首页 > 最新文献

International Journal of Renewable Energy Development-IJRED最新文献

英文 中文
Development of BiOBr/TiO2 nanotubes electrode for conversion of nitrogen to ammonia in a tandem photoelectrochemical cell under visible light BiOBr/TiO2纳米管电极在串联光电电化学电池中氮转化为氨的研究
IF 2.5 Q3 ENERGY & FUELS Pub Date : 2023-05-27 DOI: 10.14710/ijred.2023.51314
Prita Amelia, J. Gunlazuardi
Ammonia (NH3) is one of the important chemicals for human life. The demand for ammonia is expected to increase every year. Conventionally, the fixation process of N2 to produce NH3 in the industrial sector is carried out through the Haber−Bosch process, which requires extreme temperature and pressure conditions that consume a high amount of energy and emit a considerable amount of CO2. Therefore, it is necessary to develop alternative technology to produce ammonia using environmentally friendly methods. Many studies have developed the photo-electrochemical conversion of nitrogen to ammonia in the presence of semiconductor materials, but the resulting efficiency is still not as expected. In this research, the development of the tandem system of Dye-Sensitized Solar Cell - Photoelectrochemistry (DSSC - PEC) was carried out for the conversion of nitrogen to ammonia. The DSSC cell was prepared using N719/TiO2 nanotubes as photoanode, Pt/FTO as cathode, and electrolyte I-/I3-. The DSSC efficiency produced in this research was 1.49%. PEC cell at the cathode and anode were prepared using BiOBr/TiO2 nanotubes synthesized by the SILAR (Successive Ionic Layer Adsorption and Reaction) method. The resulting ammonia levels were analyzed using the phenate method. In this study, ammonia levels were obtained at 0.1272 µmol for 6 hours of irradiation with an SCC (Solar to Chemical Conversion) percentage of 0.0021%.
氨(NH3)是人类赖以生存的重要化学物质之一。对氨的需求预计每年都会增加。传统上,工业部门将N2固定为NH3的过程是通过Haber - Bosch工艺进行的,该工艺需要极端的温度和压力条件,消耗大量的能量并排放大量的二氧化碳。因此,有必要开发利用环保方法生产氨的替代技术。许多研究已经发展了在半导体材料存在下的氮到氨的光电转化,但所产生的效率仍然没有达到预期的效果。在本研究中,开发了染料敏化太阳能电池-光电化学(DSSC - PEC)串联系统,用于氮转化为氨。以N719/TiO2纳米管为光阳极,Pt/FTO为阴极,电解质I-/I3-制备DSSC电池。本研究产生的DSSC效率为1.49%。采用连续离子层吸附反应(SILAR)法制备了BiOBr/TiO2纳米管,制备了阴极和阳极的PEC电池。用苯盐法分析所得氨水平。在本研究中,以0.1272µmol照射6小时获得氨水平,SCC(太阳能到化学转化)百分比为0.0021%。
{"title":"Development of BiOBr/TiO2 nanotubes electrode for conversion of nitrogen to ammonia in a tandem photoelectrochemical cell under visible light","authors":"Prita Amelia, J. Gunlazuardi","doi":"10.14710/ijred.2023.51314","DOIUrl":"https://doi.org/10.14710/ijred.2023.51314","url":null,"abstract":"Ammonia (NH3) is one of the important chemicals for human life. The demand for ammonia is expected to increase every year. Conventionally, the fixation process of N2 to produce NH3 in the industrial sector is carried out through the Haber−Bosch process, which requires extreme temperature and pressure conditions that consume a high amount of energy and emit a considerable amount of CO2. Therefore, it is necessary to develop alternative technology to produce ammonia using environmentally friendly methods. Many studies have developed the photo-electrochemical conversion of nitrogen to ammonia in the presence of semiconductor materials, but the resulting efficiency is still not as expected. In this research, the development of the tandem system of Dye-Sensitized Solar Cell - Photoelectrochemistry (DSSC - PEC) was carried out for the conversion of nitrogen to ammonia. The DSSC cell was prepared using N719/TiO2 nanotubes as photoanode, Pt/FTO as cathode, and electrolyte I-/I3-. The DSSC efficiency produced in this research was 1.49%. PEC cell at the cathode and anode were prepared using BiOBr/TiO2 nanotubes synthesized by the SILAR (Successive Ionic Layer Adsorption and Reaction) method. The resulting ammonia levels were analyzed using the phenate method. In this study, ammonia levels were obtained at 0.1272 µmol for 6 hours of irradiation with an SCC (Solar to Chemical Conversion) percentage of 0.0021%.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46304373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimentation on enhancement of solar still performance 提高太阳能蒸馏器性能的实验研究
IF 2.5 Q3 ENERGY & FUELS Pub Date : 2023-05-23 DOI: 10.14710/ijred.2023.53239
Sonia Z. Issaq, S. K. Talal, A. Azooz
This work presents new results from controlled experiments using well-designed and constructed single-inclination solar stills. The aim of these experiments is to explore methods for enhancing still performance by studying the individual effects of three types of methods. Specifically, the experiments investigate the actual effects of still basin water depth, the use of a sensible heat storage medium, and the treatment of the inner glass surface with waxy substances. The main distinction in this work is the use of solar stills that can achieve thermal efficiencies in excess of 40% under favourable weather conditions without any modification. This high efficiency level allows for meaningful analysis of the impact of modifications on still performance. The results indicate that still yield, productivity, and thermal efficiency decrease significantly when the water depth in the basin exceeds 6 cm. additionally, introducing black gravel in excess of a 2% gravel to water mass ratio in the still basin does not produce a significant change in still thermal efficiency. Treatment of the still inner glass surface with two types of waxy materials resulted in large drop in still performance.
