Pub Date : 2023-05-27DOI: 10.14710/ijred.2023.51314
Prita Amelia, J. Gunlazuardi
Ammonia (NH3) is one of the important chemicals for human life. The demand for ammonia is expected to increase every year. Conventionally, the fixation process of N2 to produce NH3 in the industrial sector is carried out through the Haber−Bosch process, which requires extreme temperature and pressure conditions that consume a high amount of energy and emit a considerable amount of CO2. Therefore, it is necessary to develop alternative technology to produce ammonia using environmentally friendly methods. Many studies have developed the photo-electrochemical conversion of nitrogen to ammonia in the presence of semiconductor materials, but the resulting efficiency is still not as expected. In this research, the development of the tandem system of Dye-Sensitized Solar Cell - Photoelectrochemistry (DSSC - PEC) was carried out for the conversion of nitrogen to ammonia. The DSSC cell was prepared using N719/TiO2 nanotubes as photoanode, Pt/FTO as cathode, and electrolyte I-/I3-. The DSSC efficiency produced in this research was 1.49%. PEC cell at the cathode and anode were prepared using BiOBr/TiO2 nanotubes synthesized by the SILAR (Successive Ionic Layer Adsorption and Reaction) method. The resulting ammonia levels were analyzed using the phenate method. In this study, ammonia levels were obtained at 0.1272 µmol for 6 hours of irradiation with an SCC (Solar to Chemical Conversion) percentage of 0.0021%.
{"title":"Development of BiOBr/TiO2 nanotubes electrode for conversion of nitrogen to ammonia in a tandem photoelectrochemical cell under visible light","authors":"Prita Amelia, J. Gunlazuardi","doi":"10.14710/ijred.2023.51314","DOIUrl":"https://doi.org/10.14710/ijred.2023.51314","url":null,"abstract":"Ammonia (NH3) is one of the important chemicals for human life. The demand for ammonia is expected to increase every year. Conventionally, the fixation process of N2 to produce NH3 in the industrial sector is carried out through the Haber−Bosch process, which requires extreme temperature and pressure conditions that consume a high amount of energy and emit a considerable amount of CO2. Therefore, it is necessary to develop alternative technology to produce ammonia using environmentally friendly methods. Many studies have developed the photo-electrochemical conversion of nitrogen to ammonia in the presence of semiconductor materials, but the resulting efficiency is still not as expected. In this research, the development of the tandem system of Dye-Sensitized Solar Cell - Photoelectrochemistry (DSSC - PEC) was carried out for the conversion of nitrogen to ammonia. The DSSC cell was prepared using N719/TiO2 nanotubes as photoanode, Pt/FTO as cathode, and electrolyte I-/I3-. The DSSC efficiency produced in this research was 1.49%. PEC cell at the cathode and anode were prepared using BiOBr/TiO2 nanotubes synthesized by the SILAR (Successive Ionic Layer Adsorption and Reaction) method. The resulting ammonia levels were analyzed using the phenate method. In this study, ammonia levels were obtained at 0.1272 µmol for 6 hours of irradiation with an SCC (Solar to Chemical Conversion) percentage of 0.0021%.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46304373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-23DOI: 10.14710/ijred.2023.53239
Sonia Z. Issaq, S. K. Talal, A. Azooz
This work presents new results from controlled experiments using well-designed and constructed single-inclination solar stills. The aim of these experiments is to explore methods for enhancing still performance by studying the individual effects of three types of methods. Specifically, the experiments investigate the actual effects of still basin water depth, the use of a sensible heat storage medium, and the treatment of the inner glass surface with waxy substances. The main distinction in this work is the use of solar stills that can achieve thermal efficiencies in excess of 40% under favourable weather conditions without any modification. This high efficiency level allows for meaningful analysis of the impact of modifications on still performance. The results indicate that still yield, productivity, and thermal efficiency decrease significantly when the water depth in the basin exceeds 6 cm. additionally, introducing black gravel in excess of a 2% gravel to water mass ratio in the still basin does not produce a significant change in still thermal efficiency. Treatment of the still inner glass surface with two types of waxy materials resulted in large drop in still performance.
