B. Gao, Yumei Ye, Xin Pan, Qiang Yang, W. Xie, S. Meng, Y. Huo
Reusable spacecraft has great potential in reducing space launch cost. Structural reliability evaluation is critical for mission planning of reusable spacecraft. A dynamic reliability prognosis method based on digital twin framework is proposed for mission planning in the paper. In this method, Uncertainties integration and dynamic model updating are implemented through a dynamic Bayesian network. A maintenance point is set when the predicted structural reliability level is lower than a threshold or unexpected conditions such as landing impact occur. Then, inspected data can be assimilated by the framework to dynamically update the structural reliability. Thus, it supports dynamic adjustment of maintenance interval, early warning of structure failure, and mission planning with quantified risk. A numerical example considering single point crack growth under fatigue load and landing impact of a simplified spacecraft structure is used for demonstration. Results show that the crack size predictions can be calibrated by inspected data and its uncertainties can be reduced. The proper selection of landing impact probability in reliability prediction is helpful to control the maintenance interval. The reliability of the spacecraft can be increased through model updating with new inspected data, representing a potential lifetime extension can be realized by the proposed method.
{"title":"A Dynamic Reliability Prognosis Method For Reusable Spacecraft Mission Planning Based On Digital Twin Framework","authors":"B. Gao, Yumei Ye, Xin Pan, Qiang Yang, W. Xie, S. Meng, Y. Huo","doi":"10.1115/1.4063297","DOIUrl":"https://doi.org/10.1115/1.4063297","url":null,"abstract":"\u0000 Reusable spacecraft has great potential in reducing space launch cost. Structural reliability evaluation is critical for mission planning of reusable spacecraft. A dynamic reliability prognosis method based on digital twin framework is proposed for mission planning in the paper. In this method, Uncertainties integration and dynamic model updating are implemented through a dynamic Bayesian network. A maintenance point is set when the predicted structural reliability level is lower than a threshold or unexpected conditions such as landing impact occur. Then, inspected data can be assimilated by the framework to dynamically update the structural reliability. Thus, it supports dynamic adjustment of maintenance interval, early warning of structure failure, and mission planning with quantified risk. A numerical example considering single point crack growth under fatigue load and landing impact of a simplified spacecraft structure is used for demonstration. Results show that the crack size predictions can be calibrated by inspected data and its uncertainties can be reduced. The proper selection of landing impact probability in reliability prediction is helpful to control the maintenance interval. The reliability of the spacecraft can be increased through model updating with new inspected data, representing a potential lifetime extension can be realized by the proposed method.","PeriodicalId":44694,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","volume":"56 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74615454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bolted joints have been widely used in engineering structures because of their advantages of simplicity, economy, and assembly. However, material nonlinearities, interface nonlinearities and uncertainties in the assembly process will lead to the dynamic response to become very complex. This work investigated the effect of assembly uncertainties on shock propagation through a bolted lap joint under impact loading. The object of the study was a bolted lap joint subjected to Separate Hopkinson Pressure Bar (SHPB) test. First, a high-fidelity finite element model of the bolted lap joint was developed, the model was validated by comparing with the experimental results. The error between simulation and experimental results prompted the necessary to consider the uncertainty effect. Then, the effects of multiple uncertainties were considered to identify important input random variables related to the impact response of the joint. The results showed that the slip between the connected parts has the most significant effect on energy dissipation and stress wave propagation. Finally, useful conclusions for the design of bolted joints were obtained from the computational results and discussions.
