number of clocks, and energy consumption. Using the provided crossbar switch, the baseline network was designed to be optimal in terms of cell number and occupied area. Also, the number of input states was investigated and simulated to verify accuracy of the baseline network. The proposed crossbar switch uses 62 QCA cells and the occupied area by the switch is equal to 0.06?m2 and its latency equals 4 clock zones, which is more efficient than the other designs. In this paper, using the presented crossbar switch, the baseline network was designed with 1713 cells, and occupied area of 2.89?m2.","PeriodicalId":44296,"journal":{"name":"Facta Universitatis-Series Electronics and Energetics","volume":"46 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79576070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper dual wideband high gain circular shaped microstrip antenna with modified ground plane is presented for wireless communication systems. The overall dimension of the proposed antenna is 50 x 40 x 1.6 mm3. The radiating element consists of circular shaped patch which is excited by microstrip feed-line printed on FR4 epoxy substrate. The ground plane is on the other side of the substrate having a rectangular ring shape to enhance the peak gain of the antenna. The proposed antenna exhibits two wide fractional bandwidths (based on ? -10 dB) of 61.1% (ranging from 2.0 to 3.8 GHz, centred at 2.88 GHz) and 53.37% (ranging from 5.48 to 9.6 GHz, centred at 7.44 GHz). The measured peak gain achieved is 8.25 dBi at 8.76 GHz. The measured impedance bandwidth and gain suffice all the commercial bands of wireless systems such as 4G LTE band-40, Bluetooth, Wi-Fi, WLAN, WiMAX, C-band, and Xband. The measured results are experimentally tested and verified with simulated results. A reasonable agreement is found between them.
{"title":"Dual wideband and high gain microstrip antenna for wireless system","authors":"Biplab Bag, S. Biswas, P. Sarkar","doi":"10.2298/fuee2103435b","DOIUrl":"https://doi.org/10.2298/fuee2103435b","url":null,"abstract":"In this paper dual wideband high gain circular shaped microstrip antenna with modified ground plane is presented for wireless communication systems. The overall dimension of the proposed antenna is 50 x 40 x 1.6 mm3. The radiating element consists of circular shaped patch which is excited by microstrip feed-line printed on FR4 epoxy substrate. The ground plane is on the other side of the substrate having a rectangular ring shape to enhance the peak gain of the antenna. The proposed antenna exhibits two wide fractional bandwidths (based on ? -10 dB) of 61.1% (ranging from 2.0 to 3.8 GHz, centred at 2.88 GHz) and 53.37% (ranging from 5.48 to 9.6 GHz, centred at 7.44 GHz). The measured peak gain achieved is 8.25 dBi at 8.76 GHz. The measured impedance bandwidth and gain suffice all the commercial bands of wireless systems such as 4G LTE band-40, Bluetooth, Wi-Fi, WLAN, WiMAX, C-band, and Xband. The measured results are experimentally tested and verified with simulated results. A reasonable agreement is found between them.","PeriodicalId":44296,"journal":{"name":"Facta Universitatis-Series Electronics and Energetics","volume":"289 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74305973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Apart from other factors, band alignment led conduction band offset (CBO) largely affects the two dimensional electron gas (2DEG) density ns in wide bandgap semiconductor based high electron mobility transistors (HEMTs). In the context of assessing various performance metrics of HEMTs, rational estimation of CBO and maximum achievable 2DEG density is critical. Here, we present an analytical study on the effect of different energy band parameters-energy bandgap and electron affinity of heterostructure constituents, and lattice temperature on CBO and estimated 2DEG density in quantum triangular-well. It is found that at thermal equilibrium, ns increases linearly with ?EC at a fixed Schottky barrier potential, but decreases linearly with increasing gate-metal work function even at fixed ?EC, due to increased Schottky barrier heights. Furthermore, it is also observed that poor thermal conductivity led to higher lattice temperature which results in lower energy bandgap, and hence affects ?EC and ns at higher output currents.
{"title":"Analytical study of effect of energy band parameters and lattice temperature on conduction band offset in AlN/Ga2O3 HEMT","authors":"Rajan Singh, T. Lenka, Hieu Nguyen","doi":"10.2298/fuee2103323s","DOIUrl":"https://doi.org/10.2298/fuee2103323s","url":null,"abstract":"Apart from other factors, band alignment led conduction band offset (CBO) largely affects the two dimensional electron gas (2DEG) density ns in wide bandgap semiconductor based high electron mobility transistors (HEMTs). In the context of assessing various performance metrics of HEMTs, rational estimation of CBO and maximum achievable 2DEG density is critical. Here, we present an analytical study on the effect of different energy band parameters-energy bandgap and electron affinity of heterostructure constituents, and lattice temperature on CBO and estimated 2DEG density in quantum triangular-well. It is found that at thermal equilibrium, ns increases linearly with ?EC at a fixed Schottky barrier potential, but decreases linearly with increasing gate-metal work function even at fixed ?EC, due to increased Schottky barrier heights. Furthermore, it is also observed that poor thermal conductivity led to higher lattice temperature which results in lower energy bandgap, and hence affects ?EC and ns at higher output currents.","PeriodicalId":44296,"journal":{"name":"Facta Universitatis-Series Electronics and Energetics","volume":"57 73 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74983172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Larouci Benyekhlef, S. Abdelkader, Boudjella Houari, Ayad Ahmed Nour El Islam
The essential objective of optimal power flow is to find a stable operating point which minimizes the cost of the production generators and its losses, and keeps the power system acceptable in terms of limits on the active and reactive powers of the generators. In this paper, we propose the nature-inspired Cuckoo search algorithm (CSA) to solve economic/emission dispatch problems with the incorporation of FACTS devices under the valve-point loading effect (VPE). The proposed method is applied on different test systems cases to minimize the fuel cost and total emissions and to see the influence of the integration of FACTS devices. The obtained results confirm the efficiency and the robustness of the Cuckoo search algorithm compared to other optimization techniques published recently in the literature. In addition, the simulation results show the advantages of the proposed algorithm for optimizing the production fuel cost, total emissions and total losses in all transmission lines.
{"title":"Cuckoo search algorithm to solve the problem of economic emission dispatch with the incorporation of facts devices under the valve-point loading effect","authors":"Larouci Benyekhlef, S. Abdelkader, Boudjella Houari, Ayad Ahmed Nour El Islam","doi":"10.2298/fuee2104569b","DOIUrl":"https://doi.org/10.2298/fuee2104569b","url":null,"abstract":"The essential objective of optimal power flow is to find a stable operating point which minimizes the cost of the production generators and its losses, and keeps the power system acceptable in terms of limits on the active and reactive powers of the generators. In this paper, we propose the nature-inspired Cuckoo search algorithm (CSA) to solve economic/emission dispatch problems with the incorporation of FACTS devices under the valve-point loading effect (VPE). The proposed method is applied on different test systems cases to minimize the fuel cost and total emissions and to see the influence of the integration of FACTS devices. The obtained results confirm the efficiency and the robustness of the Cuckoo search algorithm compared to other optimization techniques published recently in the literature. In addition, the simulation results show the advantages of the proposed algorithm for optimizing the production fuel cost, total emissions and total losses in all transmission lines.","PeriodicalId":44296,"journal":{"name":"Facta Universitatis-Series Electronics and Energetics","volume":"19 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81840836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}