{"title":"Experimentation on enhancement of solar still performance","authors":"Sonia Z. Issaq, S. K. Talal, A. Azooz","doi":"10.14710/ijred.2023.53239","DOIUrl":"https://doi.org/10.14710/ijred.2023.53239","url":null,"abstract":"This work presents new results from controlled experiments using well-designed and constructed single-inclination solar stills. The aim of these experiments is to explore methods for enhancing still performance by studying the individual effects of three types of methods. Specifically, the experiments investigate the actual effects of still basin water depth, the use of a sensible heat storage medium, and the treatment of the inner glass surface with waxy substances. The main distinction in this work is the use of solar stills that can achieve thermal efficiencies in excess of 40% under favourable weather conditions without any modification. This high efficiency level allows for meaningful analysis of the impact of modifications on still performance. The results indicate that still yield, productivity, and thermal efficiency decrease significantly when the water depth in the basin exceeds 6 cm. additionally, introducing black gravel in excess of a 2% gravel to water mass ratio in the still basin does not produce a significant change in still thermal efficiency. Treatment of the still inner glass surface with two types of waxy materials resulted in large drop in still performance.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49109827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-20DOI: 10.14710/ijred.2023.53211
A. Tippichai, Kattreeya Teungchai, A. Fukuda
Nakhon Ratchasima is one of the northeastern cities which has been promoted as one of the low-carbon cities in Thailand. The study aims to evaluate policies and measures on greenhouse gas (GHG) emissions mitigation to meet the target at the provincial level. The Low Emissions Analysis Platform (LEAP) is used as a modeling tool to simulate energy demand for each economic sector. The 2019 data is set as a base year, using top-down and bottom-up approaches depending on the availability of data for the analysis. The model consists of two scenarios: (1) Business-as-usual (BAU) scenario and Low carbon scenario (LCS). Transport and industry sectors are the most energy-consuming and CO2-emitting sectors in Nakhon Ratchasima Province. In the LCS case, the final energy demand and CO2 emissions in 2050 will be reduced by about 40% compared to the BAU case. In addition, CO2 emissions in Nakhon Ratchasima Province will peak around 2038, this is not the case with BAU. The study could predict future energy demand and propose a way forward to reducing GHG emissions at the provincial level.
{"title":"Energy demand modeling for low carbon cities in Thailand: A case study of Nakhon Ratchasima province","authors":"A. Tippichai, Kattreeya Teungchai, A. Fukuda","doi":"10.14710/ijred.2023.53211","DOIUrl":"https://doi.org/10.14710/ijred.2023.53211","url":null,"abstract":"Nakhon Ratchasima is one of the northeastern cities which has been promoted as one of the low-carbon cities in Thailand. The study aims to evaluate policies and measures on greenhouse gas (GHG) emissions mitigation to meet the target at the provincial level. The Low Emissions Analysis Platform (LEAP) is used as a modeling tool to simulate energy demand for each economic sector. The 2019 data is set as a base year, using top-down and bottom-up approaches depending on the availability of data for the analysis. The model consists of two scenarios: (1) Business-as-usual (BAU) scenario and Low carbon scenario (LCS). Transport and industry sectors are the most energy-consuming and CO2-emitting sectors in Nakhon Ratchasima Province. In the LCS case, the final energy demand and CO2 emissions in 2050 will be reduced by about 40% compared to the BAU case. In addition, CO2 emissions in Nakhon Ratchasima Province will peak around 2038, this is not the case with BAU. The study could predict future energy demand and propose a way forward to reducing GHG emissions at the provincial level.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42698961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The increasing need for alternative fuels to replace fossil fuels has made bioethanol a promising option. Although numerous sources of sugar generation and agricultural wastes can be converted into ethanol, Avocado Seeds (AS) are particularly attractive as raw materials due to their abundance, high carbohydrate content, and lack of interactions with the food chain. Therefore, this study investigated the potential of AS for bioethanol production using several steps, including boiled water delignification pretreatment, catalytic hydrolysis, and fermentation with Saccharomyces cerevisiae. The delignification pretreatment of AS involved soaking in 4% (w/v) sodium hydroxide liquor for 24 hours. Then the mixture was heated to 80°C and stirred slowly for 2.5 hours and after that washing with boiled water at 100 oC for 1.5 hours and screening the mixture. Subsequently, catalytic hydrolysis and fermentation were carried out using two different concentrations of Saccharomyces cerevisiae as yeast, namely 10% (w/v) and 15% (w/v). Qualitative sample analysis was conducted using scanning electron microscopy (SEM) to observe the effect of delignification pretreatment, while FTIR analysis using Thermo Scientific Nicolet iS50 was used to test for glucose functional groups. Quantitative analysis was performed using gas chromatography 7890b mass spectrophotometry 5977A, Agilent DBVRX to determine hydrolysate fermentation. The results revealed that the highest ethanol yield was achieved through fermentation with 15% (w/v) yeast and 40% (v/v) catalyst, resulting in an ethanol yield of 83.755% of the theoretical maximum.
