Pub Date : 2023-07-18DOI: 10.14710/ijred.2023.53986
Artidtaya Mainkaew, S. Kaewluan, A. Pattiya, S. Jansri
Elephant dung is the camp's undigested fiber waste. For more effective waste management, the conversion of dung to torrefied solid and the formation of solid torrefied into fuel briquettes, as well as their properties, were investigated. The dung was improved through torrefaction at 280ºC for 150 sec in a pilot-scale reactor with a feeding rate of 600 g/h. The torrefied elephant dung had 17 MJ/kg of HHV, a solid yield of 79%, and a fixed carbon content of 20%. A mixture of torrefied dung, binder, and water was compressed at 40 bars to a density of 860 kg/m3, or 12 GJ/m3. Their H/C and O/C atomic ratios were in the range of typical biomass. However, due to their moisture content of over 7%, the HHV of the fuel briquettes was below 17 MJ/kg. Moreover, their thermal efficiency was less than 7% due to durability issues, despite having a great fuel ratio and thermal stability. The combustion of these briquettes resulted in less than 850 ppm of CO. To improve the combustibility of this solid biofuel, it is recommended to develop a production process and a suitable stove specifically for these briquettes.
{"title":"The characteristics and emissions of low-pressure densified torrefied elephant dung fuel briquette","authors":"Artidtaya Mainkaew, S. Kaewluan, A. Pattiya, S. Jansri","doi":"10.14710/ijred.2023.53986","DOIUrl":"https://doi.org/10.14710/ijred.2023.53986","url":null,"abstract":"Elephant dung is the camp's undigested fiber waste. For more effective waste management, the conversion of dung to torrefied solid and the formation of solid torrefied into fuel briquettes, as well as their properties, were investigated. The dung was improved through torrefaction at 280ºC for 150 sec in a pilot-scale reactor with a feeding rate of 600 g/h. The torrefied elephant dung had 17 MJ/kg of HHV, a solid yield of 79%, and a fixed carbon content of 20%. A mixture of torrefied dung, binder, and water was compressed at 40 bars to a density of 860 kg/m3, or 12 GJ/m3. Their H/C and O/C atomic ratios were in the range of typical biomass. However, due to their moisture content of over 7%, the HHV of the fuel briquettes was below 17 MJ/kg. Moreover, their thermal efficiency was less than 7% due to durability issues, despite having a great fuel ratio and thermal stability. The combustion of these briquettes resulted in less than 850 ppm of CO. To improve the combustibility of this solid biofuel, it is recommended to develop a production process and a suitable stove specifically for these briquettes.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66964718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-11DOI: 10.14710/ijred.2023.52248
Mapereka Francis Chagunda, T. Ruhiiga, Lobina Gertrude Palamuleni
Municipal Solid Waste (MSW) management is rapidly becoming a severe environmental problem worldwide. Developing countries, especially African cities, are the most affected due to inadequate resources to cope with increasing magnitude and complexity of the waste generated as well as the scarcity of land for disposal. As such, strategies which include waste- to-energy (WtE) generation to recover the potent energy from municipal waste could be a better option. This study sought to determine the sustainability of WtE projects for energy access to off-grid residents in the North-West province, South Africa. The study used a quantitative research design coupled with field observations and measurement of elements of the waste chain to generate primary data sets. The information was supplemented by secondary datasets on waste information and waste management at local municipalities. Results revealed that some of the classes of waste have the optimum calorific values and moisture content for WtE. The eligibility of a waste class to be used in WtE generation projects is dependent on the quantities generated. The results also indicate that using paper as fuel in the 240 tonnes/day WtE technology would cover more days of operation than plastics and rubber. Based on the 2020 estimated waste quantities, paper would last 234 days of generating about 6,944 GWh while plastics would last 177 days with energy output of 5, 207 GWh. Waste quantities generated in the North-West province could contribute to sustainable energy access to the off-grid informal settlement residents and advance waste management options through WtE. This study contributes to the literature on renewable energy and waste management in the context of green energy in South Africa.
