Pub Date : 2021-05-05DOI: 10.1177/23977914211015854
Nur Fathirah Mohd Rahimi, Sathiabama T. Thirugnana, S. K. Ghoshal, R. Muhammad
In this study, the Yttrium Stabilized Zirconia (YSZ) thin films were deposited on the sapphire substrate (Al2O3) by dip-coating method using simple ethanol-based YSZ suspension. The layer thickness of YSZ films were varied by sintering at 1300°C. Phase change and structural evolution in YSZ films were observed by conducting X-ray diffraction (XRD) analyses. The microstructures and the surface morphology of the deposited films were examined using Atomic Force Microscope (AFM) and Field Emission Scanning Electron Microscope (FESEM). The XRD pattern revealed a phase change from cubic to monoclinic with an increase in YSZ layer thickness. The crystallite size was varied in the range of 9.68–42.98 nm with the changes in the layer thickness. Meanwhile, the AFM image analyses showed a layer thickness-dependent variation in the grain size (205.83–373.77 nm) and the RMS surface roughness (16.72–36.44 nm). The FESEM images of the achieved film exhibited the occurrence of a dense morphology. It was concluded that by controlling the layer thickness of the deposited films, their improved structure and morphology can be achieved.
{"title":"Varied layer thickness improves structural properties of YSZ thin film","authors":"Nur Fathirah Mohd Rahimi, Sathiabama T. Thirugnana, S. K. Ghoshal, R. Muhammad","doi":"10.1177/23977914211015854","DOIUrl":"https://doi.org/10.1177/23977914211015854","url":null,"abstract":"In this study, the Yttrium Stabilized Zirconia (YSZ) thin films were deposited on the sapphire substrate (Al2O3) by dip-coating method using simple ethanol-based YSZ suspension. The layer thickness of YSZ films were varied by sintering at 1300°C. Phase change and structural evolution in YSZ films were observed by conducting X-ray diffraction (XRD) analyses. The microstructures and the surface morphology of the deposited films were examined using Atomic Force Microscope (AFM) and Field Emission Scanning Electron Microscope (FESEM). The XRD pattern revealed a phase change from cubic to monoclinic with an increase in YSZ layer thickness. The crystallite size was varied in the range of 9.68–42.98 nm with the changes in the layer thickness. Meanwhile, the AFM image analyses showed a layer thickness-dependent variation in the grain size (205.83–373.77 nm) and the RMS surface roughness (16.72–36.44 nm). The FESEM images of the achieved film exhibited the occurrence of a dense morphology. It was concluded that by controlling the layer thickness of the deposited films, their improved structure and morphology can be achieved.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2021-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85775098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01DOI: 10.1177/2397791421993784
E. Ghavanloo
Nanoscopic structures are small structures formed from a countable number of atoms or molecules. Novel properties and functions are associated with nanoscopic structures due to reduction in their dimensionalities. These small structures have promoted a revolution in science and technology, and they are utilized in making new devices as well as leading to new technologies. Furthermore, Nature has already employed nanoscopic structures to perform vital biological functions. Hence, these exotic structures have occupied the center stage in pure and applied research due to their widespread applications in various fields of nanoscience, nanoengineering, nanotechnology, materials science and technology, medical physics, biomedical engineering, biotechnology, molecular biology and genetics, and neural science and neural engineering. Following this invention, various types of biological and nonbiological nanoscopic structures with various morphologies and functionalities have been discovered, synthesized, and reported during the past four decades. Phenomenological study of nanoscopic structures, either as single isolated structures or as components in nanoscale machines and systems, forms an active research area in applied science and engineering. Understanding the mechanical properties and behavior of a material system at nanoscale level is a necessary requirement for an efficient and accurate design, fabrication and assembly of nanoscale systems, nanomaterials, nanodevices, and