{"title":"Effect Of Assembly Uncertainties On Shock Propagation Through A Bolted Joint Under Impact Loading","authors":"Hao Chen, Zhiming Hao","doi":"10.1115/1.4063300","DOIUrl":"https://doi.org/10.1115/1.4063300","url":null,"abstract":"\u0000 Bolted joints have been widely used in engineering structures because of their advantages of simplicity, economy, and assembly. However, material nonlinearities, interface nonlinearities and uncertainties in the assembly process will lead to the dynamic response to become very complex. This work investigated the effect of assembly uncertainties on shock propagation through a bolted lap joint under impact loading. The object of the study was a bolted lap joint subjected to Separate Hopkinson Pressure Bar (SHPB) test. First, a high-fidelity finite element model of the bolted lap joint was developed, the model was validated by comparing with the experimental results. The error between simulation and experimental results prompted the necessary to consider the uncertainty effect. Then, the effects of multiple uncertainties were considered to identify important input random variables related to the impact response of the joint. The results showed that the slip between the connected parts has the most significant effect on energy dissipation and stress wave propagation. Finally, useful conclusions for the design of bolted joints were obtained from the computational results and discussions.","PeriodicalId":44694,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","volume":"46 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76614293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Taking the key welds of the heavy-duty gondola carbody as the research object, firstly, the fatigue assessment of the carbody is carried out based on the quasi-static the main S-N curve method, and the quasi-static evaluation method is discussed; secondly, the typical welds are selected. based on the full-size bench physical test and virtual test of railway freight carbody, the quasi-static method is discussed; finally, the line test is used to verify the results. The results show that: 1) among all the load conditions in the quasi-static analysis of railway freight cars, the damage of the core plate needs to be considered according to different parts of the carbody, and this condition is effective for the evaluation of the bearing area of the linear load transfer of the carbody. for the welds with nonlinear load transfer such as floor, the stress response caused by core plate load has the problem of over-estimation of damage. 2) the lap weld of floor and beam is less damaged under heavy load, but the stress response is larger in empty state, which indicates that the vibration effect should be considered in the design. 3) the virtual test can make up for the problem of traditional quasi-static analysis. the combination of the two can better realize the fatigue reliability evaluation of carbody.
{"title":"Discussion On Fatigue Reliability Evaluation Method Of Welded Structure Of Carbody Based On Digital Twin","authors":"Shangchao Zhao, C. Deng, Xiangwei Li, Ji Fang","doi":"10.1115/1.4063299","DOIUrl":"https://doi.org/10.1115/1.4063299","url":null,"abstract":"\u0000 Taking the key welds of the heavy-duty gondola carbody as the research object, firstly, the fatigue assessment of the carbody is carried out based on the quasi-static the main S-N curve method, and the quasi-static evaluation method is discussed; secondly, the typical welds are selected. based on the full-size bench physical test and virtual test of railway freight carbody, the quasi-static method is discussed; finally, the line test is used to verify the results. The results show that: 1) among all the load conditions in the quasi-static analysis of railway freight cars, the damage of the core plate needs to be considered according to different parts of the carbody, and this condition is effective for the evaluation of the bearing area of the linear load transfer of the carbody. for the welds with nonlinear load transfer such as floor, the stress response caused by core plate load has the problem of over-estimation of damage. 2) the lap weld of floor and beam is less damaged under heavy load, but the stress response is larger in empty state, which indicates that the vibration effect should be considered in the design. 3) the virtual test can make up for the problem of traditional quasi-static analysis. the combination of the two can better realize the fatigue reliability evaluation of carbody.","PeriodicalId":44694,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","volume":"22 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89498352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Special Section on Uncertainty Quantification & Management in Nonlinear Dynamical Systems in Aerospace and Mechanical Engineering","authors":"Jie Yuan","doi":"10.1115/1.4063301","DOIUrl":"https://doi.org/10.1115/1.4063301","url":null,"abstract":"\u0000 <jats:p>n/a</jats:p>","PeriodicalId":44694,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","volume":"29 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76078857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The friction force at joints of engineering structures is usually unknown and not directly identifiable. This contribution explores a procedure for obtaining the governing equation of motion and correctly identifying the unknown Coulomb friction force of a mass-spring-dashpot system. In particular, a Single-Degree-of-Freedom system is investigated both numerically and experimentally. The proposed procedure extends the state-of-the-art data-driven SINDy algorithm by developing a methodology that explicitly imposes constraints encoding knowledge of the non-smooth dynamics experienced during stick-slip phenomena. The proposed algorithm consists of three steps: (i) data segregation of mass-motion from mass-sticking during stick-slip response; (ii) application of SINDy on the mass-motion dataset to obtain the functional form of the governing equation; and (iii) applying sticking and slipping conditions to identify the unknown system parameters. It is shown that the proposed approach yields an improved estimate of the uncertain system parameters such as stiffness, damping, and magnitude of friction force (all mass normalized) for various signal-to-noise ratios compared to SINDy.