{"title":"Evaluation of energy generation potential from municipal solid waste in the North-West province, South Africa","authors":"Mapereka Francis Chagunda, T. Ruhiiga, Lobina Gertrude Palamuleni","doi":"10.14710/ijred.2023.52248","DOIUrl":"https://doi.org/10.14710/ijred.2023.52248","url":null,"abstract":"Municipal Solid Waste (MSW) management is rapidly becoming a severe environmental problem worldwide. Developing countries, especially African cities, are the most affected due to inadequate resources to cope with increasing magnitude and complexity of the waste generated as well as the scarcity of land for disposal. As such, strategies which include waste- to-energy (WtE) generation to recover the potent energy from municipal waste could be a better option. This study sought to determine the sustainability of WtE projects for energy access to off-grid residents in the North-West province, South Africa. The study used a quantitative research design coupled with field observations and measurement of elements of the waste chain to generate primary data sets. The information was supplemented by secondary datasets on waste information and waste management at local municipalities. Results revealed that some of the classes of waste have the optimum calorific values and moisture content for WtE. The eligibility of a waste class to be used in WtE generation projects is dependent on the quantities generated. The results also indicate that using paper as fuel in the 240 tonnes/day WtE technology would cover more days of operation than plastics and rubber. Based on the 2020 estimated waste quantities, paper would last 234 days of generating about 6,944 GWh while plastics would last 177 days with energy output of 5, 207 GWh. Waste quantities generated in the North-West province could contribute to sustainable energy access to the off-grid informal settlement residents and advance waste management options through WtE. This study contributes to the literature on renewable energy and waste management in the context of green energy in South Africa.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46357349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-07DOI: 10.14710/ijred.2023.52291
D. P. E. Palmero, K. Pamintuan
Plant-Microbial Fuel Cell (PMFC) is an emerging technology that converts plant waste into electrical energy through rhizodeposition, offering a renewable and sustainable source of energy. Deviating from the traditional PMFC configurations, additive manufacturing was utilized to create intricate and efficient designs using polymer-carbon composites. Concerning the agricultural sector, the effect of 3D-printed PMFCs on the growth and biomass distribution of Phaseolus lunatus and Ipomoea aquatica was determined. The experiment showed that electrostimulation promoted the average daily leaf number and plant height of both polarized plants, which were statistically proven to be greater than the control (α = 0.05), by energizing the flow of ions in the soil, boosting nutrient uptake and metabolism. It also stimulated the growth of roots, increasing the root dry mass of polarized plants by 155.44% and 66.30% for I. aquatica and P. Lunatus against their non-polarized counterpart. Due to the biofilm formation on the anode surface, the number of root nodules of the polarized P. lunatus was 51.30% higher than the control, while the protein content in the PMFC setup was 42.22% and 8.26% higher than the control for I. aquatica and P. lunatus, respectively. The voltage readings resemble the plants' average growth rate, and the polarization studies showed that the optimum external resistances in the I. aquatica- and P. lunatus-powered PMFC were 4.7 kΩ and 10 kΩ, respectively. Due to other prevailing pathways of organic carbon consumption, such as methanogenesis, the effect of polarization on the organic carbon content in soil is currently inconclusive and requires further study.