nanodrugs. Accordingly, the development of well-understood mathematical and computational frameworks for characterizing the mechanical structure and behavior of the nanoscopic structures is very desirable, and it poses a huge number of challenges for researchers in this field. This Special Issue contains five papers by a number of expert researchers from China, India, Iran, Italy, and Poland. They have presented recent findings in mathematical and computational modeling of various nanoscopic structures with different morphologies. Below, we briefly introduce the papers featured in this Special Issue. In the first paper, size-dependent mechanical properties of twin graphene, a novel 2D planar semiconducting carbon allotrope, have been investigated using Molecular Dynamics simulations. The encapsulation of monocyclic carbon rings inside single-walled carbon nanotubes has investigated using continuum approximation in the second paper. In another paper, size-dependent free-vibration of viscoelastic carbon nanotubes conveying fluid and resting on viscoelastic foundation has studied on the basis of fractional viscoelasticity. Nonlinear bending analysis of a double-layered graphene sheet which contains a geometrical imperfection has simulated in the fourth paper. Finally, the static behavior of elastic curved beams has been investigated by stress-driven two-phase integral elasticity. We hope readers will find the special issue interesting and that the content will contribute to the deve
纳米结构是由可数的原子或分子组成的小结构。由于纳米结构的尺寸减小,新的性质和功能与纳米结构相关联。这些小结构推动了科学技术的革命,它们被用来制造新设备,并引领新技术。此外,大自然已经利用纳米结构来执行重要的生物功能。因此,这些奇异结构在纳米科学、纳米工程、纳米技术、材料科学与技术、医学物理学、生物医学工程、生物技术、分子生物学和遗传学、神经科学和神经工程等各个领域的广泛应用,已经占据了纯粹研究和应用研究的中心舞台。在这项发明之后,在过去的四十年里,具有各种形态和功能的各种类型的生物和非生物纳米结构被发现、合成和报道。纳米结构的现象学研究,无论是作为单一的孤立结构还是作为纳米尺度机器和系统的组成部分,在应用科学和工程中形成了一个活跃的研究领域。了解纳米级材料系统的机械性能和行为是有效和精确设计、制造和组装纳米系统、纳米材料、纳米器件和纳米药物的必要条件。因此,开发易于理解的数学和计算框架来表征纳米结构的机械结构和行为是非常可取的,这给该领域的研究人员带来了巨大的挑战。本期特刊收录了来自中国、印度、伊朗、意大利和波兰的专家研究人员的五篇论文。他们介绍了各种不同形貌的纳米结构的数学和计算模型的最新发现。下面,我们简单介绍一下本期特刊的论文。在第一篇论文中,利用分子动力学模拟研究了双石墨烯(一种新型二维平面半导体碳同素异形体)的尺寸相关力学性能。利用连续统近似研究了单壁碳纳米管中单环的封装问题。另一篇论文在分数粘弹性的基础上,研究了粘弹性碳纳米管在输送流体和粘弹性基础上的随尺寸变化的自由振动。第四篇论文模拟了含有几何缺陷的双层石墨烯片的非线性弯曲分析。最后,采用应力驱动两相积分弹性力学方法研究了弹性弯曲梁的静力性能。我们希望读者会对这期特刊感兴趣,并且其内容将有助于纳米技术和纳米工程领域的成功研究的发展。编辑感谢所有投稿作者的参与与合作,使本期特刊得以刊发。此外,我们衷心感谢匿名审稿人的精心工作,以及Journal of Nanomaterials, Nanoengineering and Nanosystems编辑部和总编辑的出色合作。
{"title":"Special issue on mathematical and computational modeling of nanoscopic structures","authors":"E. Ghavanloo","doi":"10.1177/2397791421993784","DOIUrl":"https://doi.org/10.1177/2397791421993784","url":null,"abstract":"Nanoscopic structures are small structures formed from a countable number of atoms or molecules. Novel properties and functions are associated with nanoscopic structures due to reduction in their dimensionalities. These small structures have promoted a revolution in science and technology, and they are utilized in making new devices as well as leading to new technologies. Furthermore, Nature has already employed nanoscopic structures to perform vital biological functions. Hence, these exotic structures have occupied the center stage in pure and applied research due to their widespread applications in various fields of nanoscience, nanoengineering, nanotechnology, materials science and technology, medical physics, biomedical engineering, biotechnology, molecular biology and genetics, and neural science and neural engineering. Following this invention, various types of biological and nonbiological nanoscopic structures with various morphologies and functionalities have been discovered, synthesized, and reported during the past four decades. Phenomenological study of nanoscopic structures, either as single isolated structures or as components in nanoscale machines and systems, forms an active research area in applied science and engineering. Understanding the mechanical properties and behavior of a material system at nanoscale level is a necessary requirement for an efficient and accurate design, fabrication and assembly of nanoscale systems, nanomaterials, nanodevices, and nanodrugs. Accordingly, the development of well-understood mathematical and computational frameworks for characterizing the mechanical structure and behavior of the nanoscopic structures is very desirable, and it poses a huge number of challenges for researchers