{"title":"Investigating the potential of avocado seeds for bioethanol production: A study on boiled water delignification pretreatment","authors":"Herliati Rahman, Ayu Nehemia, Hadiatun Puji Astuti","doi":"10.14710/ijred.2023.52532","DOIUrl":"https://doi.org/10.14710/ijred.2023.52532","url":null,"abstract":"The increasing need for alternative fuels to replace fossil fuels has made bioethanol a promising option. Although numerous sources of sugar generation and agricultural wastes can be converted into ethanol, Avocado Seeds (AS) are particularly attractive as raw materials due to their abundance, high carbohydrate content, and lack of interactions with the food chain. Therefore, this study investigated the potential of AS for bioethanol production using several steps, including boiled water delignification pretreatment, catalytic hydrolysis, and fermentation with Saccharomyces cerevisiae. The delignification pretreatment of AS involved soaking in 4% (w/v) sodium hydroxide liquor for 24 hours. Then the mixture was heated to 80°C and stirred slowly for 2.5 hours and after that washing with boiled water at 100 oC for 1.5 hours and screening the mixture. Subsequently, catalytic hydrolysis and fermentation were carried out using two different concentrations of Saccharomyces cerevisiae as yeast, namely 10% (w/v) and 15% (w/v). Qualitative sample analysis was conducted using scanning electron microscopy (SEM) to observe the effect of delignification pretreatment, while FTIR analysis using Thermo Scientific Nicolet iS50 was used to test for glucose functional groups. Quantitative analysis was performed using gas chromatography 7890b mass spectrophotometry 5977A, Agilent DBVRX to determine hydrolysate fermentation. The results revealed that the highest ethanol yield was achieved through fermentation with 15% (w/v) yeast and 40% (v/v) catalyst, resulting in an ethanol yield of 83.755% of the theoretical maximum.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44752822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-19DOI: 10.14710/ijred.2023.53193
Nhung Nguyen-Hong, Khai Bui Quang, Long Phan Vo Thanh, Duc Bui Huynh
With the rapid increase of renewable energy sources (RESs), the virtual power plant model (VPP) has been developed to integrate RESs, energy storage systems (ESSs), and local customers to overcome the RESs’ disadvantages. When the VPP’s capacity is large enough, it can participate in the electricity market as a price-maker instead of a price-taker to obtain a higher profit. This study proposes a bi-level optimization model to determine the optimal trading strategies of a price-maker VPP in the day-ahead (DA) market. The operation schedule of the components in the VPP is also optimized to achieve the highest profit for the VPP. In the bi-level optimization problem, the upper-level model is maximizing the VPP’s profit while the lower-level model is the DA market-clearing problem. The bi-level optimization problem is formulated as a Mathematical Problem with Equilibrium Constraints (MPEC), reformulated to a Mixed Integer Linear Problem (MILP), then solved by GAMS and CPLEX. This study applies the bi-level optimization model to a test VPP system, including wind plants (WP), solar plants (PV), biogas energy plants (BG), ESSs, and several customers. The maximum power outputs of WP and PV are 100MW and 90MW, respectively. The total installed capacity of BG is 70MW, while the ESS’ rated capacity is 100MWh. The local customers have the highest total consumption of 100MW. In addition to the VPP, four GENCOs and three retailers participate in the DA market. The results show that the market-clearing price varies depending on the participants’ production/consumption quantity and offering/bidding price. However, based on the optimization model, the VPP can take full advantage of WP and PV available power output, choose the right time to operate BG, then obtain the highest profit. The results also show that with the ESS’ rated capacity of 100MWh, the ESS’ rated discharging/charging power increased from 10MW to 50MW will increase VPP’s profit from 45987$ to 49464$. The obtained results show that the proposed model has practical significance