{"title":"Characterization of plant growth promoting potential of 3D-printed plant microbial fuel cells","authors":"D. P. E. Palmero, K. Pamintuan","doi":"10.14710/ijred.2023.52291","DOIUrl":"https://doi.org/10.14710/ijred.2023.52291","url":null,"abstract":"Plant-Microbial Fuel Cell (PMFC) is an emerging technology that converts plant waste into electrical energy through rhizodeposition, offering a renewable and sustainable source of energy. Deviating from the traditional PMFC configurations, additive manufacturing was utilized to create intricate and efficient designs using polymer-carbon composites. Concerning the agricultural sector, the effect of 3D-printed PMFCs on the growth and biomass distribution of Phaseolus lunatus and Ipomoea aquatica was determined. The experiment showed that electrostimulation promoted the average daily leaf number and plant height of both polarized plants, which were statistically proven to be greater than the control (α = 0.05), by energizing the flow of ions in the soil, boosting nutrient uptake and metabolism. It also stimulated the growth of roots, increasing the root dry mass of polarized plants by 155.44% and 66.30% for I. aquatica and P. Lunatus against their non-polarized counterpart. Due to the biofilm formation on the anode surface, the number of root nodules of the polarized P. lunatus was 51.30% higher than the control, while the protein content in the PMFC setup was 42.22% and 8.26% higher than the control for I. aquatica and P. lunatus, respectively. The voltage readings resemble the plants' average growth rate, and the polarization studies showed that the optimum external resistances in the I. aquatica- and P. lunatus-powered PMFC were 4.7 kΩ and 10 kΩ, respectively. Due to other prevailing pathways of organic carbon consumption, such as methanogenesis, the effect of polarization on the organic carbon content in soil is currently inconclusive and requires further study.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47264865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-05DOI: 10.14710/ijred.2023.53901
F. Rahmawati, Septia K Arifah, Y. Hidayat
This research aims to study the Al-Y dopant to Lithium Lanthanum Zirconate (LLZO) to the characteristics and electrical properties of the LLZO as solid electrolyte. The synthesis was conducted through solid state reaction with Al2O3 and Y2O3 as dopant precursors. X-ray diffraction analysis along with Le Bail refinement was done to understand their structure, and phase content inside. The result found that Al and Y doping increased the cubic phase from 49.58% to 84.91%. The Al-Y doped-LLZO (LLZAYO) powder was then treated by a various cold isostatic pressing, CIP of 0, 20, 30, and 40 MPa to understand the effect of cold isostatic pressure to the ionic conductivity and solid electrolyte performance of the material even without heat sintering treatment. The result found that the green pellet of LLZAYO) which was isostatically pressed by 40 MPa at room temperature provides (9.06 ±0.26) x10-6 Scm-1, about 8 times higher than the LLZO without doping, i.e., (1.25 ±0.01) x 10-6 Scm-1. All solid-state battery with the prepare LLZAYO CIP 40 as solid electrolyte shows reversible reaction of Li/Li+ redox accompanied with Al/Al3+ redox. The Al/Al3+ reaction seems to decrease the electronic resistance between LCO-LLZAYO CIP40-Li which causes the full cell performance to decrease. The initial specific charging capacity is 82 mAh/g, and the initial discharge was 83 mAh/g, confirming 101 % of Coulombic efficiency. The discharge capacity drops to 46 mAh/g at second cycle, leading to a decrease in Coulombic efficiency to 56 %.
{"title":"Synthesis of Al-Y doped-lithium lanthanum zirconate and the effect of cold isostatic pressure to its electrical properties","authors":"F. Rahmawati, Septia K Arifah, Y. Hidayat","doi":"10.14710/ijred.2023.53901","DOIUrl":"https://doi.org/10.14710/ijred.2023.53901","url":null,"abstract":"This research aims to study the Al-Y dopant to Lithium Lanthanum Zirconate (LLZO) to the characteristics and electrical properties of the LLZO as solid electrolyte. The synthesis was conducted through solid state reaction with Al2O3 and Y2O3 as dopant precursors. X-ray diffraction analysis along with Le Bail refinement was done to understand their structure, and phase content inside. The result found that Al and Y doping increased the cubic phase from 49.58% to 84.91%. The Al-Y doped-LLZO (LLZAYO) powder was then treated by a various cold isostatic pressing, CIP of 0, 20, 30, and 40 MPa to understand the effect of cold isostatic pressure to the ionic conductivity and solid electrolyte performance of the material even without heat sintering treatment. The result found that the green pellet of LLZAYO) which was isostatically pressed by 40 MPa at room temperature provides (9.06 ±0.26) x10-6 Scm-1, about 8 times higher than the LLZO without doping, i.e., (1.25 ±0.01) x 10-6 Scm-1. All solid-state battery with the prepare LLZAYO CIP 40 as solid electrolyte shows reversible reaction of Li/Li+ redox accompanied with Al/Al3+ redox. The Al/Al3+ reaction seems to decrease the electronic resistance between LCO-LLZAYO CIP40-Li which causes the full cell performance to decrease. The initial specific charging capacity is 82 mAh/g, and the initial discharge was 83 mAh/g, confirming 101 % of Coulombic efficiency. The discharge capacity drops to 46 mAh/g at second cycle, leading to a decrease in Coulombic efficiency to 56 %.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":"1 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66964692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-30DOI: 10.14710/ijred.2023.54348