in this field. This Special Issue contains five papers by a number of expert researchers from China, India, Iran, Italy, and Poland. They have presented recent findings in mathematical and computational modeling of various nanoscopic structures with different morphologies. Below, we briefly introduce the papers featured in this Special Issue. In the first paper, size-dependent mechanical properties of twin graphene, a novel 2D planar semiconducting carbon allotrope, have been investigated using Molecular Dynamics simulations. The encapsulation of monocyclic carbon rings inside single-walled carbon nanotubes has investigated using continuum approximation in the second paper. In another paper, size-dependent free-vibration of viscoelastic carbon nanotubes conveying fluid and resting on viscoelastic foundation has studied on the basis of fractional viscoelasticity. Nonlinear bending analysis of a double-layered graphene sheet which contains a geometrical imperfection has simulated in the fourth paper. Finally, the static behavior of elastic curved beams has been investigated by stress-driven two-phase integral elasticity. We hope readers will find the special issue interesting and that the content will contribute to the deve","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81985235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-06DOI: 10.1177/2397791421990514
M. S. Vaccaro, F. P. Pinnola, F. M. de Sciarra, M. Čanadija, R. Barretta
In this research, the size-dependent static behaviour of elastic curved stubby beams is investigated by Timoshenko kinematics. Stress-driven two-phase integral elasticity is adopted to model size effects which soften or stiffen classical local responses. The corresponding governing equations of nonlocal elasticity are established and discussed, non-classical boundary conditions are detected and an effective coordinate-free solution procedure is proposed. The presented mixture approach is elucidated by solving simple curved small-scale beams of current interest in Nanotechnology. The contributed results could be useful for design and optimization of modern sensors and actuators.
{"title":"Stress-driven two-phase integral elasticity for Timoshenko curved beams","authors":"M. S. Vaccaro, F. P. Pinnola, F. M. de Sciarra, M. Čanadija, R. Barretta","doi":"10.1177/2397791421990514","DOIUrl":"https://doi.org/10.1177/2397791421990514","url":null,"abstract":"In this research, the size-dependent static behaviour of elastic curved stubby beams is investigated by Timoshenko kinematics. Stress-driven two-phase integral elasticity is adopted to model size effects which soften or stiffen classical local responses. The corresponding governing equations of nonlocal elasticity are established and discussed, non-classical boundary conditions are detected and an effective coordinate-free solution procedure is proposed. The presented mixture approach is elucidated by solving simple curved small-scale beams of current interest in Nanotechnology. The contributed results could be useful for design and optimization of modern sensors and actuators.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2021-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76412205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-21DOI: 10.1177/2397791420981525
M. Reddy, H. Raju, N. Banapurmath, V. V. Meti
A well-known AA7075 alloy used for most of the structural, aerospace, and automobile applications due to its excellent properties such as high strength, corrosion-resistant, and low density. To encourage industrialists, the physical and mechanical properties of the composite has to improve by reinforcing hard ceramic particles. In this investigation varying wt.% of hard ZrO2 (zirconium dioxide) particles (0.75, 1, 1.25, 1.5, 1.75, and 2 wt.%) are reinforced in AA7075 matrix alloy to form a composite. Motorized stir casting technique induced to distribute reinforcement particles homogeneously. The SEM micrographs reveal that uniform distribution of ZrO2 particles can be achieved after inducing motorized stir casting technique into the molten composite. The experimental test results revealed that the addition of ZrO2 particles enhanced the hardness and tensile strength of the AA7075/ZrO2 composite as compared to base matrix material. Among all composites, AA7075/1.5ZrO2 show higher hardness and strength.