这项工作展示了使用精心设计和建造的单倾斜太阳能蒸馏器进行控制实验的新结果。这些实验的目的是通过研究三种方法的个体效应来探索提高静态性能的方法。具体而言,实验研究了静盆水深、显热储存介质的使用以及用蜡状物质处理玻璃内表面的实际效果。这项工作的主要区别是使用了太阳能蒸馏器,在有利的天气条件下,无需任何修改,即可实现超过40%的热效率。这种高效率水平允许对修改对静态性能的影响进行有意义的分析。结果表明,当静水盆中的水深超过6cm时,静水产量、生产力和热效率显著降低。此外,在静水盆中引入超过2%砾石与水质量比的黑色砾石不会对静水热效率产生显著变化。用两种类型的蜡状材料处理静止的玻璃内表面导致静止性能的大幅度下降。
{"title":"Experimentation on enhancement of solar still performance","authors":"Sonia Z. Issaq, S. K. Talal, A. Azooz","doi":"10.14710/ijred.2023.53239","DOIUrl":"https://doi.org/10.14710/ijred.2023.53239","url":null,"abstract":"This work presents new results from controlled experiments using well-designed and constructed single-inclination solar stills. The aim of these experiments is to explore methods for enhancing still performance by studying the individual effects of three types of methods. Specifically, the experiments investigate the actual effects of still basin water depth, the use of a sensible heat storage medium, and the treatment of the inner glass surface with waxy substances. The main distinction in this work is the use of solar stills that can achieve thermal efficiencies in excess of 40% under favourable weather conditions without any modification. This high efficiency level allows for meaningful analysis of the impact of modifications on still performance. The results indicate that still yield, productivity, and thermal efficiency decrease significantly when the water depth in the basin exceeds 6 cm. additionally, introducing black gravel in excess of a 2% gravel to water mass ratio in the still basin does not produce a significant change in still thermal efficiency. Treatment of the still inner glass surface with two types of waxy materials resulted in large drop in still performance.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49109827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Energy demand modeling for low carbon cities in Thailand: A case study of Nakhon Ratchasima province 泰国低碳城市的能源需求模型:以呵叻府为例
IF 2.5 Q3 ENERGY & FUELS Pub Date : 2023-05-20 DOI: 10.14710/ijred.2023.53211
A. Tippichai, Kattreeya Teungchai, A. Fukuda
Nakhon Ratchasima is one of the northeastern cities which has been promoted as one of the low-carbon cities in Thailand. The study aims to evaluate policies and measures on greenhouse gas (GHG) emissions mitigation to meet the target at the provincial level. The Low Emissions Analysis Platform (LEAP) is used as a modeling tool to simulate energy demand for each economic sector. The 2019 data is set as a base year, using top-down and bottom-up approaches depending on the availability of data for the analysis. The model consists of two scenarios: (1) Business-as-usual (BAU) scenario and Low carbon scenario (LCS). Transport and industry sectors are the most energy-consuming and CO2-emitting sectors in Nakhon Ratchasima Province. In the LCS case, the final energy demand and CO2 emissions in 2050 will be reduced by about 40% compared to the BAU case. In addition, CO2 emissions in Nakhon Ratchasima Province will peak around 2038, this is not the case with BAU. The study could predict future energy demand and propose a way forward to reducing GHG emissions at the provincial level.
呵叻府是东北部城市之一,已被提升为泰国低碳城市之一。该研究旨在评估减少温室气体排放的政策和措施,以实现省级目标。低排放分析平台(LEAP)被用作模拟每个经济部门能源需求的建模工具。2019年的数据被设定为基准年,根据分析数据的可用性,使用自上而下和自下而上的方法。该模型由两个场景组成:(1)照常营业(BAU)场景和低碳场景(LCS)。运输和工业部门是呵叻府能源消耗和二氧化碳排放最多的部门。在LCS的情况下,与BAU的情况相比,2050年的最终能源需求和二氧化碳排放量将减少约40%。此外,呵叻府的二氧化碳排放量将在2038年左右达到峰值,BAU的情况并非如此。这项研究可以预测未来的能源需求,并为减少省级温室气体排放提出一条前进的道路。
{"title":"Energy demand modeling for low carbon cities in Thailand: A case study of Nakhon Ratchasima province","authors":"A. Tippichai, Kattreeya Teungchai, A. Fukuda","doi":"10.14710/ijred.2023.53211","DOIUrl":"https://doi.org/10.14710/ijred.2023.53211","url":null,"abstract":"Nakhon Ratchasima is one of the northeastern cities which has been promoted as one of the low-carbon cities in Thailand. The study aims to evaluate policies and measures on greenhouse gas (GHG) emissions mitigation to meet the target at the provincial level. The Low Emissions Analysis Platform (LEAP) is used as a modeling tool to simulate energy demand for each economic sector. The 2019 data is set as a base year, using top-down and bottom-up approaches depending on the availability of data for the analysis. The model consists of two scenarios: (1) Business-as-usual (BAU) scenario and Low carbon scenario (LCS). Transport and industry sectors are the most energy-consuming and CO2-emitting sectors in Nakhon Ratchasima Province. In the LCS case, the final energy demand and CO2 emissions in 2050 will be reduced by about 40% compared to the BAU case. In addition, CO2 emissions in Nakhon Ratchasima Province will peak around 2038, this is not the case with BAU. The study could predict future energy demand and propose a way forward to reducing GHG emissions at the provincial level.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42698961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Investigating the potential of avocado seeds for bioethanol production: A study on boiled water delignification pretreatment 探讨鳄梨种子生产生物乙醇的潜力:沸水脱木质素预处理的研究
IF 2.5 Q3 ENERGY & FUELS Pub Date : 2023-05-20 DOI: 10.14710/ijred.2023.52532
Herliati Rahman, Ayu Nehemia, Hadiatun Puji Astuti
The increasing need for alternative fuels to replace fossil fuels has made bioethanol a promising option. Although numerous sources of sugar generation and agricultural wastes can be converted into ethanol, Avocado Seeds (AS) are particularly attractive as raw materials due to their abundance, high carbohydrate content, and lack of interactions with the food chain. Therefore, this study investigated the potential of AS for bioethanol production using several steps, including boiled water delignification pretreatment, catalytic hydrolysis, and fermentation with Saccharomyces cerevisiae. The delignification pretreatment of AS involved soaking in 4% (w/v) sodium hydroxide liquor for 24 hours. Then the mixture was heated to 80°C and stirred slowly for 2.5 hours and after that washing with boiled water at 100 oC for 1.5 hours and screening the mixture. Subsequently, catalytic hydrolysis and fermentation were carried out using two different concentrations of Saccharomyces cerevisiae as yeast, namely 10% (w/v) and 15% (w/v). Qualitative sample analysis was conducted using scanning electron microscopy (SEM) to observe the effect of delignification pretreatment, while FTIR analysis using Thermo Scientific Nicolet iS50 was used to test for glucose functional groups. Quantitative analysis was performed using gas chromatography 7890b mass spectrophotometry 5977A, Agilent DBVRX to determine hydrolysate fermentation. The results revealed that the highest ethanol yield was achieved through fermentation with 15% (w/v) yeast and 40% (v/v) catalyst, resulting in an ethanol yield of 83.755% of the theoretical maximum.