{"title":"Offering strategy of a price-maker virtual power plant in the day-ahead market","authors":"Nhung Nguyen-Hong, Khai Bui Quang, Long Phan Vo Thanh, Duc Bui Huynh","doi":"10.14710/ijred.2023.53193","DOIUrl":"https://doi.org/10.14710/ijred.2023.53193","url":null,"abstract":"With the rapid increase of renewable energy sources (RESs), the virtual power plant model (VPP) has been developed to integrate RESs, energy storage systems (ESSs), and local customers to overcome the RESs’ disadvantages. When the VPP’s capacity is large enough, it can participate in the electricity market as a price-maker instead of a price-taker to obtain a higher profit. This study proposes a bi-level optimization model to determine the optimal trading strategies of a price-maker VPP in the day-ahead (DA) market. The operation schedule of the components in the VPP is also optimized to achieve the highest profit for the VPP. In the bi-level optimization problem, the upper-level model is maximizing the VPP’s profit while the lower-level model is the DA market-clearing problem. The bi-level optimization problem is formulated as a Mathematical Problem with Equilibrium Constraints (MPEC), reformulated to a Mixed Integer Linear Problem (MILP), then solved by GAMS and CPLEX. This study applies the bi-level optimization model to a test VPP system, including wind plants (WP), solar plants (PV), biogas energy plants (BG), ESSs, and several customers. The maximum power outputs of WP and PV are 100MW and 90MW, respectively. The total installed capacity of BG is 70MW, while the ESS’ rated capacity is 100MWh. The local customers have the highest total consumption of 100MW. In addition to the VPP, four GENCOs and three retailers participate in the DA market. The results show that the market-clearing price varies depending on the participants’ production/consumption quantity and offering/bidding price. However, based on the optimization model, the VPP can take full advantage of WP and PV available power output, choose the right time to operate BG, then obtain the highest profit. The results also show that with the ESS’ rated capacity of 100MWh, the ESS’ rated discharging/charging power increased from 10MW to 50MW will increase VPP’s profit from 45987$ to 49464$. The obtained results show that the proposed model has practical significance","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45523532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-17DOI: 10.14710/ijred.2023.49927
U. Zia, H. Aslam, Muhammad Zulfiqar, Sibghat Ullah
In the backdrop of COVID19 recovery, Pakistan is still struggling to cope with the economic challenges and disruptions caused in the energy supply chain. On one hand where COVID has brought serious socio-economic costs and prolonged delays, it has also provided opportunity for developing countries such as Pakistan to “build-forward-better” their economies in a more sustainable and climate friendly manner. This study particularly highlights the impact of COVID on energy supply and demand sectors of Pakistan, its near- and long-term impacts, and what policy interventions can be adopted to put Pakistan on-track to achieve its Nationally Determined Contributions (NDCs). The economic focus in on “Green Recovery” and what key interventions will foster a rapid transition towards decarbonization in Pakistan. Low Emission Analysis Platform (LEAP) model is used to provide energy sector outlook (2020-2040) of Pakistan under different scenario i.e., Pre COVID growth, Business-as-Usual, Slow Recovery, and Green Recovery from COVID. The results obtained from the model depicts that following a green recovery scenario, Pakistan can reduce around 10 Mtoe (9%) of its total energy use, 53 TWh of electricity, 19 Mt of emissions from demand sectors, and 11 Mt of emissions from the power sector by 2030. For total levelized cost of the power sector, the green recovery scenario represents a generation cost of $13 billion by 2030 which further highlights that energy efficiency could lead to cost savings of approximately $3 billion each year by 2030. Green recovery is however still a daunting task as it would require economic stimulus of $8 billion only to recover to its pre COVID scenario and total investments of $120 billion by 2030.