Muhammad Amir Aziat Bin Ishak, A. Ibrahim, Kamarruzaman Sopian, M. Fauzan, Aqil Afham Rahmat, N. J. Yusaidi
As the world shifts towards a more sustainable future, solar energy has emerged as a preeminent and economically feasible alternative to traditional energy sources, gaining widespread adoption. This study presents a reversed circular flow jet impingement (RCFJI) which aims to improve the performance of a bifacial PVT collector. An indoor experiment using a solar simulator to assess the energy, exergy, and economic efficiency of a RCFJI bifacial PVT collector. The study was carried out using a solar irradiance ranging from 500-900W/m2 and a mass flow rate between 0.01-0.14 kg/s. Energy performance-wise, the highest photovoltaic efficiency achieved was 11.38% at solar irradiance of 500 W/m2, while the highest thermal efficiency achieved was 61.4% under 900 W/m2, both obtained at 0.14 kg/s mass flow rate. Regarding exergy performance, the highest photovoltaic exergy obtained was 47.27 W under 900 W/m2 at 0.14 kg/s, while the highest thermal exergy was 9.67 W at 900 W/m2 at 0.01 kg/s. Overall, higher solar irradiance is more desirable for energy and exergy performance. Meanwhile, economic point of view, lower solar irradiance is preferable. Based on the findings, the optimal mass flow rate was 0.06 kg/s.
{"title":"Performance and economic analysis of a reversed circular flow jet impingement bifacial PVT solar collector","authors":"Muhammad Amir Aziat Bin Ishak, A. Ibrahim, Kamarruzaman Sopian, M. Fauzan, Aqil Afham Rahmat, N. J. Yusaidi","doi":"10.14710/ijred.2023.54348","DOIUrl":"https://doi.org/10.14710/ijred.2023.54348","url":null,"abstract":"As the world shifts towards a more sustainable future, solar energy has emerged as a preeminent and economically feasible alternative to traditional energy sources, gaining widespread adoption. This study presents a reversed circular flow jet impingement (RCFJI) which aims to improve the performance of a bifacial PVT collector. An indoor experiment using a solar simulator to assess the energy, exergy, and economic efficiency of a RCFJI bifacial PVT collector. The study was carried out using a solar irradiance ranging from 500-900W/m2 and a mass flow rate between 0.01-0.14 kg/s. Energy performance-wise, the highest photovoltaic efficiency achieved was 11.38% at solar irradiance of 500 W/m2, while the highest thermal efficiency achieved was 61.4% under 900 W/m2, both obtained at 0.14 kg/s mass flow rate. Regarding exergy performance, the highest photovoltaic exergy obtained was 47.27 W under 900 W/m2 at 0.14 kg/s, while the highest thermal exergy was 9.67 W at 900 W/m2 at 0.01 kg/s. Overall, higher solar irradiance is more desirable for energy and exergy performance. Meanwhile, economic point of view, lower solar irradiance is preferable. Based on the findings, the optimal mass flow rate was 0.06 kg/s.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45213920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-29DOI: 10.14710/ijred.2023.54056
Khaled Bouchareb, N. Ihaddadène, Khellaf Belkhiri, Khaoula Ikhlef, A. Boudilmi
In this study, the design, analysis and optimization of the performance of a concentrated solar power plant that is based on the parabolic trough technology with a capacity of 100 MW equipped with a thermal energy storage system were conducted, in two representative sites in Algeria (Tamanrasset and M’Sila). The System Advisor Model software is used to evaluate the technical and economic performances of the two proposed power plants, in addition to carrying out the process of optimizing the initial design of the two power plants by finding the optimal values of the solar multiple and full load hours of the thermal energy storage system, with the aim of increasing the annual energy production and reducing the levelized cost of electricity. The results of the performance analysis conducted on the optimized design showed that the optimum values of the solar multiple and full load hours of the thermal energy storage system for the proposed power plant at the Tamanrasset site were found to be 2.4 and 7 h, respectively, with an annual electricity production of 514.6 GWh, and a minimum value of the levelized cost of electricity of 6.3¢/kWh. While the optimum performance of the proposed plant at the M'Sila site can be achieved by selecting a solar multiple of 3 and 7 h for thermal energy storage system, with a high annual energy production of 451.84 GWh and a low value of the levelized cost of electricity of 7.8¢/kWh. The results demonstrate that CSP plants using parabolic trough technology can increase energy security in the country, while reducing environmental concerns associated with the use of fossil materials.