替代化石燃料的需求日益增加,使得生物乙醇成为一种很有前途的选择。尽管许多产糖和农业废物的来源可以转化为乙醇,但鳄梨种子(AS)作为原料特别有吸引力,因为它们丰富、碳水化合物含量高,并且缺乏与食物链的相互作用。因此,本研究通过几个步骤研究了AS在生物乙醇生产中的潜力,包括沸水脱木素预处理、催化水解和酿酒酵母发酵。AS的脱木素预处理包括在4%(w/v)氢氧化钠溶液中浸泡24小时。然后将混合物加热至80°C并缓慢搅拌2.5小时,然后用100°C的沸水洗涤1.5小时并筛选混合物。随后,使用两种不同浓度的酿酒酵母作为酵母进行催化水解和发酵,即10%(w/v)和15%(w/w)。使用扫描电子显微镜(SEM)进行定性样品分析以观察脱木素预处理的效果,而使用Thermo Scientific Nicolet iS50进行FTIR分析以测试葡萄糖官能团。使用气相色谱7890b质谱5977A、安捷伦DBVRX进行定量分析以测定水解产物发酵。结果表明,用15%(w/v)酵母和40%(v/v)催化剂发酵可获得最高的乙醇产量,乙醇产量为理论最大值的83.755%。
{"title":"Investigating the potential of avocado seeds for bioethanol production: A study on boiled water delignification pretreatment","authors":"Herliati Rahman, Ayu Nehemia, Hadiatun Puji Astuti","doi":"10.14710/ijred.2023.52532","DOIUrl":"https://doi.org/10.14710/ijred.2023.52532","url":null,"abstract":"The increasing need for alternative fuels to replace fossil fuels has made bioethanol a promising option. Although numerous sources of sugar generation and agricultural wastes can be converted into ethanol, Avocado Seeds (AS) are particularly attractive as raw materials due to their abundance, high carbohydrate content, and lack of interactions with the food chain. Therefore, this study investigated the potential of AS for bioethanol production using several steps, including boiled water delignification pretreatment, catalytic hydrolysis, and fermentation with Saccharomyces cerevisiae. The delignification pretreatment of AS involved soaking in 4% (w/v) sodium hydroxide liquor for 24 hours. Then the mixture was heated to 80°C and stirred slowly for 2.5 hours and after that washing with boiled water at 100 oC for 1.5 hours and screening the mixture. Subsequently, catalytic hydrolysis and fermentation were carried out using two different concentrations of Saccharomyces cerevisiae as yeast, namely 10% (w/v) and 15% (w/v). Qualitative sample analysis was conducted using scanning electron microscopy (SEM) to observe the effect of delignification pretreatment, while FTIR analysis using Thermo Scientific Nicolet iS50 was used to test for glucose functional groups. Quantitative analysis was performed using gas chromatography 7890b mass spectrophotometry 5977A, Agilent DBVRX to determine hydrolysate fermentation. The results revealed that the highest ethanol yield was achieved through fermentation with 15% (w/v) yeast and 40% (v/v) catalyst, resulting in an ethanol yield of 83.755% of the theoretical maximum.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44752822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Offering strategy of a price-maker virtual power plant in the day-ahead market 日前市场上定价商虚拟电厂的报价策略
IF 2.5 Q3 ENERGY & FUELS Pub Date : 2023-05-19 DOI: 10.14710/ijred.2023.53193
Nhung Nguyen-Hong, Khai Bui Quang, Long Phan Vo Thanh, Duc Bui Huynh
With the rapid increase of renewable energy sources (RESs), the virtual power plant model (VPP) has been developed to integrate RESs, energy storage systems (ESSs), and local customers to overcome the RESs’ disadvantages. When the VPP’s capacity is large enough, it can participate in the electricity market as a price-maker instead of a price-taker to obtain a higher profit. This study proposes a bi-level optimization model to determine the optimal trading strategies of a price-maker VPP in the day-ahead (DA) market. The operation schedule of the components in the VPP is also optimized to achieve the highest profit for the VPP. In the bi-level optimization problem, the upper-level model is maximizing the VPP’s profit while the lower-level model is the DA market-clearing problem. The bi-level optimization problem is formulated as a Mathematical Problem with Equilibrium Constraints (MPEC), reformulated to a Mixed Integer Linear Problem (MILP), then solved by GAMS and CPLEX. This study applies the bi-level optimization model to a test VPP system, including wind plants (WP), solar plants (PV), biogas energy plants (BG), ESSs, and several customers. The maximum power outputs of WP and PV are 100MW and 90MW, respectively. The total installed capacity of BG is 70MW, while the ESS’ rated capacity is 100MWh. The local customers have the highest total consumption of 100MW. In addition to the VPP, four GENCOs and three retailers participate in the DA market. The results show that the market-clearing price varies depending on the participants’ production/consumption quantity and offering/bidding price. However, based on the optimization model, the VPP can take full advantage of WP and PV available power output, choose the right time to operate BG, then obtain the highest profit. The results also show that with the ESS’ rated capacity of 100MWh, the ESS’ rated discharging/charging power increased from 10MW to 50MW will increase VPP’s profit from 45987$ to 49464$. The obtained results show that the proposed model has practical significance