{"title":"Prospects of low carbon development for Pakistan’s energy and power sector in the post Covid scenario","authors":"U. Zia, H. Aslam, Muhammad Zulfiqar, Sibghat Ullah","doi":"10.14710/ijred.2023.49927","DOIUrl":"https://doi.org/10.14710/ijred.2023.49927","url":null,"abstract":"In the backdrop of COVID19 recovery, Pakistan is still struggling to cope with the economic challenges and disruptions caused in the energy supply chain. On one hand where COVID has brought serious socio-economic costs and prolonged delays, it has also provided opportunity for developing countries such as Pakistan to “build-forward-better” their economies in a more sustainable and climate friendly manner. This study particularly highlights the impact of COVID on energy supply and demand sectors of Pakistan, its near- and long-term impacts, and what policy interventions can be adopted to put Pakistan on-track to achieve its Nationally Determined Contributions (NDCs). The economic focus in on “Green Recovery” and what key interventions will foster a rapid transition towards decarbonization in Pakistan. Low Emission Analysis Platform (LEAP) model is used to provide energy sector outlook (2020-2040) of Pakistan under different scenario i.e., Pre COVID growth, Business-as-Usual, Slow Recovery, and Green Recovery from COVID. The results obtained from the model depicts that following a green recovery scenario, Pakistan can reduce around 10 Mtoe (9%) of its total energy use, 53 TWh of electricity, 19 Mt of emissions from demand sectors, and 11 Mt of emissions from the power sector by 2030. For total levelized cost of the power sector, the green recovery scenario represents a generation cost of $13 billion by 2030 which further highlights that energy efficiency could lead to cost savings of approximately $3 billion each year by 2030. Green recovery is however still a daunting task as it would require economic stimulus of $8 billion only to recover to its pre COVID scenario and total investments of $120 billion by 2030.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43891034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-16DOI: 10.14710/ijred.2023.51375
T. Le, X. Le, N.N.P Huynh, A. Doan, T. V. Dinh, M. Q. Duong
This paper implements two novel meta-heuristic algorithms, including the Coati optimization algorithm (COA) and War strategy optimization (WSO) for determining the optimal solutions to the optimal power flow problem incorporating the use of wind turbines. Two objective functions are considered in this study, including minimizing the entire electricity generation cost (EEGC) with the value point effect and minimizing the voltage fluctuation index (VFI). IEEE 30-bus system is chosen to conduct the whole study and validate the efficiency of the two applied methods. Furthermore, DFIG wind turbines are used in grids with varying power output and power factor ranges. The comparison of the results obtained from the two methods in all case studies reveals that WSO is vastly superior to COA in almost all aspects. In addition, the positive contributions of wind turbines to the EEGE and VFI while they are properly placed in the grid are also clarified by using WSO. As a result, WSO is acknowledged as a highly effective search method, and we strongly recommend using WSO for dealing with such OPF problems considering the presence of renewable energy sources.
{"title":"Optimal power flow solutions to power systems with wind energy using a highly effective meta-heuristic algorithm","authors":"T. Le, X. Le, N.N.P Huynh, A. Doan, T. V. Dinh, M. Q. Duong","doi":"10.14710/ijred.2023.51375","DOIUrl":"https://doi.org/10.14710/ijred.2023.51375","url":null,"abstract":"This paper implements two novel meta-heuristic algorithms, including the Coati optimization algorithm (COA) and War strategy optimization (WSO) for determining the optimal solutions to the optimal power flow problem incorporating the use of wind turbines. Two objective functions are considered in this study, including minimizing the entire electricity generation cost (EEGC) with the value point effect and minimizing the voltage fluctuation index (VFI). IEEE 30-bus system is chosen to conduct the whole study and validate the efficiency of the two applied methods. Furthermore, DFIG wind turbines are used in grids with varying power output and power factor ranges. The comparison of the results obtained from the two methods in all case studies reveals that WSO is vastly superior to COA in almost all aspects. In addition, the positive contributions of wind turbines to the EEGE and VFI while they are properly placed in the grid are also clarified by using WSO. As a result, WSO is acknowledged as a highly effective search method, and we strongly recommend using WSO for dealing with such OPF problems considering the presence of renewable energy sources.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49478987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-15DOI: 10.14710/ijred.2023.52615
Mohammad M. Shalby, A. Salah, Ghayda’ A. Matarneh, Abdullah Marashli, Mohamed R. Gommaa