{"title":"Assessment of the technical-economic performance and optimization of a parabolic trough solar power plant under Algerian climatic conditions","authors":"Khaled Bouchareb, N. Ihaddadène, Khellaf Belkhiri, Khaoula Ikhlef, A. Boudilmi","doi":"10.14710/ijred.2023.54056","DOIUrl":"https://doi.org/10.14710/ijred.2023.54056","url":null,"abstract":"In this study, the design, analysis and optimization of the performance of a concentrated solar power plant that is based on the parabolic trough technology with a capacity of 100 MW equipped with a thermal energy storage system were conducted, in two representative sites in Algeria (Tamanrasset and M’Sila). The System Advisor Model software is used to evaluate the technical and economic performances of the two proposed power plants, in addition to carrying out the process of optimizing the initial design of the two power plants by finding the optimal values of the solar multiple and full load hours of the thermal energy storage system, with the aim of increasing the annual energy production and reducing the levelized cost of electricity. The results of the performance analysis conducted on the optimized design showed that the optimum values of the solar multiple and full load hours of the thermal energy storage system for the proposed power plant at the Tamanrasset site were found to be 2.4 and 7 h, respectively, with an annual electricity production of 514.6 GWh, and a minimum value of the levelized cost of electricity of 6.3¢/kWh. While the optimum performance of the proposed plant at the M'Sila site can be achieved by selecting a solar multiple of 3 and 7 h for thermal energy storage system, with a high annual energy production of 451.84 GWh and a low value of the levelized cost of electricity of 7.8¢/kWh. The results demonstrate that CSP plants using parabolic trough technology can increase energy security in the country, while reducing environmental concerns associated with the use of fossil materials.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42406502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-20DOI: 10.14710/ijred.2023.54612
Van Giao Nguyen, Minh Tuan Pham, Nguyen Viet Linh Le, H. C. Le, Thanh H. Truong, Dao Nam Cao
Fossil fuels are the main source of energy for transportation operations around the world. However, fossil fuels cause extremely negative impacts on the environment, as well as uneven distribution across countries, increasing energy insecurity. Biodiesel is one of the potential and feasible options in recent years to solve energy problems. Biodiesel is a renewable, low-carbon fuel source that is increasingly being used as a replacement for traditional fossil fuels, particularly in diesel engines. Biodiesel has several potential benefits such as reducing greenhouse gas emissions, improving air quality, and energy independence. However, there are also several challenges associated with the use of biodiesel including the compatibility of biodiesel with existing engine technologies and infrastructure as well as the cost of production, which can vary depending on factors such as location, climate, and competing uses for the feedstocks. Meanwhile, studies aimed at comprehensively assessing the impact of biodiesel on engine power, performance, and emissions are lacking. This becomes a major barrier to the dissemination of this potential energy source. Therefore, this study will provide a comprehensive view of the physicochemical properties of biodiesel that affect the performance and emission properties of the engine, as well as discuss the difficulties and opportunities of this potential fuel source.