{"title":"Governing Equation Identification Of Nonlinear Single Degree-Of-Freedom Oscillators With Coulomb Friction Using Explicit Stick And Slip Temporal Constraints","authors":"S. Mahajan, A. Cicirello","doi":"10.1115/1.4063070","DOIUrl":"https://doi.org/10.1115/1.4063070","url":null,"abstract":"\u0000 The friction force at joints of engineering structures is usually unknown and not directly identifiable. This contribution explores a procedure for obtaining the governing equation of motion and correctly identifying the unknown Coulomb friction force of a mass-spring-dashpot system. In particular, a Single-Degree-of-Freedom system is investigated both numerically and experimentally. The proposed procedure extends the state-of-the-art data-driven SINDy algorithm by developing a methodology that explicitly imposes constraints encoding knowledge of the non-smooth dynamics experienced during stick-slip phenomena. The proposed algorithm consists of three steps: (i) data segregation of mass-motion from mass-sticking during stick-slip response; (ii) application of SINDy on the mass-motion dataset to obtain the functional form of the governing equation; and (iii) applying sticking and slipping conditions to identify the unknown system parameters. It is shown that the proposed approach yields an improved estimate of the uncertain system parameters such as stiffness, damping, and magnitude of friction force (all mass normalized) for various signal-to-noise ratios compared to SINDy.","PeriodicalId":44694,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","volume":"45 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79343380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Bui, T. Sakurahara, S. Reihani, E. Kee, Z. Mohaghegh
Recently, there has been an increasing use of advanced modeling and simulation in the nuclear domain across academia, industry, and regulatory agencies to improve the realism in capturing complex and highly spatiotemporal phenomena within the Probabilistic Risk Assessment (PRA) of existing Nuclear Power Plants (NPPs). Advanced modeling and simulation have also been used to accelerate the risk-informed design, licensing, and operationalization of advanced nuclear reactors. Validation of simulation models traditionally relies on empirical validation approaches which require enough validation data. Such validation data are, however, usually costly to obtain in the contexts of the nuclear industry. To overcome this challenge and to effectively support the use of simulation models in PRA and risk-informed decision-making applications, a systematic and scientifically justifiable validation methodology, namely, the Probabilistic Validation (PV) methodology, has been developed. This methodology leverages uncertainty analysis to support the validity assessment of the simulation prediction. The theoretical foundation and methodological platform of the PV methodology have been reported in the first paper of this two-part series. The purpose of this second paper is to computationalize the PV methodology, embedded in an Integrated PRA framework, and apply it for a hierarchical fire simulation model used in NPP Fire PRA.
{"title":"Probabilistic Validation: Computational Platform and Application to Fire Pra of Nuclear Power Plants","authors":"H. Bui, T. Sakurahara, S. Reihani, E. Kee, Z. Mohaghegh","doi":"10.1115/1.4063071","DOIUrl":"https://doi.org/10.1115/1.4063071","url":null,"abstract":"\u0000 Recently, there has been an increasing use of advanced modeling and simulation in the nuclear domain across academia, industry, and regulatory agencies to improve the realism in capturing complex and highly spatiotemporal phenomena within the Probabilistic Risk Assessment (PRA) of existing Nuclear Power Plants (NPPs). Advanced modeling and simulation have also been used to accelerate the risk-informed design, licensing, and operationalization of advanced nuclear reactors. Validation of simulation models traditionally relies on empirical validation approaches which require enough validation data. Such validation data are, however, usually costly to obtain in the contexts of the nuclear industry. To overcome this challenge and to effectively support the use of simulation models in PRA and risk-informed decision-making applications, a systematic and scientifically justifiable validation methodology, namely, the Probabilistic Validation (PV) methodology, has been developed. This methodology leverages uncertainty analysis to support the validity assessment of the simulation prediction. The theoretical foundation and methodological platform of the PV methodology have been reported in the first paper of this two-part series. The purpose of this second paper is to computationalize the PV methodology, embedded in an Integrated PRA framework, and apply it for a hierarchical fire simulation model used in NPP Fire PRA.","PeriodicalId":44694,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","volume":"9 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91013818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
X. Ma, Yucai Zhong, P. Cao, Jie-Hong Yuan, Zhenguo Zhang
Self-excited vibrations can occur in the spline-shafting system due to internal friction of the tooth surface. However, due to manufacturing errors, design tolerances, and time-varying factors, the parameters that induce self-excited vibrations are always uncertain. This study provides new insights into the uncertainty quantification and sensitivity analysis of a spline-shaft system suffering from self-excited vibrations. The non-intrusive generalised polynomial chaos expansion (gPCE) with unknown deterministic coefficients is used to represent the propagation of uncertainties in the rotor dynamics, which allows rapid estimation of the statistics of the non-linear responses. Furthermore, the global sensitivity analysis of the stochastic self-excited vibration response of the rotor system with probabilistic uncertain parameters is evaluated by Sobol indices. The relative influence of different random parameters on the vibration behavior and initial displacement conditions for the occurrence of self-excited vibration is investigated. The accuracy of the adopted method based on the gPCE metamodel is validated by conventional Monte Carlo simulation (MCS). Finally, the effects of parameter uncertainties considering random distribution characteristics on the stochastic vibration characteristics of the rotor system are discussed, which demonstrates the need to consider input uncertainties in analysis and design to ensure robust system performance.