The wind energy sector is rapidly growing and has become one of the most important sources of renewable power production. New technologies are being developed to increase energy production. This study focuses on developing and evaluating a 3-D printed micro-wind turbine system for residential electricity production. The effectiveness of using Poly Lactic Acid material for model production was assessed using the SolidWorks environment. Then, three–dimensional CFD model was developed to simulate a micro-wind turbine. The CFD model was validated in good agreement against scale physical model experiments performed in a wind tunnel. The results demonstrated that the 5-blade micro-wind turbine design was the most effective under the tested conditions, with a low cut-in speed and the ability to operate under torque up to 70 N.m. Finally, the currently available manufacturing processes for micro-wind turbines have been evaluated. Future work should evaluate the performance of the MWT system under realistic conditions in a site test to determine energy production and total efficiency
{"title":"An investigation of a 3D printed micro-wind turbine for residential power production","authors":"Mohammad M. Shalby, A. Salah, Ghayda’ A. Matarneh, Abdullah Marashli, Mohamed R. Gommaa","doi":"10.14710/ijred.2023.52615","DOIUrl":"https://doi.org/10.14710/ijred.2023.52615","url":null,"abstract":"The wind energy sector is rapidly growing and has become one of the most important sources of renewable power production. New technologies are being developed to increase energy production. This study focuses on developing and evaluating a 3-D printed micro-wind turbine system for residential electricity production. The effectiveness of using Poly Lactic Acid material for model production was assessed using the SolidWorks environment. Then, three–dimensional CFD model was developed to simulate a micro-wind turbine. The CFD model was validated in good agreement against scale physical model experiments performed in a wind tunnel. The results demonstrated that the 5-blade micro-wind turbine design was the most effective under the tested conditions, with a low cut-in speed and the ability to operate under torque up to 70 N.m. Finally, the currently available manufacturing processes for micro-wind turbines have been evaluated. Future work should evaluate the performance of the MWT system under realistic conditions in a site test to determine energy production and total efficiency","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47314430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-06DOI: 10.14710/ijred.2023.50165
Akram Elahi Gol, Milan Ščasný
The potential output of photovoltaic (PV) panels is influenced by several factors, including the direction of solar radiation from the sun toward the panel’s surface. The maximum output of the panels is obtained when the panels are vertical to the sun's rays. In this study, a techno-economic analysis is conducted to examine whether an automatic one-axis sun tracker system is an economically feasible option for installing a large-scale PV park in the Nicosia district in the central part of Cyprus. The performance of a one-axis sun tracker with an installed capacity of 781 kWp is compared to a PV system with a fixed flat structure having the same capacity and larger capacity at 1034 kWp. Output generated by the three PV system options is simulated by three alternative simulation software (SolarGIS, PVSyst, and PVGIS). Financial analysis is performed utilizing simulated PV power output, accounting for electricity feed-in tariff and overall cost of the project. The cash-flow model is run for several scenarios defined by different leverage ratios, including no leverage. Considering the technical parameters of a PV system and solar panel characteristics, such as the degradation effect on solar panel efficiency and solar radiation, we estimate the solar tracking system produces about 20%–30% more energy compared to a fixed structure. We find both technologies are economically viable options, however, a one-axis tracker system performs better financially. LCOE in all scenarios is below the highest acceptable level for solar PV projects in Cyprus which is 103 EUR per MWh. LCOE for a solar tracker PV is 39 EUR per MWh with a 30% leverage ratio and up to 79 EUR per MWh with 85% leverage. LCOE for a sun-tracker is ~20% lower than LCOE for a PV with a fixed axis of comparable size. Despite higher investment costs, the solar tracking PV system performs with a 12% higher equity internal rate of return, and a 9% shorter loan payback period compared to the same installed power of a fixed structure. The Financial analysis is complemented by quantified benefits due to avoided carbon emissions. Accounting for carbon benefits makes a sun-tracker PV system economically a better option over the fixed tracker PV system, resulting in 228,000 EUR more benefits. Overall, the present value of net benefits of a solar-tracker PV amounts to 1.39 mil. EUR and due to high irradiation in Cyprus, the carbon footprint of PV power output represents only 6% of the footprint of generating electricity in thermal power plants. When these benefits are accounted for the sum of NPV and social benefits will turn out to be higher for a one-axis tracker compared to the total social benefits of a fixed tracker of the same size.