随着可再生能源(RES)的快速增长,虚拟发电厂模型(VPP)已被开发出来,用于集成可再生能源、储能系统(ESS)和当地客户,以克服可再生能源的缺点。当VPP的容量足够大时,它可以作为价格制定者而不是价格接受者参与电力市场,以获得更高的利润。本研究提出了一个双层优化模型来确定价格制定者VPP在日前市场(DA)中的最优交易策略。VPP中组件的运行时间表也经过优化,以实现VPP的最高利润。在双层优化问题中,上层模型是VPP的利润最大化问题,而下层模型是DA市场清算问题。将双层优化问题转化为平衡约束数学问题(MPEC),转化为混合整数线性问题(MILP),然后用GAMS和CPLEX求解。本研究将双层优化模型应用于测试VPP系统,包括风力发电厂(WP)、太阳能发电厂(PV)、沼气发电厂(BG)、ESS和几个客户。WP和PV的最大输出功率分别为100MW和90MW。BG的总装机容量为70MW,而ESS的额定容量为100MWh。本地客户的总功耗最高,为100MW。除了VPP,还有四家GENCO和三家零售商参与DA市场。结果表明,市场清算价格随参与者的生产/消费数量和出价/出价而变化。然而,基于优化模型,VPP可以充分利用WP和PV的可用功率输出,选择合适的时间运行BG,从而获得最高的利润。结果还表明,当ESS的额定容量为100MWh时,ESS的额定放电/充电功率从10MW增加到50MW,VPP的利润将从45987$增加到49464$。结果表明,该模型具有一定的实用意义
{"title":"Offering strategy of a price-maker virtual power plant in the day-ahead market","authors":"Nhung Nguyen-Hong, Khai Bui Quang, Long Phan Vo Thanh, Duc Bui Huynh","doi":"10.14710/ijred.2023.53193","DOIUrl":"https://doi.org/10.14710/ijred.2023.53193","url":null,"abstract":"With the rapid increase of renewable energy sources (RESs), the virtual power plant model (VPP) has been developed to integrate RESs, energy storage systems (ESSs), and local customers to overcome the RESs’ disadvantages. When the VPP’s capacity is large enough, it can participate in the electricity market as a price-maker instead of a price-taker to obtain a higher profit. This study proposes a bi-level optimization model to determine the optimal trading strategies of a price-maker VPP in the day-ahead (DA) market. The operation schedule of the components in the VPP is also optimized to achieve the highest profit for the VPP. In the bi-level optimization problem, the upper-level model is maximizing the VPP’s profit while the lower-level model is the DA market-clearing problem. The bi-level optimization problem is formulated as a Mathematical Problem with Equilibrium Constraints (MPEC), reformulated to a Mixed Integer Linear Problem (MILP), then solved by GAMS and CPLEX. This study applies the bi-level optimization model to a test VPP system, including wind plants (WP), solar plants (PV), biogas energy plants (BG), ESSs, and several customers. The maximum power outputs of WP and PV are 100MW and 90MW, respectively. The total installed capacity of BG is 70MW, while the ESS’ rated capacity is 100MWh. The local customers have the highest total consumption of 100MW. In addition to the VPP, four GENCOs and three retailers participate in the DA market. The results show that the market-clearing price varies depending on the participants’ production/consumption quantity and offering/bidding price. However, based on the optimization model, the VPP can take full advantage of WP and PV available power output, choose the right time to operate BG, then obtain the highest profit. The results also show that with the ESS’ rated capacity of 100MWh, the ESS’ rated discharging/charging power increased from 10MW to 50MW will increase VPP’s profit from 45987$ to 49464$. The obtained results show that the proposed model has practical significance","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45523532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prospects of low carbon development for Pakistan’s energy and power sector in the post Covid scenario 后疫情情景下巴基斯坦能源和电力部门的低碳发展前景
IF 2.5 Q3 ENERGY & FUELS Pub Date : 2023-05-17 DOI: 10.14710/ijred.2023.49927
U. Zia, H. Aslam, Muhammad Zulfiqar, Sibghat Ullah
In the backdrop of COVID19 recovery, Pakistan is still struggling to cope with the economic challenges and disruptions caused in the energy supply chain. On one hand where COVID has brought serious socio-economic costs and prolonged delays, it has also provided opportunity for developing countries such as Pakistan to “build-forward-better” their economies in a more sustainable and climate friendly manner. This study particularly highlights the impact of COVID on energy supply and demand sectors of Pakistan, its near- and long-term impacts, and what policy interventions can be adopted to put Pakistan on-track to achieve its Nationally Determined Contributions (NDCs). The economic focus in on “Green Recovery” and what key interventions will foster a rapid transition towards decarbonization in Pakistan. Low Emission Analysis Platform (LEAP) model is used to provide energy sector outlook (2020-2040) of Pakistan under different scenario i.e., Pre COVID growth, Business-as-Usual, Slow Recovery, and Green Recovery from COVID. The results obtained from the model depicts that following a green recovery scenario, Pakistan can reduce around 10 Mtoe (9%) of its total energy use, 53 TWh of electricity, 19 Mt of emissions from demand sectors, and 11 Mt of emissions from the power sector by 2030. For total levelized cost of the power sector, the green recovery scenario represents a generation cost of $13 billion by 2030 which further highlights that energy efficiency could lead to cost savings of approximately $3 billion each year by 2030. Green recovery is however still a daunting task as it would require economic stimulus of $8 billion only to recover to its pre COVID scenario and total investments of $120 billion by 2030.