{"title":"Uncertainty Quantification And Sensitivity Analysis For The Self-Excited Vibration Of A Spline-Shafting System","authors":"X. Ma, Yucai Zhong, P. Cao, Jie-Hong Yuan, Zhenguo Zhang","doi":"10.1115/1.4063069","DOIUrl":"https://doi.org/10.1115/1.4063069","url":null,"abstract":"\u0000 Self-excited vibrations can occur in the spline-shafting system due to internal friction of the tooth surface. However, due to manufacturing errors, design tolerances, and time-varying factors, the parameters that induce self-excited vibrations are always uncertain. This study provides new insights into the uncertainty quantification and sensitivity analysis of a spline-shaft system suffering from self-excited vibrations. The non-intrusive generalised polynomial chaos expansion (gPCE) with unknown deterministic coefficients is used to represent the propagation of uncertainties in the rotor dynamics, which allows rapid estimation of the statistics of the non-linear responses. Furthermore, the global sensitivity analysis of the stochastic self-excited vibration response of the rotor system with probabilistic uncertain parameters is evaluated by Sobol indices. The relative influence of different random parameters on the vibration behavior and initial displacement conditions for the occurrence of self-excited vibration is investigated. The accuracy of the adopted method based on the gPCE metamodel is validated by conventional Monte Carlo simulation (MCS). Finally, the effects of parameter uncertainties considering random distribution characteristics on the stochastic vibration characteristics of the rotor system are discussed, which demonstrates the need to consider input uncertainties in analysis and design to ensure robust system performance.","PeriodicalId":44694,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","volume":"3 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78115037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The power transmission infrastructure is vulnerable to extreme weather events, particularly hurricanes and tropical storms. A recent example is the damage caused by Hurricane Maria (H-Maria) in the archipelago of Puerto Rico in September 2017, where major failures in the transmission infrastructure led to a total blackout. Numerous studies have been conducted to examine strategies to strengthen the transmission system, including burying the power lines underground or increasing the frequency of tree trimming. However, few studies focus on the direct hardening of the transmission towers to accomplish an increase in resiliency. This machine learning-based study fills this need by analyzing three direct hardening scenarios and determining the effectiveness of these changes in the context of H-Maria. A methodology for estimating transmission tower damage is presented here as well as an analysis of impact of replacing structures with a high failure rate with more resilient ones. We found the steel self-support-pole to be the best replacement option for the towers with high failure rate. Furthermore, the third hardening scenario, where all wooden poles were replaced, exhibited a maximum reduction in damaged towers in a single line of 66% while lowering the mean number of damaged towers per line by 10%.