{"title":"Techno-economic analysis of fixed versus sun-tracking solar panels","authors":"Akram Elahi Gol, Milan Ščasný","doi":"10.14710/ijred.2023.50165","DOIUrl":"https://doi.org/10.14710/ijred.2023.50165","url":null,"abstract":"The potential output of photovoltaic (PV) panels is influenced by several factors, including the direction of solar radiation from the sun toward the panel’s surface. The maximum output of the panels is obtained when the panels are vertical to the sun's rays. In this study, a techno-economic analysis is conducted to examine whether an automatic one-axis sun tracker system is an economically feasible option for installing a large-scale PV park in the Nicosia district in the central part of Cyprus. The performance of a one-axis sun tracker with an installed capacity of 781 kWp is compared to a PV system with a fixed flat structure having the same capacity and larger capacity at 1034 kWp. Output generated by the three PV system options is simulated by three alternative simulation software (SolarGIS, PVSyst, and PVGIS). Financial analysis is performed utilizing simulated PV power output, accounting for electricity feed-in tariff and overall cost of the project. The cash-flow model is run for several scenarios defined by different leverage ratios, including no leverage. Considering the technical parameters of a PV system and solar panel characteristics, such as the degradation effect on solar panel efficiency and solar radiation, we estimate the solar tracking system produces about 20%–30% more energy compared to a fixed structure. We find both technologies are economically viable options, however, a one-axis tracker system performs better financially. LCOE in all scenarios is below the highest acceptable level for solar PV projects in Cyprus which is 103 EUR per MWh. LCOE for a solar tracker PV is 39 EUR per MWh with a 30% leverage ratio and up to 79 EUR per MWh with 85% leverage. LCOE for a sun-tracker is ~20% lower than LCOE for a PV with a fixed axis of comparable size. Despite higher investment costs, the solar tracking PV system performs with a 12% higher equity internal rate of return, and a 9% shorter loan payback period compared to the same installed power of a fixed structure. The Financial analysis is complemented by quantified benefits due to avoided carbon emissions. Accounting for carbon benefits makes a sun-tracker PV system economically a better option over the fixed tracker PV system, resulting in 228,000 EUR more benefits. Overall, the present value of net benefits of a solar-tracker PV amounts to 1.39 mil. EUR and due to high irradiation in Cyprus, the carbon footprint of PV power output represents only 6% of the footprint of generating electricity in thermal power plants. When these benefits are accounted for the sum of NPV and social benefits will turn out to be higher for a one-axis tracker compared to the total social benefits of a fixed tracker of the same size.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48520267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-04DOI: 10.14710/ijred.2023.52775
E. A. Omondi, P. Ndiba, Gloria Koech Chepkoech, Arnold Aluda Kegode
Water hyacinth (Eichhornia crassipes), an invasive aquatic weed with large biomass production is of socio-economic and environmental concern in fresh water bodies such as the Lake Victoria in East Africa. Efforts towards its control and removal can be complemented by biogas production for use as energy source. The co-digestion of water hyacinth (WH) with ruminal slaughterhouse waste (RSW) has the potential to improve biogas production from WH through collation of processes parameters such as the C/N and C/P ratios, potassium concentration and buffering capacity. Knowledge of optimum proportion of the RSW as the minor substrate is of both process and operational importance. Moreover, efficient operation of the process requires an understanding of the relationship between the biogas production and the process parameters. Kinetic models can be useful tools for describing the biogas production process in batch reactors. While the first order kinetics models assume that the rate of biogas production is proportional to the concentration of the remaining substrates, other models such as the modified Gompertz and the Logistic models incorporate the lag phase, a key feature of the anaerobic digestion process. This study aimed to establish the optimum proportion of RSW in co-digestion with WH under mesophilic conditions, and apply kinetics models to describe the biogas production. The study conducted batch co-digestion of WH with 0, 10, 20 and 30% RSW proportions at mesophilic temperature of 32ºC. Co-digestion of WH with 30% RSW proportion improved biogas yield by 113% from 19.15 to 40.85 CH4 ml/(gVS) at 50 days of co-digestion. It also exhibited the most stable daily biogas production and the largest biogas yield. The biomethanation data were fitted with the first order kinetics, modified Gompertz and the Logistic models. Biogas production for co-digestion of WH with 30% RSW proportion was best described by the modified Gompertz model with a biogas yield potential, Mo, of 43.2 ml (gVS)-1d-1; maximum biogas production rate, Rm, of 1.50 ml (gVS)-1d-1; and duration of lag, λ, of 3.89 d.