在新冠疫情19复苏的背景下,巴基斯坦仍在努力应对经济挑战和能源供应链中断。一方面,新冠肺炎带来了严重的社会经济成本和长期延误,也为巴基斯坦等发展中国家提供了机会,以更可持续和气候友好的方式“更好地发展”其经济。这项研究特别强调了新冠肺炎对巴基斯坦能源供需部门的影响,其近期和长期影响,以及可以采取哪些政策干预措施,使巴基斯坦走上实现国家自主贡献的轨道。经济重点是“绿色复苏”,以及哪些关键干预措施将促进巴基斯坦向脱碳的快速过渡。低排放分析平台(LEAP)模型用于提供巴基斯坦在不同情景下的能源部门前景(2020-2040年),即新冠疫情前的增长、照常营业、缓慢复苏和从新冠疫情中绿色复苏。该模型得出的结果表明,在绿色复苏情景下,到2030年,巴基斯坦可以减少约1000万吨当量(9%)的能源使用、53太瓦时的电力、1900万吨需求部门的排放和1100万吨电力部门的排放。对于电力行业的总水平化成本,绿色复苏情景表示,到2030年,发电成本将达到130亿美元,这进一步突显了能源效率到2030年每年可节省约30亿美元的成本。然而,绿色复苏仍然是一项艰巨的任务,因为它需要80亿美元的经济刺激,才能恢复到新冠疫情前的情景,到2030年总投资将达到1200亿美元。
{"title":"Prospects of low carbon development for Pakistan’s energy and power sector in the post Covid scenario","authors":"U. Zia, H. Aslam, Muhammad Zulfiqar, Sibghat Ullah","doi":"10.14710/ijred.2023.49927","DOIUrl":"https://doi.org/10.14710/ijred.2023.49927","url":null,"abstract":"In the backdrop of COVID19 recovery, Pakistan is still struggling to cope with the economic challenges and disruptions caused in the energy supply chain. On one hand where COVID has brought serious socio-economic costs and prolonged delays, it has also provided opportunity for developing countries such as Pakistan to “build-forward-better” their economies in a more sustainable and climate friendly manner. This study particularly highlights the impact of COVID on energy supply and demand sectors of Pakistan, its near- and long-term impacts, and what policy interventions can be adopted to put Pakistan on-track to achieve its Nationally Determined Contributions (NDCs). The economic focus in on “Green Recovery” and what key interventions will foster a rapid transition towards decarbonization in Pakistan. Low Emission Analysis Platform (LEAP) model is used to provide energy sector outlook (2020-2040) of Pakistan under different scenario i.e., Pre COVID growth, Business-as-Usual, Slow Recovery, and Green Recovery from COVID. The results obtained from the model depicts that following a green recovery scenario, Pakistan can reduce around 10 Mtoe (9%) of its total energy use, 53 TWh of electricity, 19 Mt of emissions from demand sectors, and 11 Mt of emissions from the power sector by 2030. For total levelized cost of the power sector, the green recovery scenario represents a generation cost of $13 billion by 2030 which further highlights that energy efficiency could lead to cost savings of approximately $3 billion each year by 2030. Green recovery is however still a daunting task as it would require economic stimulus of $8 billion only to recover to its pre COVID scenario and total investments of $120 billion by 2030.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43891034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal power flow solutions to power systems with wind energy using a highly effective meta-heuristic algorithm 利用高效元启发式算法求解风能电力系统的最优潮流
IF 2.5 Q3 ENERGY & FUELS Pub Date : 2023-05-16 DOI: 10.14710/ijred.2023.51375
T. Le, X. Le, N.N.P Huynh, A. Doan, T. V. Dinh, M. Q. Duong
This paper implements two novel meta-heuristic algorithms, including the Coati optimization algorithm (COA) and War strategy optimization (WSO) for determining the optimal solutions to the optimal power flow problem incorporating the use of wind turbines. Two objective functions are considered in this study, including minimizing the entire electricity generation cost (EEGC) with the value point effect and minimizing the voltage fluctuation index (VFI). IEEE 30-bus system is chosen to conduct the whole study and validate the efficiency of the two applied methods. Furthermore, DFIG wind turbines are used in grids with varying power output and power factor ranges. The comparison of the results obtained from the two methods in all case studies reveals that WSO is vastly superior to COA in almost all aspects. In addition, the positive contributions of wind turbines to the EEGE and VFI while they are properly placed in the grid are also clarified by using WSO. As a result, WSO is acknowledged as a highly effective search method, and we strongly recommend using WSO for dealing with such OPF problems considering the presence of renewable energy sources.