{"title":"Influence of ZrO2 nano particles on the behavior of mechanical and tribological properties of the AA7075 composite","authors":"M. Reddy, H. Raju, N. Banapurmath, V. V. Meti","doi":"10.1177/2397791420981525","DOIUrl":"https://doi.org/10.1177/2397791420981525","url":null,"abstract":"A well-known AA7075 alloy used for most of the structural, aerospace, and automobile applications due to its excellent properties such as high strength, corrosion-resistant, and low density. To encourage industrialists, the physical and mechanical properties of the composite has to improve by reinforcing hard ceramic particles. In this investigation varying wt.% of hard ZrO2 (zirconium dioxide) particles (0.75, 1, 1.25, 1.5, 1.75, and 2 wt.%) are reinforced in AA7075 matrix alloy to form a composite. Motorized stir casting technique induced to distribute reinforcement particles homogeneously. The SEM micrographs reveal that uniform distribution of ZrO2 particles can be achieved after inducing motorized stir casting technique into the molten composite. The experimental test results revealed that the addition of ZrO2 particles enhanced the hardness and tensile strength of the AA7075/ZrO2 composite as compared to base matrix material. Among all composites, AA7075/1.5ZrO2 show higher hardness and strength.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90528809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Twin Graphene, a novel 2D planar semiconducting carbon allotrope predicted recently, has attracted tremendous attention due to its potential applications in nano electromechanical systems (NEMS). In this paper, we use Molecular Dynamics simulations to investigate the mechanical properties of twin graphene. By performing uniaxial tensile loading, we find that the Young’s modulus, failure stress and fracture strain of a twin graphene sheet are strongly dependent on its size. Rectangular sheets show more apparent anisotropy of mechanical properties than square sheets. Our results also demonstrate that the fracture pattern of twin graphene is dependent on its geometry, as a result of its diverse bond types and orientations. These findings present an in-depth understanding of size dependent mechanical properties of twin graphene, and may benefit its future applications as building blocks of NEMS devices.
{"title":"Size-dependent mechanical properties of twin graphene","authors":"Fangyan Zhu, Jiantao Leng, Zhengrong Guo, Tienchong Chang","doi":"10.1177/2397791420972553","DOIUrl":"https://doi.org/10.1177/2397791420972553","url":null,"abstract":"Twin Graphene, a novel 2D planar semiconducting carbon allotrope predicted recently, has attracted tremendous attention due to its potential applications in nano electromechanical systems (NEMS). In this paper, we use Molecular Dynamics simulations to investigate the mechanical properties of twin graphene. By performing uniaxial tensile loading, we find that the Young’s modulus, failure stress and fracture strain of a twin graphene sheet are strongly dependent on its size. Rectangular sheets show more apparent anisotropy of mechanical properties than square sheets. Our results also demonstrate that the fracture pattern of twin graphene is dependent on its geometry, as a result of its diverse bond types and orientations. These findings present an in-depth understanding of size dependent mechanical properties of twin graphene, and may benefit its future applications as building blocks of NEMS devices.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81195449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-16DOI: 10.1177/2397791420964002
Cheriyacheruvakkara Owais, Mahroof Kalathingal, R. Swathi
Carbon clusters are challenging to produce and isolate due to their highly reactive nature. One of the strategies for their isolation is to encapsulate the clusters into carbon nanotubes (CNTs) of appropriate radii. Herein, we have investigated the energetics for the encapsulation of the monocyclic carbon rings, C n ( n = 10 , 12 , 14 , 16 , 18 , 20 , and 22 ) into CNTs of various radii using the continuum approximation. The encapsulation is driven by the non-covalent interactions between the carbon rings and the CNTs. The analyzes of the axial forces and the interaction energies at various orientations and positions of centers of mass of the rings with respect to the CNT axes clearly suggested the role of the tube radius in governing the energetics of encapsulation. Estimation of the acceptance and the suction energies as a function of CNT radius led to the prediction that the CNTs with radii of 5.38 Å, 5.83 Å, 6.25 Å, 6.68 Å, 7.07 Å, 7.51 Å, and 7.90 Å can efficiently encapsulate C10, C12, C14, C16, C18, C20, and C22 rings, respectively. In the limit of large tube radii, the numerical results lead to those obtained for carbon ring adsorption on graphene. Furthermore, the continuum approach enabled us to explore the potential energy surfaces thereby arriving at the equilibrium configurations of the rings inside the CNTs. Such an analysis is invaluable because of the enormous computational cost associated with quantum chemical calculations.