水葫芦(Eichhornia crassipes)是一种具有大量生物量的入侵水生杂草,是东非维多利亚湖等淡水水体的社会经济和环境问题。控制和清除沼气的努力可以通过生产沼气作为能源加以补充。水葫芦(WH)与瘤胃屠宰场废物(RSW)共消化有可能通过整理工艺参数(如C/N和C/P比、钾浓度和缓冲能力)提高水葫芦的沼气产量。了解RSW作为次要衬底的最佳比例对工艺和操作都很重要。此外,该工艺的有效运行需要了解沼气产量与工艺参数之间的关系。动力学模型是描述间歇式反应器中沼气生产过程的有效工具。虽然一级动力学模型假设沼气的产生速率与剩余底物的浓度成正比,但其他模型,如改进的Gompertz和Logistic模型,纳入了滞后期,这是厌氧消化过程的一个关键特征。本研究旨在确定中温条件下水杨酸与水杨酸共消化的最佳比例,并应用动力学模型描述其产气过程。在32℃的中温条件下,分别以0、10、20、30%的RSW比例分批共消化白藜芦醇。在共消化50 d时,以30% RSW比例共消化WH使沼气产量从19.15提高到40.85 CH4 ml/(gVS),提高了113%。日产气量稳定,产气量最大。采用一级动力学模型、修正的Gompertz模型和Logistic模型拟合生物甲烷化数据。改进的Gompertz模型最能描述以30%的RSW比例共消化WH的产气量,其产气量Mo为43.2 ml (gVS)-1d-1;最大沼气产率Rm为1.50 ml (gVS)-1d-1;延迟时间λ为3.89 d。
{"title":"Modeling anaerobic co-digestion of water hyacinth with ruminal slaughterhouse waste for first order, modified gompertz and logistic kinetic models","authors":"E. A. Omondi, P. Ndiba, Gloria Koech Chepkoech, Arnold Aluda Kegode","doi":"10.14710/ijred.2023.52775","DOIUrl":"https://doi.org/10.14710/ijred.2023.52775","url":null,"abstract":"Water hyacinth (Eichhornia crassipes), an invasive aquatic weed with large biomass production is of socio-economic and environmental concern in fresh water bodies such as the Lake Victoria in East Africa. Efforts towards its control and removal can be complemented by biogas production for use as energy source. The co-digestion of water hyacinth (WH) with ruminal slaughterhouse waste (RSW) has the potential to improve biogas production from WH through collation of processes parameters such as the C/N and C/P ratios, potassium concentration and buffering capacity. Knowledge of optimum proportion of the RSW as the minor substrate is of both process and operational importance. Moreover, efficient operation of the process requires an understanding of the relationship between the biogas production and the process parameters. Kinetic models can be useful tools for describing the biogas production process in batch reactors. While the first order kinetics models assume that the rate of biogas production is proportional to the concentration of the remaining substrates, other models such as the modified Gompertz and the Logistic models incorporate the lag phase, a key feature of the anaerobic digestion process. This study aimed to establish the optimum proportion of RSW in co-digestion with WH under mesophilic conditions, and apply kinetics models to describe the biogas production. The study conducted batch co-digestion of WH with 0, 10, 20 and 30% RSW proportions at mesophilic temperature of 32ºC. Co-digestion of WH with 30% RSW proportion improved biogas yield by 113% from 19.15 to 40.85 CH4 ml/(gVS) at 50 days of co-digestion. It also exhibited the most stable daily biogas production and the largest biogas yield. The biomethanation data were fitted with the first order kinetics, modified Gompertz and the Logistic models. Biogas production for co-digestion of WH with 30% RSW proportion was best described by the modified Gompertz model with a biogas yield potential, Mo, of 43.2 ml (gVS)-1d-1; maximum biogas production rate, Rm, of 1.50 ml (gVS)-1d-1; and duration of lag, λ, of 3.89 d.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43355951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}