本文实现了两种新的元启发式算法,包括Coati优化算法(COA)和战争策略优化(WSO),用于确定结合使用风力涡轮机的最优潮流问题的最优解。本研究考虑了两个目标函数,包括利用值点效应最小化整个发电成本(EEGC)和最小化电压波动指数(VFI)。选择IEEE 30总线系统进行整个研究,并验证了两种应用方法的有效性。此外,DFIG风力涡轮机用于具有不同功率输出和功率因数范围的电网中。两种方法在所有案例研究中获得的结果的比较表明,WSO在几乎所有方面都远远优于COA。此外,还通过使用WSO阐明了风力涡轮机在正确放置在电网中时对EEGE和VFI的积极贡献。因此,WSO被公认为一种高效的搜索方法,考虑到可再生能源的存在,我们强烈建议使用WSO来处理此类OPF问题。
{"title":"Optimal power flow solutions to power systems with wind energy using a highly effective meta-heuristic algorithm","authors":"T. Le, X. Le, N.N.P Huynh, A. Doan, T. V. Dinh, M. Q. Duong","doi":"10.14710/ijred.2023.51375","DOIUrl":"https://doi.org/10.14710/ijred.2023.51375","url":null,"abstract":"This paper implements two novel meta-heuristic algorithms, including the Coati optimization algorithm (COA) and War strategy optimization (WSO) for determining the optimal solutions to the optimal power flow problem incorporating the use of wind turbines. Two objective functions are considered in this study, including minimizing the entire electricity generation cost (EEGC) with the value point effect and minimizing the voltage fluctuation index (VFI). IEEE 30-bus system is chosen to conduct the whole study and validate the efficiency of the two applied methods. Furthermore, DFIG wind turbines are used in grids with varying power output and power factor ranges. The comparison of the results obtained from the two methods in all case studies reveals that WSO is vastly superior to COA in almost all aspects. In addition, the positive contributions of wind turbines to the EEGE and VFI while they are properly placed in the grid are also clarified by using WSO. As a result, WSO is acknowledged as a highly effective search method, and we strongly recommend using WSO for dealing with such OPF problems considering the presence of renewable energy sources.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49478987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
An investigation of a 3D printed micro-wind turbine for residential power production 用于住宅发电的3D打印微型风力发电机的研究
IF 2.5 Q3 ENERGY & FUELS Pub Date : 2023-05-15 DOI: 10.14710/ijred.2023.52615
Mohammad M. Shalby, A. Salah, Ghayda’ A. Matarneh, Abdullah Marashli, Mohamed R. Gommaa
The wind energy sector is rapidly growing and has become one of the most important sources of renewable power production. New technologies are being developed to increase energy production. This study focuses on developing and evaluating a 3-D printed micro-wind turbine system for residential electricity production. The effectiveness of using Poly Lactic Acid material for model production was assessed using the SolidWorks environment. Then, three–dimensional CFD model was developed to simulate a micro-wind turbine. The CFD model was validated in good agreement against scale physical model experiments performed in a wind tunnel. The results demonstrated that the 5-blade micro-wind turbine design was the most effective under the tested conditions, with a low cut-in speed and the ability to operate under torque up to 70 N.m. Finally, the currently available manufacturing processes for micro-wind turbines have been evaluated. Future work should evaluate the performance of the MWT system under realistic conditions in a site test to determine energy production and total efficiency
风能部门正在迅速发展,并已成为可再生能源生产的最重要来源之一。正在开发新技术以增加能源生产。本研究的重点是开发和评估用于住宅发电的3d打印微型风力涡轮机系统。使用SolidWorks环境评估了使用聚乳酸材料进行模型制作的有效性。然后,建立了微型风力机的三维CFD模型。计算流体力学模型与风洞物理模型实验结果吻合较好。结果表明,在测试条件下,5叶片微型风力涡轮机设计是最有效的,具有低切割速度和在高达70 N.m的扭矩下运行的能力。最后,对目前可用的微型风力涡轮机制造工艺进行了评估。未来的工作应该在现场测试中评估MWT系统在实际条件下的性能,以确定能源产量和总效率
{"title":"An investigation of a 3D printed micro-wind turbine for residential power production","authors":"Mohammad M. Shalby, A. Salah, Ghayda’ A. Matarneh, Abdullah Marashli, Mohamed R. Gommaa","doi":"10.14710/ijred.2023.52615","DOIUrl":"https://doi.org/10.14710/ijred.2023.52615","url":null,"abstract":"The wind energy sector is rapidly growing and has become one of the most important sources of renewable power production. New technologies are being developed to increase energy production. This study focuses on developing and evaluating a 3-D printed micro-wind turbine system for residential electricity production. The effectiveness of using Poly Lactic Acid material for model production was assessed using the SolidWorks environment. Then, three–dimensional CFD model was developed to simulate a micro-wind turbine. The CFD model was validated in good agreement against scale physical model experiments performed in a wind tunnel. The results demonstrated that the 5-blade micro-wind turbine design was the most effective under the tested conditions, with a low cut-in speed and the ability to operate under torque up to 70 N.m. Finally, the currently available manufacturing processes for micro-wind turbines have been evaluated. Future work should evaluate the performance of the MWT system under realistic conditions in a site test to determine energy production and total efficiency","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47314430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Techno-economic analysis of fixed versus sun-tracking solar panels 固定太阳能电池板与太阳跟踪太阳能电池板的技术经济分析
IF 2.5 Q3 ENERGY & FUELS Pub Date : 2023-05-06 DOI: 10.14710/ijred.2023.50165
Akram Elahi Gol, Milan Ščasný
The potential output of photovoltaic (PV) panels is influenced by several factors, including the direction of solar radiation from the sun toward the panel’s surface. The maximum output of the panels is obtained when the panels are vertical to the sun's rays. In this study, a techno-economic analysis is conducted to examine whether an automatic one-axis sun tracker system is an economically feasible option for installing a large-scale PV park in the Nicosia district in the central part of Cyprus. The performance of a one-axis sun tracker with an installed capacity of 781 kWp is compared to a PV system with a fixed flat structure having the same capacity and larger capacity at 1034 kWp. Output generated by the three PV system options is simulated by three alternative simulation software (SolarGIS, PVSyst, and PVGIS). Financial analysis is performed utilizing simulated PV power output, accounting for electricity feed-in tariff and overall cost of the project. The cash-flow model is run for several scenarios defined by different leverage ratios, including no leverage. Considering the technical parameters of a PV system and solar panel characteristics, such as the degradation effect on solar panel efficiency and solar radiation, we estimate the solar tracking system produces about 20%–30% more energy compared to a fixed structure. We find both technologies are economically viable options, however, a one-axis tracker system performs better financially. LCOE in all scenarios is below the highest acceptable level for solar PV projects in Cyprus which is 103 EUR per MWh. LCOE for a solar tracker PV is 39 EUR per MWh with a 30% leverage ratio and up to 79 EUR per MWh with 85% leverage. LCOE for a sun-tracker is ~20% lower than LCOE for a PV with a fixed axis of comparable size. Despite higher investment costs, the solar tracking PV system performs with a 12% higher equity internal rate of return, and a 9% shorter loan payback period compared to the same installed power of a fixed structure. The Financial analysis is complemented by quantified benefits due to avoided carbon emissions. Accounting for carbon benefits makes a sun-tracker PV system economically a better option over the fixed tracker PV system, resulting in 228,000 EUR more benefits. Overall, the present value of net benefits of a solar-tracker PV amounts to 1.39 mil. EUR and due to high irradiation in Cyprus, the carbon footprint of PV power output represents only 6% of the footprint of generating electricity in thermal power plants. When these benefits are accounted for the sum of NPV and social benefits will turn out to be higher for a one-axis tracker compared to the total social benefits of a fixed tracker of the same size.