{"title":"A comprehensive review on the use of biodiesel for diesel engines","authors":"Van Giao Nguyen, Minh Tuan Pham, Nguyen Viet Linh Le, H. C. Le, Thanh H. Truong, Dao Nam Cao","doi":"10.14710/ijred.2023.54612","DOIUrl":"https://doi.org/10.14710/ijred.2023.54612","url":null,"abstract":"Fossil fuels are the main source of energy for transportation operations around the world. However, fossil fuels cause extremely negative impacts on the environment, as well as uneven distribution across countries, increasing energy insecurity. Biodiesel is one of the potential and feasible options in recent years to solve energy problems. Biodiesel is a renewable, low-carbon fuel source that is increasingly being used as a replacement for traditional fossil fuels, particularly in diesel engines. Biodiesel has several potential benefits such as reducing greenhouse gas emissions, improving air quality, and energy independence. However, there are also several challenges associated with the use of biodiesel including the compatibility of biodiesel with existing engine technologies and infrastructure as well as the cost of production, which can vary depending on factors such as location, climate, and competing uses for the feedstocks. Meanwhile, studies aimed at comprehensively assessing the impact of biodiesel on engine power, performance, and emissions are lacking. This becomes a major barrier to the dissemination of this potential energy source. Therefore, this study will provide a comprehensive view of the physicochemical properties of biodiesel that affect the performance and emission properties of the engine, as well as discuss the difficulties and opportunities of this potential fuel source.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48752510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-20DOI: 10.14710/ijred.2023.49165
M. Saeed, MD Sohel Rana, MD Kausaraahmed, C. El‐Bayeh, Fang-zong Wang
The development of energy management tools for next-generation Distributed Energy Resources (DER) based power plants, such as photovoltaic, energy storage units, and wind, helps power systems be more flexible. Microgrids are entities that coordinate DERs in a persistently more decentralized fashion, hence decreasing the operational burden on the main grid and permitting them to give their full benefits. A new power framework has emerged due to the integration of DERs-based microgrids into the conventional power system. With the rapid advancement of microgrid technology, more emphasis has been placed on maintaining the microgrids' long-term economic feasibility while ensuring security and stability. The objective of this research is to provide a multi-objective economic operation technique for microgrids containing air-conditioning clusters (ACC) taking demand response into account. A dynamic price mechanism is proposed, accurately reflecting the system's actual operational status. For economic dispatch, flexible loads and air conditioners are considered demand response resources. Then, a consumer-profit model and an AC operating cost model are developed, with a set of pragmatic constraints of consumer comfort. The generation model is then designed to reduce the generation cost. Finally, a microgrid simulation platform is developed in MATLAB/Simulink, and a case is designed to evaluate the proposed method's performance. The findings show that consumer profit increases by 69.2% while ACC operational costs decrease by 18.2%. Moreover, generation costs are reduced without sacrificing customer satisfaction.