{"title":"Encapsulation of monocyclic carbon clusters into carbon nanotubes: A continuum modeling approach","authors":"Cheriyacheruvakkara Owais, Mahroof Kalathingal, R. Swathi","doi":"10.1177/2397791420964002","DOIUrl":"https://doi.org/10.1177/2397791420964002","url":null,"abstract":"Carbon clusters are challenging to produce and isolate due to their highly reactive nature. One of the strategies for their isolation is to encapsulate the clusters into carbon nanotubes (CNTs) of appropriate radii. Herein, we have investigated the energetics for the encapsulation of the monocyclic carbon rings, C n ( n = 10 , 12 , 14 , 16 , 18 , 20 , and 22 ) into CNTs of various radii using the continuum approximation. The encapsulation is driven by the non-covalent interactions between the carbon rings and the CNTs. The analyzes of the axial forces and the interaction energies at various orientations and positions of centers of mass of the rings with respect to the CNT axes clearly suggested the role of the tube radius in governing the energetics of encapsulation. Estimation of the acceptance and the suction energies as a function of CNT radius led to the prediction that the CNTs with radii of 5.38 Å, 5.83 Å, 6.25 Å, 6.68 Å, 7.07 Å, 7.51 Å, and 7.90 Å can efficiently encapsulate C10, C12, C14, C16, C18, C20, and C22 rings, respectively. In the limit of large tube radii, the numerical results lead to those obtained for carbon ring adsorption on graphene. Furthermore, the continuum approach enabled us to explore the potential energy surfaces thereby arriving at the equilibrium configurations of the rings inside the CNTs. Such an analysis is invaluable because of the enormous computational cost associated with quantum chemical calculations.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2020-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89243937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-08-10DOI: 10.1177/2397791420946639
Sudipta Paul, Md. Ragib Rownak, M. Hasan
The objective of this study is to understand the effect of surface wettability and how nano-scale heat transfer is affected by different surface wetting conditions over biphilic surface by molecular dynamics simulations. The system of 3 nm liquid Argon film over Platinum surface is equilibrated at 90 K and then wall temperature is raised to higher value to study the effect of temperature. According to this study at low wall temperature and low surface wetting conditions, liquid temperature increases proportionally with the increment of hydrophilic portion but at higher wall temperature and better surface wetting conditions, maximum value of liquid Argon temperature increases with increasing hydrophobic portion. Evaporation number, evaporative mass flux and heat flux increase significantly with slight increment of hydrophilic portion. Inception time decreases with increasing hydrophilic portion and surface wettability. Also, for better surface wetting conditions, average evaporative mass flux is more sensitive to wall temperature and increases significantly at higher wall temperature.