光伏(PV)面板的潜在输出受到几个因素的影响,包括太阳向面板表面的太阳辐射方向。当面板垂直于太阳光线时,面板的最大输出是获得的。在这项研究中,进行了技术经济分析,以检查自动单轴太阳跟踪器系统是否是在塞浦路斯中部尼科西亚地区安装大型光伏公园的经济可行选择。将装机容量为781 kWp的单轴太阳跟踪器的性能与容量相同且容量更大的1034 kWp的固定平面结构光伏系统进行比较。三种光伏系统的输出通过三种备选的仿真软件(SolarGIS、PVSyst和PVGIS)进行模拟。财务分析是利用模拟的光伏发电输出,考虑上网电价和项目的总成本。现金流模型在由不同杠杆率定义的几种情况下运行,包括无杠杆。考虑到光伏系统的技术参数和太阳能电池板的特性,如对太阳能电池板效率和太阳辐射的退化效应,我们估计太阳能跟踪系统比固定结构产生约20%-30%的能量。我们发现这两种技术在经济上都是可行的选择,然而,单轴跟踪系统在经济上表现更好。所有情况下的LCOE都低于塞浦路斯太阳能光伏项目可接受的最高水平,即每兆瓦时103欧元。太阳能跟踪器PV的LCOE为每兆瓦时39欧元,杠杆率为30%,杠杆率高达每兆瓦时79欧元,杠杆率为85%。太阳跟踪器的LCOE比同等尺寸的固定轴光伏的LCOE低20%。尽管投资成本较高,但与固定结构的相同装机容量相比,太阳能跟踪光伏系统的股权内部回报率高出12%,贷款回收期缩短9%。避免碳排放带来的量化效益补充了财务分析。考虑到碳效益,太阳能跟踪器光伏系统在经济上比固定跟踪器光伏系统更好,产生22.8万欧元的效益。总体而言,太阳能跟踪光伏发电的净效益现值为139万欧元,由于塞浦路斯的高辐射,光伏发电的碳足迹仅占火力发电厂发电足迹的6%。当这些效益被考虑到NPV和社会效益的总和时,与相同大小的固定跟踪器的总社会效益相比,单轴跟踪器的社会效益更高。
{"title":"Techno-economic analysis of fixed versus sun-tracking solar panels","authors":"Akram Elahi Gol, Milan Ščasný","doi":"10.14710/ijred.2023.50165","DOIUrl":"https://doi.org/10.14710/ijred.2023.50165","url":null,"abstract":"The potential output of photovoltaic (PV) panels is influenced by several factors, including the direction of solar radiation from the sun toward the panel’s surface. The maximum output of the panels is obtained when the panels are vertical to the sun's rays. In this study, a techno-economic analysis is conducted to examine whether an automatic one-axis sun tracker system is an economically feasible option for installing a large-scale PV park in the Nicosia district in the central part of Cyprus. The performance of a one-axis sun tracker with an installed capacity of 781 kWp is compared to a PV system with a fixed flat structure having the same capacity and larger capacity at 1034 kWp. Output generated by the three PV system options is simulated by three alternative simulation software (SolarGIS, PVSyst, and PVGIS). Financial analysis is performed utilizing simulated PV power output, accounting for electricity feed-in tariff and overall cost of the project. The cash-flow model is run for several scenarios defined by different leverage ratios, including no leverage. Considering the technical parameters of a PV system and solar panel characteristics, such as the degradation effect on solar panel efficiency and solar radiation, we estimate the solar tracking system produces about 20%–30% more energy compared to a fixed structure. We find both technologies are economically viable options, however, a one-axis tracker system performs better financially. LCOE in all scenarios is below the highest acceptable level for solar PV projects in Cyprus which is 103 EUR per MWh. LCOE for a solar tracker PV is 39 EUR per MWh with a 30% leverage ratio and up to 79 EUR per MWh with 85% leverage. LCOE for a sun-tracker is ~20% lower than LCOE for a PV with a fixed axis of comparable size. Despite higher investment costs, the solar tracking PV system performs with a 12% higher equity internal rate of return, and a 9% shorter loan payback period compared to the same installed power of a fixed structure. The Financial analysis is complemented by quantified benefits due to avoided carbon emissions. Accounting for carbon benefits makes a sun-tracker PV system economically a better option over the fixed tracker PV system, resulting in 228,000 EUR more benefits. Overall, the present value of net benefits of a solar-tracker PV amounts to 1.39 mil. EUR and due to high irradiation in Cyprus, the carbon footprint of PV power output represents only 6% of the footprint of generating electricity in thermal power plants. When these benefits are accounted for the sum of NPV and social benefits will turn out to be higher for a one-axis tracker compared to the total social benefits of a fixed tracker of the same size.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48520267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling anaerobic co-digestion of water hyacinth with ruminal slaughterhouse waste for first order, modified gompertz and logistic kinetic models 一阶、改进的gompertz和logistic动力学模型模拟了水葫芦与瘤胃屠宰场废物的厌氧共消化
IF 2.5 Q3 ENERGY & FUELS Pub Date : 2023-05-04 DOI: 10.14710/ijred.2023.52775
E. A. Omondi, P. Ndiba, Gloria Koech Chepkoech, Arnold Aluda Kegode