{"title":"Evaluation Of Power Transmission Lines Hardening Scenarios Using A Machine Learning Approach","authors":"Juan Montoya Rincon, Jorge González, M. P. Jensen","doi":"10.1115/1.4063012","DOIUrl":"https://doi.org/10.1115/1.4063012","url":null,"abstract":"\u0000 The power transmission infrastructure is vulnerable to extreme weather events, particularly hurricanes and tropical storms. A recent example is the damage caused by Hurricane Maria (H-Maria) in the archipelago of Puerto Rico in September 2017, where major failures in the transmission infrastructure led to a total blackout. Numerous studies have been conducted to examine strategies to strengthen the transmission system, including burying the power lines underground or increasing the frequency of tree trimming. However, few studies focus on the direct hardening of the transmission towers to accomplish an increase in resiliency. This machine learning-based study fills this need by analyzing three direct hardening scenarios and determining the effectiveness of these changes in the context of H-Maria. A methodology for estimating transmission tower damage is presented here as well as an analysis of impact of replacing structures with a high failure rate with more resilient ones. We found the steel self-support-pole to be the best replacement option for the towers with high failure rate. Furthermore, the third hardening scenario, where all wooden poles were replaced, exhibited a maximum reduction in damaged towers in a single line of 66% while lowering the mean number of damaged towers per line by 10%.","PeriodicalId":44694,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","volume":"161 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88044835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reliability-based design has been a widely used methodology in the design of engineering structures. For example, the structural design standards in many countries have adopted the load and resistance factor design (LRFD) method. In recent years, the concept of resilience-based design has emerged, which also takes into account the post-hazard functionality loss and recovery process of a structure. Under this context, the following questions naturally arise: can we establish a linkage between reliability-based design and resilience-based design? Does there exist a simple resilience-based design criterion that takes a similar form of LRFD? This paper addresses these questions, and the answer is “quot”. To this end, a new concept of structural resilience capacity is proposed, which is a generalization of structural load bearing capacity (resistance). The probabilistic characteristics (mean value, variance, probability distribution function) of resilience capacity are derived. Applying the concept of resilience capacity, this paper explicitly shows the relationship between the following four items: time-invariant reliability-, time-invariant resilience-, time-dependent reliability-, and time-dependent resilience-based design methods. Furthermore, an LRFD-like design criterion is proposed for structural resilience-based design, namely load and resilience capacity factor design (LRCFD), whose applicability is demonstrated through an example. The LRCFD method can also be used, in conjunction with LRFD, to achieve reliability and resilience goals simultaneously of the designed structure.
{"title":"From Reliability-Based Design to Resilience-Based Design","authors":"Cao Wang, B. Ayyub, M. Beer","doi":"10.1115/1.4062997","DOIUrl":"https://doi.org/10.1115/1.4062997","url":null,"abstract":"\u0000 Reliability-based design has been a widely used methodology in the design of engineering structures. For example, the structural design standards in many countries have adopted the load and resistance factor design (LRFD) method. In recent years, the concept of resilience-based design has emerged, which also takes into account the post-hazard functionality loss and recovery process of a structure. Under this context, the following questions naturally arise: can we establish a linkage between reliability-based design and resilience-based design? Does there exist a simple resilience-based design criterion that takes a similar form of LRFD? This paper addresses these questions, and the answer is “quot”. To this end, a new concept of structural resilience capacity is proposed, which is a generalization of structural load bearing capacity (resistance). The probabilistic characteristics (mean value, variance, probability distribution function) of resilience capacity are derived. Applying the concept of resilience capacity, this paper explicitly shows the relationship between the following four items: time-invariant reliability-, time-invariant resilience-, time-dependent reliability-, and time-dependent resilience-based design methods. Furthermore, an LRFD-like design criterion is proposed for structural resilience-based design, namely load and resilience capacity factor design (LRCFD), whose applicability is demonstrated through an example. The LRCFD method can also be used, in conjunction with LRFD, to achieve reliability and resilience goals simultaneously of the designed structure.","PeriodicalId":44694,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","volume":"16 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73557576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cao Wang, M. Faes, Michael Beer, E. Zio, J. W. van de Lindt
{"title":"Editorial: Community Resilience to Disruptive Events: Models and Analyses, Lessons Learned and Case Studies","authors":"Cao Wang, M. Faes, Michael Beer, E. Zio, J. W. van de Lindt","doi":"10.1115/1.4062982","DOIUrl":"https://doi.org/10.1115/1.4062982","url":null,"abstract":"","PeriodicalId":44694,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","volume":"153 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76434356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}