{"title":"Molecular dynamics study on the effect of hydrophilicity on thin film evaporation over biphilic surface","authors":"Sudipta Paul, Md. Ragib Rownak, M. Hasan","doi":"10.1177/2397791420946639","DOIUrl":"https://doi.org/10.1177/2397791420946639","url":null,"abstract":"The objective of this study is to understand the effect of surface wettability and how nano-scale heat transfer is affected by different surface wetting conditions over biphilic surface by molecular dynamics simulations. The system of 3 nm liquid Argon film over Platinum surface is equilibrated at 90 K and then wall temperature is raised to higher value to study the effect of temperature. According to this study at low wall temperature and low surface wetting conditions, liquid temperature increases proportionally with the increment of hydrophilic portion but at higher wall temperature and better surface wetting conditions, maximum value of liquid Argon temperature increases with increasing hydrophobic portion. Evaporation number, evaporative mass flux and heat flux increase significantly with slight increment of hydrophilic portion. Inception time decreases with increasing hydrophilic portion and surface wettability. Also, for better surface wetting conditions, average evaporative mass flux is more sensitive to wall temperature and increases significantly at higher wall temperature.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80262811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-01DOI: 10.1177/2397791419881580
Fatema Tuz Zohra, M. J. Uddin, Md Faisal Md Basir, A. Ismail
Microfluidic-related technologies and micro-electromechanical systems–based microfluidic devices have received applications in science and engineering fields. This article is the study of a mathematical model of steady forced convective flow past a rotating disc immersed in water-based nanofluid with microorganisms. The boundary layer flow of a viscous nanofluid is studied with multiple slip conditions and Stefan blowing effects under the magnetic field influence. The microscopic nanoparticles move randomly and have the characteristics of thermophoresis, and it is being considered that the change in volume fraction of the nanofluid does not affect the thermo-physical properties. The governing equations are nonlinear partial differential equations. At first, the nonlinear partial differential equations are converted to system of nonlinear ordinary differential equations using suitable similarity transformations and then solved numerically. The influence of relevant parameters on velocities, temperature, concentration and motile microorganism density is illustrated and explained thoroughly. This investigation indicated that suction provides a better medium to enhance the transfer rate of heat, mass and microorganisms compared to blowing. This analysis has a wide range engineering application such as electromagnetic micro pumps and nanomechanics.
{"title":"Magnetohydrodynamic bio-nano-convective slip flow with Stefan blowing effects over a rotating disc","authors":"Fatema Tuz Zohra, M. J. Uddin, Md Faisal Md Basir, A. Ismail","doi":"10.1177/2397791419881580","DOIUrl":"https://doi.org/10.1177/2397791419881580","url":null,"abstract":"Microfluidic-related technologies and micro-electromechanical systems–based microfluidic devices have received applications in science and engineering fields. This article is the study of a mathematical model of steady forced convective flow past a rotating disc immersed in water-based nanofluid with microorganisms. The boundary layer flow of a viscous nanofluid is studied with multiple slip conditions and Stefan blowing effects under the magnetic field influence. The microscopic nanoparticles move randomly and have the characteristics of thermophoresis, and it is being considered that the change in volume fraction of the nanofluid does not affect the thermo-physical properties. The governing equations are nonlinear partial differential equations. At first, the nonlinear partial differential equations are converted to system of nonlinear ordinary differential equations using suitable similarity transformations and then solved numerically. The influence of relevant parameters on velocities, temperature, concentration and motile microorganism density is illustrated and explained thoroughly. This investigation indicated that suction provides a better medium to enhance the transfer rate of heat, mass and microorganisms compared to blowing. This analysis has a wide range engineering application such as electromagnetic micro pumps and nanomechanics.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88659750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-06-18DOI: 10.1177/2397791420931701
M. F. Oskouie, Reza Ansari, H. Rouhi
On the basis of fractional viscoelasticity, the size-dependent free-vibration response of viscoelastic carbon nanotubes conveying fluid and resting on viscoelastic foundation is studied in this article. To this end, a nonlocal Timoshenko beam model is developed in the context of fractional calculus. Hamilton’s principle is applied in order to obtain the fractional governing equations including nanoscale effects. The Kelvin–Voigt viscoelastic model is also used for the constitutive equations. The free-vibration problem is solved using two methods. In the first method, which is limited to the simply supported boundary conditions, the Galerkin technique is employed for discretizing the spatial variables and reducing the governing equations to a set of ordinary differential equations on the time domain. Then, the Duffing-type time-dependent equations including fractional derivatives are solved via fractional integrator transfer functions. In the second method, which can be utilized for carbon nanotubes with different types of boundary conditions, the generalized differential quadrature technique is used for discretizing the governing equations on spatial grids, whereas the finite difference technique is used on the time domain. In the results, the influences of nonlocality, geometrical parameters, fractional derivative orders, viscoelastic foundation, and fluid flow velocity on the time responses of carbon nanotubes are analyzed.