Water hyacinth (Eichhornia crassipes), an invasive aquatic weed with large biomass production is of socio-economic and environmental concern in fresh water bodies such as the Lake Victoria in East Africa. Efforts towards its control and removal can be complemented by biogas production for use as energy source. The co-digestion of water hyacinth (WH) with ruminal slaughterhouse waste (RSW) has the potential to improve biogas production from WH through collation of processes parameters such as the C/N and C/P ratios, potassium concentration and buffering capacity. Knowledge of optimum proportion of the RSW as the minor substrate is of both process and operational importance. Moreover, efficient operation of the process requires an understanding of the relationship between the biogas production and the process parameters. Kinetic models can be useful tools for describing the biogas production process in batch reactors. While the first order kinetics models assume that the rate of biogas production is proportional to the concentration of the remaining substrates, other models such as the modified Gompertz and the Logistic models incorporate the lag phase, a key feature of the anaerobic digestion process. This study aimed to establish the optimum proportion of RSW in co-digestion with WH under mesophilic conditions, and apply kinetics models to describe the biogas production. The study conducted batch co-digestion of WH with 0, 10, 20 and 30% RSW proportions at mesophilic temperature of 32ºC. Co-digestion of WH with 30% RSW proportion improved biogas yield by 113% from 19.15 to 40.85 CH4 ml/(gVS) at 50 days of co-digestion. It also exhibited the most stable daily biogas production and the largest biogas yield. The biomethanation data were fitted with the first order kinetics, modified Gompertz and the Logistic models. Biogas production for co-digestion of WH with 30% RSW proportion was best described by the modified Gompertz model with a biogas yield potential, Mo, of 43.2 ml (gVS)-1d-1; maximum biogas production rate, Rm, of 1.50 ml (gVS)-1d-1; and duration of lag, λ, of 3.89 d.
水葫芦(Eichhornia crassipes)是一种具有大量生物量的入侵水生杂草,是东非维多利亚湖等淡水水体的社会经济和环境问题。控制和清除沼气的努力可以通过生产沼气作为能源加以补充。水葫芦(WH)与瘤胃屠宰场废物(RSW)共消化有可能通过整理工艺参数(如C/N和C/P比、钾浓度和缓冲能力)提高水葫芦的沼气产量。了解RSW作为次要衬底的最佳比例对工艺和操作都很重要。此外,该工艺的有效运行需要了解沼气产量与工艺参数之间的关系。动力学模型是描述间歇式反应器中沼气生产过程的有效工具。虽然一级动力学模型假设沼气的产生速率与剩余底物的浓度成正比,但其他模型,如改进的Gompertz和Logistic模型,纳入了滞后期,这是厌氧消化过程的一个关键特征。本研究旨在确定中温条件下水杨酸与水杨酸共消化的最佳比例,并应用动力学模型描述其产气过程。在32℃的中温条件下,分别以0、10、20、30%的RSW比例分批共消化白藜芦醇。在共消化50 d时,以30% RSW比例共消化WH使沼气产量从19.15提高到40.85 CH4 ml/(gVS),提高了113%。日产气量稳定,产气量最大。采用一级动力学模型、修正的Gompertz模型和Logistic模型拟合生物甲烷化数据。改进的Gompertz模型最能描述以30%的RSW比例共消化WH的产气量,其产气量Mo为43.2 ml (gVS)-1d-1;最大沼气产率Rm为1.50 ml (gVS)-1d-1;延迟时间λ为3.89 d。
{"title":"Modeling anaerobic co-digestion of water hyacinth with ruminal slaughterhouse waste for first order, modified gompertz and logistic kinetic models","authors":"E. A. Omondi, P. Ndiba, Gloria Koech Chepkoech, Arnold Aluda Kegode","doi":"10.14710/ijred.2023.52775","DOIUrl":"https://doi.org/10.14710/ijred.2023.52775","url":null,"abstract":"Water hyacinth (Eichhornia crassipes), an invasive aquatic weed with large biomass production is of socio-economic and environmental concern in fresh water bodies such as the Lake Victoria in East Africa. Efforts towards its control and removal can be complemented by biogas production for use as energy source. The co-digestion of water hyacinth (WH) with ruminal slaughterhouse waste (RSW) has the potential to improve biogas production from WH through collation of processes parameters such as the C/N and C/P ratios, potassium concentration and buffering capacity. Knowledge of optimum proportion of the RSW as the minor substrate is of both process and operational importance. Moreover, efficient operation of the process requires an understanding of the relationship between the biogas production and the process parameters. Kinetic models can be useful tools for describing the biogas production process in batch reactors. While the first order kinetics models assume that the rate of biogas production is proportional to the concentration of the remaining substrates, other models such as the modified Gompertz and the Logistic models incorporate the lag phase, a key feature of the anaerobic digestion process. This study aimed to establish the optimum proportion of RSW in co-digestion with WH under mesophilic conditions, and apply kinetics models to describe the biogas production. The study conducted batch co-digestion of WH with 0, 10, 20 and 30% RSW proportions at mesophilic temperature of 32ºC. Co-digestion of WH with 30% RSW proportion improved biogas yield by 113% from 19.15 to 40.85 CH4 ml/(gVS) at 50 days of co-digestion. It also exhibited the most stable daily biogas production and the largest biogas yield. The biomethanation data were fitted with the first order kinetics, modified Gompertz and the Logistic models. Biogas production for co-digestion of WH with 30% RSW proportion was best described by the modified Gompertz model with a biogas yield potential, Mo, of 43.2 ml (gVS)-1d-1; maximum biogas production rate, Rm, of 1.50 ml (gVS)-1d-1; and duration of lag, λ, of 3.89 d.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43355951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Renewable Energy Development-IJRED
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1