{"title":"Demand response based microgrid's economic dispatch","authors":"M. Saeed, MD Sohel Rana, MD Kausaraahmed, C. El‐Bayeh, Fang-zong Wang","doi":"10.14710/ijred.2023.49165","DOIUrl":"https://doi.org/10.14710/ijred.2023.49165","url":null,"abstract":"The development of energy management tools for next-generation Distributed Energy Resources (DER) based power plants, such as photovoltaic, energy storage units, and wind, helps power systems be more flexible. Microgrids are entities that coordinate DERs in a persistently more decentralized fashion, hence decreasing the operational burden on the main grid and permitting them to give their full benefits. A new power framework has emerged due to the integration of DERs-based microgrids into the conventional power system. With the rapid advancement of microgrid technology, more emphasis has been placed on maintaining the microgrids' long-term economic feasibility while ensuring security and stability. The objective of this research is to provide a multi-objective economic operation technique for microgrids containing air-conditioning clusters (ACC) taking demand response into account. A dynamic price mechanism is proposed, accurately reflecting the system's actual operational status. For economic dispatch, flexible loads and air conditioners are considered demand response resources. Then, a consumer-profit model and an AC operating cost model are developed, with a set of pragmatic constraints of consumer comfort. The generation model is then designed to reduce the generation cost. Finally, a microgrid simulation platform is developed in MATLAB/Simulink, and a case is designed to evaluate the proposed method's performance. The findings show that consumer profit increases by 69.2% while ACC operational costs decrease by 18.2%. Moreover, generation costs are reduced without sacrificing customer satisfaction.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48989735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-19DOI: 10.14710/ijred.2023.54941
Van Nhanh Nguyen, Prabhakar Sharma, Anurag Kumar, Minh Tuan Pham, H. C. Le, Thanh H. Truong, Dao Nam Cao
Biodiesel manufacturing from renewable feedstocks has received a lot of attention as a viable alternative to fossil fuels. The Box-Behnken design, analysis of variance (ANOVA), and the Grey Wolf Optimizer (GWO) algorithm were used in this work to optimise biodiesel production from Nahar oil. The goal was to determine the best operating parameters for maximising biodiesel yield. The Box-Behnken design is used, with four essential parameters taken into account: molar ratio, reaction duration and temperature, and catalyst weight percentage. The response surface is studied in this design, and the key factors influencing biodiesel yield are discovered. The gathered data is given to ANOVA analysis to determine the statistical significance. ANOVA analysis is performed on the acquired data to determine the statistical significance of the components and their interactions. The GWO algorithm is used to better optimise the biodiesel production process. Based on the data provided, the GWO algorithm obtains an optimised yield of 91.6484% by running the reaction for 200 minutes, using a molar ratio of 7, and a catalyst weight percentage of 1.2. As indicated by the lower boundaries, the reaction temperature ranges from 50 °C. The results show that the Box-Behnken design, ANOVA, and GWO algorithm were successfully integrated for optimising biodiesel production from Nahar oil. This method offers useful insights into process optimisation and indicates the possibilities for increasing the efficiency and sustainability of biodiesel production. Further study can broaden the use of these strategies to various biodiesel production processes and feedstocks, advancing sustainable energy technology.
{"title":"Optimization of biodiesel production from Nahar oil using Box-Behnken design, ANOVA and grey wolf optimizer","authors":"Van Nhanh Nguyen, Prabhakar Sharma, Anurag Kumar, Minh Tuan Pham, H. C. Le, Thanh H. Truong, Dao Nam Cao","doi":"10.14710/ijred.2023.54941","DOIUrl":"https://doi.org/10.14710/ijred.2023.54941","url":null,"abstract":"Biodiesel manufacturing from renewable feedstocks has received a lot of attention as a viable alternative to fossil fuels. The Box-Behnken design, analysis of variance (ANOVA), and the Grey Wolf Optimizer (GWO) algorithm were used in this work to optimise biodiesel production from Nahar oil. The goal was to determine the best operating parameters for maximising biodiesel yield. The Box-Behnken design is used, with four essential parameters taken into account: molar ratio, reaction duration and temperature, and catalyst weight percentage. The response surface is studied in this design, and the key factors influencing biodiesel yield are discovered. The gathered data is given to ANOVA analysis to determine the statistical significance. ANOVA analysis is performed on the acquired data to determine the statistical significance of the components and their interactions. The GWO algorithm is used to better optimise the biodiesel production process. Based on the data provided, the GWO algorithm obtains an optimised yield of 91.6484% by running the reaction for 200 minutes, using a molar ratio of 7, and a catalyst weight percentage of 1.2. As indicated by the lower boundaries, the reaction temperature ranges from 50 °C. The results show that the Box-Behnken design, ANOVA, and GWO algorithm were successfully integrated for optimising biodiesel production from Nahar oil. This method offers useful insights into process optimisation and indicates the possibilities for increasing the efficiency and sustainability of biodiesel production. Further study can broaden the use of these strategies to various biodiesel production processes and feedstocks, advancing sustainable energy technology.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43981803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}