{"title":"Investigating vibrations of viscoelastic fluid-conveying carbon nanotubes resting on viscoelastic foundation using a nonlocal fractional Timoshenko beam model","authors":"M. F. Oskouie, Reza Ansari, H. Rouhi","doi":"10.1177/2397791420931701","DOIUrl":"https://doi.org/10.1177/2397791420931701","url":null,"abstract":"On the basis of fractional viscoelasticity, the size-dependent free-vibration response of viscoelastic carbon nanotubes conveying fluid and resting on viscoelastic foundation is studied in this article. To this end, a nonlocal Timoshenko beam model is developed in the context of fractional calculus. Hamilton’s principle is applied in order to obtain the fractional governing equations including nanoscale effects. The Kelvin–Voigt viscoelastic model is also used for the constitutive equations. The free-vibration problem is solved using two methods. In the first method, which is limited to the simply supported boundary conditions, the Galerkin technique is employed for discretizing the spatial variables and reducing the governing equations to a set of ordinary differential equations on the time domain. Then, the Duffing-type time-dependent equations including fractional derivatives are solved via fractional integrator transfer functions. In the second method, which can be utilized for carbon nanotubes with different types of boundary conditions, the generalized differential quadrature technique is used for discretizing the governing equations on spatial grids, whereas the finite difference technique is used on the time domain. In the results, the influences of nonlocality, geometrical parameters, fractional derivative orders, viscoelastic foundation, and fluid flow velocity on the time responses of carbon nanotubes are analyzed.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2020-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90172959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-06-07DOI: 10.1177/2397791420926067
S. Dastjerdi, M. Malikan
In this article, we have tried to simulate nonlinear bending analysis of a double-layered graphene sheet which contains a geometrical imperfection based on an eccentric hole. The first-order shear deformation theory is considered to obtain the governing equations. Also, the nonlinear von Kármán strain field has been assumed in order to obtain large deformations. Whereas the double-layered graphene sheet has been considered, the effect of van der Waals forces has been taken into account in the analysis. In order to implement the nanoscale impact, the nonlocal elasticity theory has been employed. The solution methodology, which is here based on the semi-analytical polynomial method solving technique presented previously by the authors, has been applied and again its efficiency has been demonstrated due to its highly accurate results. Due to the fact that this research has been done for the first time and there is no validation available, the results of the local single layer sheet are compared with ABAQUS software. The effects of some other parameters on the results have been studied such as the value of eccentricity, van der Waals interaction, and nonlocal parameter.
{"title":"Mechanical analysis of eccentric defected bilayer graphene sheets considering the van der Waals force","authors":"S. Dastjerdi, M. Malikan","doi":"10.1177/2397791420926067","DOIUrl":"https://doi.org/10.1177/2397791420926067","url":null,"abstract":"In this article, we have tried to simulate nonlinear bending analysis of a double-layered graphene sheet which contains a geometrical imperfection based on an eccentric hole. The first-order shear deformation theory is considered to obtain the governing equations. Also, the nonlinear von Kármán strain field has been assumed in order to obtain large deformations. Whereas the double-layered graphene sheet has been considered, the effect of van der Waals forces has been taken into account in the analysis. In order to implement the nanoscale impact, the nonlocal elasticity theory has been employed. The solution methodology, which is here based on the semi-analytical polynomial method solving technique presented previously by the authors, has been applied and again its efficiency has been demonstrated due to its highly accurate results. Due to the fact that this research has been done for the first time and there is no validation available, the results of the local single layer sheet are compared with ABAQUS software. The effects of some other parameters on the results have been studied such as the value of eccentricity, van der Waals interaction, and nonlocal parameter.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2020-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83970451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}